Alessandro Tancredi, Alberto Tognoli

On the analytic approximation of differentiable functions from above

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_227_0>
On the Analytic Approximation
of Differentiable Functions from Above.

ALESSANDRO TANCREDI - ALBERTO TOGNOLI (*)

Summary. – We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.

1. – Introduction.

Let X be a closed analytic subset of an open domain Ω of \mathbb{R}^n and let f be a C^∞ differentiable function on Ω. If we want to approximate f by analytic functions, in strong Whitney’s topology, without changing its values on X, obviously, a necessary condition is that f is analytic on X. Another necessary condition is that X is coherent, otherwise it could not exist any analytic function on Ω that coincides with f on X. In [6] it is proved that for every continuous positive function $\eta : \Omega \to \mathbb{R}$ there exists an analytic function h on Ω such that $f|_X = h|_X$ and

$$|D^\alpha f(x) - D^\alpha h(x)| < \eta(x) \text{ for } |\alpha| \leq \frac{1}{\eta(x)},$$

where $\alpha \in \mathbb{N}^n$.

In this short note we deal with the conditions that allow us to make such an approximation from above, i.e. we want $h(x) \geq f(x)$ for every $x \in \Omega$. When X is a locally complete intersection subset we find a necessary and sufficient condition in order to obtain the approximation. This allows us to say a little more about the problem, posed by C. Andradas, of the extension of a nonnegative analytic function off X.

(*) The authors are members of GNASAGA of CNR. This work is partially supported by MURST.
2. – Results.

Let \(\mathcal{O}_{\mathbb{R}^n} \) and \(\mathcal{E}_{\mathbb{R}^n} \) be the sheaves of real analytic and, respectively, differentiable \((C^\infty) \) functions on \(\mathbb{R}^n \).

If \(\Omega \) is an open domain in \(\mathbb{R}^n \), we denote by \(\mathcal{O}_\Omega \) (resp. \(\mathcal{E}_\Omega \)) the sheaf \(\mathcal{O}_{\mathbb{R}^n} \mid_\Omega \) (resp. \(\mathcal{E}_{\mathbb{R}^n} \mid_\Omega \)).

Let \(X \) be a closed analytic subset of \(\Omega \); we denote by \(\mathcal{I}_X \) the ideal sheaf of real analytic functions vanishing on \(X \) and by \(\mathcal{J}_X \) the ideal sheaf of differentiable functions vanishing on \(X \).

As usual, we denote by \(\mathcal{O}_X \) the sheaf \((\mathcal{O}_\Omega / \mathcal{I}_X) \mid_X \) of the analytic functions on \(X \).

In the following, by an analytic subset \(X \) we always mean a closed locally complete intersection coherent analytic subset so that, by a result of S. Coen ([3]), the ideal \(\mathcal{I}_X \) has finitely many global sections that generate its fiber at each point.

Lemma 1. – Let \(\Omega \) be an open domain in \(\mathbb{R}^n \), \(\eta \) a continuous positive function on \(\Omega \), and \(\theta, \theta_1, \ldots, \theta_s \in \mathcal{E}_\Omega(\Omega) \). Then there exists a positive function \(\mu \in \mathcal{E}_\Omega(\Omega) \) such that, for \(|\alpha| \leq 1/\eta(x) \),

\[
\begin{align*}
&i) \quad |D^\alpha(\mu\theta)(x)| < \frac{\eta(x)}{2}; \\
&ii) \quad \mu(x) \sum_{i=1}^s \sum_{\beta=0}^\alpha \left(\begin{array}{c}
\alpha \\
\beta
\end{array}\right) |D^{\alpha-\beta} \theta_i(x)| \leq \frac{\eta(x)}{2}.
\end{align*}
\]

Proof. – Let \((K_v)_{v \in \mathbb{N}} \) be a sequence of compact sets such that \(\Omega = \bigcup_{v} K_v, \)

\(K_0 = \emptyset, K_v \subset K_{v+1}, \) and let \(A_v = K_{v+2} - K_v \). Then \((A_v)_{v \in \mathbb{N}} \) is a locally finite open covering of \(\Omega \) and every \(x \in \Omega \) has a neighbourhood \(U \) such that \(U \cap A_v = \emptyset \) if \(v \neq p, p+1 \) for one and only one \(p \in \mathbb{N} \). Let \((\phi_v)_{v \in \mathbb{N}} \) be a differentiable partition of unity such that \(\text{supp}(\phi_v) \subset A_v \).

