BOLLETTINO UNIONE MATEMATICA ITALIANA

Alessandro Tancredi, Alberto Tognoli

On the analytic approximation of differentiable functions from above

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **5-B** (2002), n.1, p. 227–233.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_227_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

On the Analytic Approximation of Differentiable Functions from Above.

Alessandro Tancredi - Alberto Tognoli (*)

Sunto. – Si determinano condizioni affinché una funzione differenziabile sia approssimabile dall'alto con funzioni analitiche, restando immutata su un fissato sottoinsieme analitico che sia localmente intersezione completa.

Summary. – We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.

1. - Introduction.

Let X be a closed analytic subset of an open domain Ω of \mathbb{R}^n and let f be a \mathcal{C}^{∞} differentiable function on Ω . If we want to approximate f by analytic functions, in strong Whitney's topology, without changing its values on X, obviously, a necessary condition is that f is analytic on X. Another necessary condition is that X is *coherent*, otherwise it could not exist any analytic function on Ω that coincides with f on X. In [6] it is proved that for every continuous positive function $\eta: \Omega \to \mathbb{R}$ there exists an analytic function h on Ω such that $f|_X = h|_X$ and

$$|D^{\alpha}f(x) - D^{\alpha}h(x)| < \eta(x) \text{ for } |\alpha| \leq \frac{1}{\eta(x)}, \quad \alpha \in \mathbb{N}^{n}.$$

In this short note we deal with the conditions that allow us to make such an approximation from above, i.e. we want $h(x) \ge f(x)$ for every $x \in \Omega$. When X is a locally complete intersection subset we find a necessary and sufficient condition in order to obtain the approximation. This allows us to say a little more about the problem, posed by C. Andradas, of the extension of a nonnegative analytic function off X.

(*) The authors are members of GNASAGA of CNR. This work is partially supported by MURST.

2. – Results.

Let $\mathcal{O}_{\mathbb{R}^n}$ and $\mathcal{E}_{\mathbb{R}^n}$ be the sheaves of real analytic and, respectively, differentiable (\mathcal{C}^{∞}) functions on \mathbb{R}^n .

If Ω is an open domain in \mathbb{R}^n , we denote by \mathcal{O}_{Ω} (resp. \mathcal{E}_{Ω}) the sheaf $\mathcal{O}_{\mathbb{R}^n}|_{\Omega}$ (resp. $\mathcal{E}_{\mathbb{R}^n}|_{\Omega}$).

Let X be a closed analytic subset of Ω ; we denote by $\mathfrak{Z}_X \subset \mathfrak{O}_\Omega$ the ideal sheaf of real analytic functions vanishing on X and by $\mathfrak{Z}_X \subset \mathfrak{E}_\Omega$ the ideal sheaf of differentiable functions vanishing on X.

As usual, we denote by \mathcal{O}_X the sheaf $(\mathcal{O}_\Omega/\mathfrak{I}_X)|_X$ of the analytic functions on *X*.

In the following, by an analytic subset X we always mean a closed locally complete intersection coherent analytic subset so that, by a result of S. Coen ([3]), the ideal \Im_X has finitely many global sections that generate its fiber at each point.

LEMMA 1. – Let Ω be an open domain in \mathbb{R}^n , η a continuous positive function on Ω , and θ , $\theta_1, \ldots, \theta_s \in \mathcal{E}_{\Omega}(\Omega)$. Then there exists a positive function $\mu \in \mathcal{E}_{\Omega}(\Omega)$ such that, for $|\alpha| \leq \frac{1}{\eta(x)}$,

i)
$$|D^{\alpha}(\mu\theta)(x)| < \frac{\eta(x)}{2};$$

ii) $\mu(x) \sum_{i=1}^{s} \sum_{\beta=0}^{\alpha} {\alpha \choose \beta} |D^{\alpha-\beta}\theta_{i}(x)| \leq \frac{\eta(x)}{2}.$

PROOF. - Let $(K_{\nu})_{\nu \in \mathbb{N}}$ be a sequence of compact sets such that $\Omega = \bigcup_{\nu} K_{\nu}$, $K_0 = \emptyset, K_{\nu} \subset \overset{\circ}{K}_{\nu+1}$, and let $A_{\nu} = \overset{\circ}{K}_{\nu+2} - K_{\nu}$. Then $(A_{\nu})_{\nu \in \mathbb{N}}$ is a locally finite open covering of Ω and every $x \in \Omega$ has a neighbourhood U such that $U \cap A_{\nu} = \emptyset$ if $\nu \neq p, p+1$ for one and only one $p \in \mathbb{N}$. Let $(\phi_{\nu})_{\nu \in \mathbb{N}}$ be a differentiable partition of unity such that $\sup(\phi_{\nu}) \subset A_{\nu}$.