For every \(v \in \mathbb{N} \), let \(\delta_v \in \mathbb{R}_+ \) be such that \(\delta_v < \inf_{x \in K_{v+2}} \eta(x) \) and let \(q_v \geq 1 \) be a real number strictly bigger than

\[
\sup_{|\alpha| \leq (1/\delta_v)} \|D^\alpha \phi_v\|_{K_{v+3}}, \quad \sup_{|\alpha| \leq (1/\delta_v)} \|D^\alpha \theta\|_{K_{v+3}}, \quad \sup_{|\alpha| \leq (1/\delta_v)} \sum_{i=1}^s \|D^\alpha \theta_i\|_{K_{v+3}}.
\]

We can suppose that \(q_{v+1} \geq q_v \) and we can find a sequence of positive real numbers \((\varepsilon_v)_{v \in \mathbb{N}} \) such that \(\varepsilon_{v+1} \leq \varepsilon_v \) and

\[
\varepsilon_v q_v^2 \sup_{|\alpha| \leq (1/\delta_v)} \sum_{\beta=0}^\alpha \left(\begin{array}{c}
\alpha \\
\beta
\end{array}\right) < \frac{\delta_v}{4}.
\]

Now, let us consider the differentiable function \(\mu = \sum_{v \in \mathbb{N}} \varepsilon_v \phi_v \), since
we can suppose that μ is locally equal to $\varepsilon_p \phi_p + \varepsilon_{p+1} \phi_{p+1}$, it is straightforward to check that μ satisfies the required conditions.

Theorem 1. — Let Ω be an open domain in \mathbb{R}^n and $f \in \mathcal{C}(\Omega)$ a differentiable function. For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{C}_\Omega(\Omega)$ such that

i) $|D^\alpha f(x) - D^\alpha h(x)| < \eta(x)$, for $|\alpha| \leq \frac{1}{\eta(x)}$;

ii) $h(x) > f(x)$ for every $x \in \Omega$.

Proof. — It follows from Lemma 1 that there exists a positive differentiable function $\mu \in \mathcal{C}(\Omega)$ such that $|D^\alpha(\mu)(x)| < \frac{\eta(x)}{2}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. By Whitney’s approximation theorem (see [5]) there exists an analytic function $h \in \mathcal{C}_\Omega(\Omega)$ such that

$$|D^\alpha(f + \mu)(x) - D^\alpha h(x)| < \frac{\mu(x)}{2} \quad \text{for} \quad |\alpha| \leq \frac{2}{\mu(x)}.$$

It is easy to check that h satisfies the required conditions.

Lemma 2. — Let Ω be an open domain in \mathbb{R}^n, \mathfrak{J} a coherent ideal of \mathcal{C}_Ω generated by finitely many global sections $\theta_1, \ldots, \theta_s$, \mathfrak{J} the ideal generated by \mathfrak{J} in \mathcal{C}_Ω and $f \in \Gamma(\Omega, \mathfrak{J})$. For every continuous positive function η on Ω there exists an analytic function $h \in \Gamma(\Omega, \mathfrak{J})$ such that

$$|D^\alpha f(x) - D^\alpha h(x)| < \eta(x), \quad \text{for} \quad |\alpha| \leq \frac{1}{\eta(x)}.$$

Moreover, if $f \in \Gamma(\Omega, \mathfrak{J}^2)$ it is possible to find $h \in \Gamma(\Omega, \mathfrak{J}^2)$ such that $h(x) \geq f(x)$ for every $x \in \Omega$.

Proof. — There exist differentiable functions f_1, \ldots, f_s on Ω such that $f = \sum_{i=1}^s f_i \theta_i$. As in Lemma 1, let μ be a differentiable function such that $\mu(x) < \eta(x)$ for every $x \in \Omega$ and $\mu(x) \sum_{i=1}^s \sum_{\beta=0}^\alpha \left(\frac{\alpha}{\beta}\right) |D^{\alpha-\beta} \theta_i(x)| \leq \frac{1}{\eta(x)}$. By Theorem 1, for every $i = 1, \ldots, s$, there exist analytic functions $h_i \in \mathcal{C}_\Omega(\Omega)$ such that $|D^\alpha f_i(x) - D^\alpha h_i(x)| < \mu(x)$, for $|\alpha| \leq \frac{1}{\mu(x)}$ and $h_i(x) > f_i(x)$ for every $x \in \Omega$. It is easy to see that the analytic function $h = \sum_{i=1}^s h_i \theta_i$ satisfies the first condition.

Moreover, if f is a section of \mathfrak{J}^2, then, by replacing the functions θ_i by the functions $(\theta_i + \theta_j)^2$, $i, j = 1, \ldots, s$, we can suppose that they are nonnegative on Ω, and so the second condition is satisfied too.
THEOREM 2. – Let Ω be an open domain in \mathbb{R}^n, X an analytic subset of Ω and $f \in \mathcal{E}_\Omega(\Omega)$ a differentiable function such that $f_x \in \mathcal{E}_{X,x}$ for all $x \in X$. For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{O}_\Omega(\Omega)$ such that

i) $|D^\alpha f(x) - D^\alpha h(x)| < \eta(x)$, for $|\alpha| \leq \frac{1}{\eta(x)}$;

ii) $h(x) \geq f(x)$ for every $x \in \Omega$;

iii) $h|_X = 0$.

Moreover, if f is nonnegative on Ω, h can be chosen such that $X = h^{-1}(0)$.

PROOF. – Since f is in $\Gamma(\Omega, \mathcal{J}^2)$, by Lemma 2 we only need to prove that, if f is nonnegative, it is possible to find h such that $X = h^{-1}(0)$.

Since X is coherent, there exists a nonnegative function $\theta \in \mathcal{O}_\Omega(\Omega)$ such that $X = \theta^{-1}(0)$, and, by Lemma 1, there exists a positive differentiable function $\mu \in \mathcal{E}_\Omega(\Omega)$ such that $|D^\alpha(\mu\theta)(x)| < \frac{\eta(x)}{2}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. On the other hand, as in the proof of Lemma 2, applied to the ideal generated by θ, there exists an analytic function $\delta \in \mathcal{O}_\Omega(\Omega)$ such that $|D^\alpha(\mu\theta)(x) - D^\alpha(\delta\theta)(x)| < \frac{\eta(x)}{4}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. It follows that $|D^\alpha(\delta\theta)(x)| < \frac{\eta(x)}{2}$ for $|\alpha| \leq \frac{1}{\eta(x)}$.

Now let us consider the analytic function $g = h + \delta\theta$; it follows immediately that $X = g^{-1}(0)$ and that $g(x) \geq h(x) \geq f(x)$ for every $x \in \Omega$. Moreover, for $|\alpha| \leq \frac{1}{\eta(x)}$, we have $|D^\alpha f(x) - D^\alpha g(x)| < \eta(x)$ and then, by replacing h by g, we get the conclusion.

LEMMA 3. – Let X be an analytic subset of an open domain Ω of \mathbb{R}^n:

i) $\{f_a \in \mathcal{J}_{X,a} | f_a \geq 0\} \subset \mathcal{J}^2_{X,a}$;

ii) $\{f_a \in \mathcal{J}_{X,a} | f_a \geq 0\} \subset \mathcal{J}^2_{X,a}$.

PROOF. – There exist an open neighbourhood U of a and functions $\theta_1, \ldots, \theta_s \in \mathcal{J}_X(U)$ that generate $\mathcal{J}_{X,x}$ for every $x \in U$, with $s = n - \dim X_a$. By a well known result of B. Malgrange (see [4]), they generate $\mathcal{J}_{X,x}$ as $\mathcal{E}_{X,x}$-module. If $f_a \in \mathcal{J}_{X,a}$ (resp. $\mathcal{J}_{X,a}$), we can suppose, by further shrinking U, that there exist functions $g_i \in \mathcal{O}_\Omega(U)$ (resp. $g_i \in \mathcal{E}_\Omega(U)$) such that $f = \sum_{i=1}^{s} g_i \theta_i$ and $f(x) \geq 0$ for every $x \in U$. It follows that $0 = d_x f = \sum_{i=1}^{s} g_i(x) d_x \theta_i$ for every $x \in U \cap X$, hence $g_i(x) = 0$ for every regular point of dimension $n - s$. Since such points are dense, $g_i \in \mathcal{J}_\Omega(U)$ (resp. $g_i \in \mathcal{J}_\Omega(U)$) and the conclusion follows.