For every $\nu \in \mathbb{N}$, let $\delta_{\nu} \in \mathbb{R}_+$ be such that $\delta_{\nu} < \inf_{x \in K_{\nu+3}} \eta(x)$ and let $\varrho_{\nu} \ge 1$ be a real number strictly bigger than

$$\sup_{|\alpha| \leq (1/\delta_{\nu})} \|D^{\alpha}\phi_{\nu}\|_{K_{\nu+3}}, \qquad \sup_{|\alpha| \leq (1/\delta_{\nu})} \|D^{\alpha}\theta\|_{K_{\nu+3}}, \qquad \sup_{|\alpha| \leq (1/\delta_{\nu})} \sum_{i=1}^{s} \|D^{\alpha}\theta_{i}\|_{K_{\nu+3}}.$$

We can suppose that $\varrho_{\nu+1} \ge \varrho_{\nu}$ and we can find a sequence of positive real numbers $(\varepsilon_{\nu})_{\nu \in \mathbb{N}}$ such that $\varepsilon_{\nu+1} \le \varepsilon_{\nu}$ and

$$\varepsilon_{\nu} \varrho_{\nu}^{2} \sup_{|\alpha| \leq (1/\delta_{\nu})} \sum_{\beta=0}^{\alpha} \binom{\alpha}{\beta} < \frac{\delta_{\nu}}{4}.$$

Now, let us consider the differentiable function $\mu = \sum_{\nu \in \mathbb{N}} \varepsilon_{\nu} \phi_{\nu}$; since

we can suppose that μ is locally equal to $\varepsilon_p \phi_p + \varepsilon_{p+1} \phi_{p+1}$, it is straightforward to check that μ satisfies the required conditions.

THEOREM 1. – Let Ω be an open domain in \mathbb{R}^n and $f \in \mathcal{E}_{\Omega}(\Omega)$ a differentiable function. For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{O}_{\Omega}(\Omega)$ such that

i) |D^αf(x) - D^αh(x)| < η(x), for |α| ≤ 1/η(x);
ii) h(x) > f(x) for every x ∈ Ω.

PROOF. – It follows from Lemma 1 that there exists a positive differentiable function $\mu \in \mathcal{E}(\Omega)$ such that $|D^{\alpha}(\mu)(x)| < \frac{\eta(x)}{2}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. By Whitney's approximation theorem (see [5]) there exists an analytic function $h \in \mathcal{O}_{\Omega}(\Omega)$ such that

$$|D^{a}(f+\mu)(x) - D^{a}h(x)| < \frac{\mu(x)}{2}$$
 for $|\alpha| \le \frac{2}{\mu(x)}$.

It is easy to check that h satisfies the required conditions.

LEMMA 2. – Let Ω be an open domain in \mathbb{R}^n , 3 a coherent ideal of \mathcal{O}_{Ω} generated by finitely many global sections $\theta_1, \ldots, \theta_s$, 3 the ideal generated by 3 in \mathcal{E}_{Ω} and $f \in \Gamma(\Omega, \mathfrak{Z})$. For every continuous positive function η on Ω there exists an analytic function $h \in \Gamma(\Omega, \mathfrak{Z})$ such that

$$|D^{\alpha}f(x) - D^{\alpha}h(x)| < \eta(x), \quad \text{for } |\alpha| \le \frac{1}{\eta(x)}.$$

Moreover, if $f \in \Gamma(\Omega, \mathcal{J}^2)$ it is possible to find $h \in \Gamma(\Omega, \mathcal{J}^2)$ such that $h(x) \ge f(x)$ for every $x \in \Omega$.

PROOF. – There exist differentiable functions f_1, \ldots, f_s on Ω such that $f = \sum_{i=1}^{s} f_i \theta_i$. As in Lemma 1, let μ be a differentiable function such that $\mu(x) < \eta(x)$ for every $x \in \Omega$ and $\mu(x) \sum_{i=1}^{s} \sum_{\beta=0}^{\alpha} {\alpha \choose \beta} |D^{\alpha-\beta} \theta_i(x)| \leq \frac{1}{\eta(x)}$ for $|\alpha| \leq \frac{1}{\eta(x)}$. By Theorem 1, for every $i = 1, \ldots, s$, there exist analytic functions $h_i \in \mathcal{O}_{\Omega}(\Omega)$ such that $|D^{\alpha} f_i(x) - D^{\alpha} h_i(x)| < \mu(x)$, for $|\alpha| \leq \frac{1}{\mu(x)}$ and $h_i(x) > f_i(x)$ for every $x \in \Omega$. It is easy to see that the analytic function $h = \sum_{i=1}^{s} h_i \theta_i$ satisfies the first condition.