DEFINITION 1. – Let X be an analytic subset of an open domain Ω of \mathbb{R}^n and $a \in X$. We say that a differentiable function $f \in \mathcal{E}_\Omega(\Omega)$ is strongly analytic at a.
if there exists a germ of analytic function $g_a \in \mathcal{O}_X, a$ such that $f_a - g_a \in \mathfrak{j}^2_{X, a}$. Of course, if $f_a \in \mathcal{O}_X, a$, then f is strongly analytic at a.

We say that a differentiable function $f \in \mathcal{E}_X(\Omega)$ is strongly analytic on X if it is strongly analytic at every point of X.

It is not hard to exhibit an example of an analytic function on an analytic subset X that is not strongly analytic. Let us consider an analytic subset X of \mathbb{R}^n such that the ideal \mathfrak{j}_X is generated by an analytic function θ at a point $a \in X$ and the differentiable function defined by $\phi(x) = \exp(-1/\|x - a\|^2)$, for $x \neq a$, and $\phi(a) = 0$. For every analytic function h on a neighborhood of a, the differentiable function $\phi h + h$ is analytic but not strongly analytic at the point a.

Lemma 4. Let X be an analytic subset of an open domain Ω of \mathbb{R}^n. For every strongly analytic function f on X there exists an analytic function $g \in \mathcal{O}_X(\Omega)$ such that $f - g \in \Gamma(\Omega, \mathfrak{j}^2_X)$.

Proof. For every $x \in \Omega$ the canonical inclusion $\mathcal{O}_{X, x} \to \mathcal{E}_{X, x}$ is faithfully flat and then, by the cited result of B. Malgrange, $\mathcal{O}_{X, x} \cap \mathcal{O}_X = \mathfrak{j}^2_{X, x}$. It follows that the sheaf $\mathcal{O}_X/\mathfrak{j}^2_X$ identifies with a subsheaf of $\mathcal{E}_X/\mathfrak{j}^2_X$. Let $\pi : \mathcal{E}_X \to \mathcal{O}_X/\mathfrak{j}^2_X$ and $\tau : \mathcal{E}_X \to \mathcal{E}_X/\mathfrak{j}^2_X$ be the canonical morphisms and let us consider the section $\tau(f) \in \Gamma(\Omega, \mathcal{O}_X/\mathfrak{j}^2_X)$; since f is strongly analytic on X and $\tau_x(f_x) = 0$ for every $x \in \Omega - X$, it follows that $\tau_x(f_x) \in \mathcal{O}_{X, x}/\mathfrak{j}^2_{X, x}$ for every $x \in \Omega$ and so $\tau(f) \in \Gamma(\Omega, \mathcal{O}_X/\mathfrak{j}^2_X)$. By Cartan’s Theorem B (see [2]) there exists an analytic function $g \in \mathcal{O}_X(\Omega)$ such that $\pi_x(g_x) = \tau_x(f_x)$ for every $x \in \Omega$ and so $f - g \in \Gamma(\Omega, \mathfrak{j}^2_X)$.

Theorem 3. Let Ω be an open domain in \mathbb{R}^n, X an analytic subset of Ω and $f \in \mathcal{E}_X(\Omega)$ a strongly analytic function on $X.$ For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{O}_X(\Omega)$ such that

i) $|D^\alpha f(x) - D^\alpha h(x)| < \eta(x), \text{ for } |\alpha| \leq 1/\eta(x);$
ii) $h(x) \geq f(x)$ for every $x \in \Omega$;
iii) $h|_X = f|_X$.

Proof. By Lemma 4 there exists $g \in \mathcal{O}_X(\Omega)$ such that $f - g \in \Gamma(\Omega, \mathfrak{j}^2_X)$. By Theorem 2 there exists $\delta \in \mathcal{O}_X(\Omega)$ such that $|D^\alpha(f - g)(x) - D^\alpha \delta(x)| < \eta(x)$, for $|\alpha| \leq 1/\eta(x)$, $\delta(x) \geq f(x) - g(x)$ for every $x \in \Omega$ and $\delta|_X = 0$. The analytic function $h = \delta + g$ satisfies the required conditions.

Corollary 1. A differentiable function $f \in \mathcal{E}_X(\Omega)$ is approximable, in the strong Whitney’s topology, by analytic functions $h \in \mathcal{O}_X(\Omega)$ such
that \(h|_X = f|_X \) and \(h(x) \geq f(x) \) for every \(x \in \Omega \) if and only if it is strongly analytic on \(X \).

Proof. – If there exists such an \(h \), then by Lemma 3 the function \(f \) is strongly analytic on \(X \). The other implication follows from Theorem 3.

The previous results allow us to say something about the following problem: let \(X \) be a closed coherent analytic subset of an open domain \(\Omega \) of \(\mathbb{R}^n \) and let \(\lambda \in \mathcal{O}_X(X) \) be a nonnegative function; does there exist a nonnegative function \(h \in \mathcal{O}_\Omega(\Omega) \) such that \(h|_X = \lambda \)? As it is shown in [1], the answer is in general negative: the function \(\lambda = x_1 \) on the subset \(X = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^2 - x_2^2 = 0\} \) does not even admit any local differential extension on a neighbourhood of \(O = (0, 0) \). Indeed, for such an extension \(f \), the germ of \(f - x_1 \) at \(O \) would be a multiple of the generator of \(\mathcal{O}_{X, O} \) and \(f \) could not be nonnegative in a neighbourhood of \(O \). Moreover it is proved in [1] that there exists a local nonnegative analytic extension of \(\lambda \) if and only if there exists a local nonnegative differentiable extension. In the following corollary we give a necessary and sufficient condition for the global extension of functions defined on locally complete intersection coherent analytic subsets.

Corollary 2. – A nonnegative analytic function \(\lambda \in \mathcal{O}_X(X) \) extends to a nonnegative analytic function \(h \in \mathcal{O}_\Omega(\Omega) \) if and only if it extends to a differentiable function \(f \) on \(\Omega \) which is a strongly analytic function on \(X \).

Proof. – By Theorem 3 there exists \(h \in \mathcal{O}_\Omega(\Omega) \) such that \(h|_X = f|_X = \lambda \) and \(h(x) \geq f(x) \) for every \(x \in \Omega \).

Remark 1. – If there exists a nonnegative analytic extension \(g \) of \(\lambda \) to an open neighbourhood \(U \) of \(X \) in \(\Omega \), then there exists a nonnegative analytic extension \(h \in \mathcal{O}_\Omega(\Omega) \). Indeed, let us consider an open neighbourhood \(V \) of \(X \) in \(U \) such that \(V \subseteq U \) and a differentiable function \(\phi \in \mathcal{E}(\Omega) \) such that \(\phi|_\Omega = 1 \), \(\phi(\Omega) \subseteq [0, 1] \) and \(\text{supp} (\phi) \subseteq U \). By Lemma 3 the differentiable function \(f = \phi g \in \mathcal{E}_\Omega(\Omega) \) is strongly analytic on \(X \) and extends \(\lambda \); it follows from Corollary 2 that \(\lambda \) extends to a nonnegative analytic function.

Such an extension \(g \) can be determined when it is possible to find a family \((h_i)_{i \in I} \) of nonnegative analytic local extensions of \(\lambda \) to open sets \(U_i \), which there exist by the cited result of [1], such that the functions \(h_i/h_j \) define an analytic cocycle on \(U = \bigcup_i U_i \). In this situation there exist an analytic line bundle \(E \) on \(U \), trivial on \(X \), with an analytic section \(s \in \mathcal{I}(U, E) \) such that \(s|_X = \lambda \). Since \(E \) is trivial on \(X \), by Cartan’s Theorem B (see [2]), the constant section 1 on \(X \) can be extended, by shrinking \(U \) if necessary, to an analytic section \(t \in \mathcal{I}(U, E) \) such that \(t(x) > 0 \) for every \(x \in U \). The function \(g = s/t \) gives the required extension of \(\lambda \).
REFERENCES

Alessandro Tancredi: Dipartimento di Matematica, Università di Perugia
Via Vanvitelli 1, I-06123 Perugia (PG), Italy; e-mail: altan@unipg.it

Alberto Tognoli: Dipartimento di Matematica, Università di Trento
Via Sommarive 58, I-38050 Povo (TN), Italy

Pervenuta in Redazione
il 24 ottobre 2000