Moreover, if f is a section of \mathcal{J}^2 , then, by replacing the functions θ_i by the functions $(\theta_i + \theta_j)^2$, i, j = 1, ..., s, we can suppose that they are nonnegative on Ω , and so the second condition is satisfied too.

THEOREM 2. – Let Ω be an open domain in \mathbb{R}^n , X an analytic subset of Ω and $f \in \mathcal{E}_{\Omega}(\Omega)$ a differentiable function such that $f_x \in \mathcal{J}^2_{X,x}$ for all $x \in X$. For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{O}_{\Omega}(\Omega)$ such that

- i) $|D^{\alpha}f(x) D^{\alpha}h(x)| < \eta(x)$, for $|\alpha| \le \frac{1}{n(x)}$;
- ii) $h(x) \ge f(x)$ for every $x \in \Omega$;
- iii) $h|_{X} = 0.$

Moreover, if f is nonnegative on Ω , h can be chosen such that $X = h^{-1}(0)$.

PROOF. – Since *f* is in $\Gamma(\Omega, \mathcal{J}^2)$, by Lemma 2 we only need to prove that, if *f* is nonnegative, it is possible to find *h* such that $X = h^{-1}(0)$.

Since X is coherent, there exists a nonnegative function $\theta \in \mathcal{O}_{\Omega}(\Omega)$ such that $X = \theta^{-1}(0)$, and, by Lemma 1, there exists a positive differentiable function $\mu \in \mathcal{E}_{\Omega}(\Omega)$ such that $|D^{\alpha}(\mu\theta)(x)| < \frac{\eta(x)}{4}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. On the other hand, as in the proof of Lemma 2, applied to the ideal generated by θ , there exists an analytic function $\delta \in \mathcal{O}_{\Omega}(\Omega)$ such that $|D^{\alpha}(\mu\theta)(x)| < \frac{\eta(x)}{4}$, for $|\alpha| \leq \frac{1}{\eta(x)}$. It follows that $|D^{\alpha}(\delta\theta)(x)| < \frac{\eta(x)}{2}$ for $|\alpha| \leq \frac{1}{\eta(x)}$.

Now let us consider the analytic function $g = h + \delta\theta$; it follows immediately that $X = g^{-1}(0)$ and that $g(x) \ge h(x) \ge f(x)$ for every $x \in \Omega$. Moreover, for $|\alpha| \le \frac{1}{\eta(x)}$, we have $|D^{\alpha}f(x) - D^{\alpha}g(x)| < \eta(x)$ and then, by replacing h by g, we get the conclusion.

LEMMA 3. – Let X be an analytic subset of an open domain Ω of \mathbb{R}^n :

- i) $\{f_a \in \mathfrak{I}_{X, a} | f_a \ge 0\} \subset \mathfrak{I}^2_{X, a};$
- ii) $\{f_a \in \mathcal{J}_{X, a} | f_a \ge 0\} \subset \mathcal{J}^2_{X, a}$.

PROOF. – There exist an open neighbourhood U of a and functions $\theta_1, \ldots, \theta_s \in \mathfrak{Z}_X(U)$ that generate $\mathfrak{Z}_{X,x}$ for every $x \in U$, with $s = n - \dim X_a$. By a well known result of B. Malgrange (see [4]), they generate $\mathfrak{Z}_{X,x}$ as $\mathfrak{E}_{X,x}$ -module. If $f_a \in \mathfrak{Z}_{X,a}$ (resp. $\mathfrak{Z}_{X,a}$), we can suppose, by further shrinking U, that there exist functions $g_i \in \mathfrak{O}_\Omega(U)$ (resp. $g_i \in \mathfrak{E}_\Omega(U)$) such that $f = \sum_{i=1}^s g_i \theta_i$ and $f(x) \ge 0$ for every $x \in U$. It follows that $0 = d_x f = \sum_{i=1}^s g_i(x) d_x \theta_i$ for every $x \in U \cap X$, hence $g_i(x) = 0$ for every regular point of dimension n - s. Since such points are dense, $g_i \in \mathfrak{Z}_\Omega(U)$ (resp. $g_i \in \mathfrak{Z}_\Omega(U)$) and the conclusion follows.

DEFINITION 1. – Let X be an analytic subset of an open domain Ω of \mathbb{R}^n and $a \in X$. We say that a differentiable function $f \in \mathcal{E}_{\Omega}(\Omega)$ is strongly analytic at a

if there exists a germ of analytic function $g_a \in \mathcal{O}_{\Omega, a}$ such that $f_a - g_a \in \mathcal{J}^2_{X, a}$. Of course, if $f_a \in \mathcal{O}_{\Omega, a}$, then f is strongly analytic at a.

We say that a differentiable function $f \in \mathcal{E}_{\Omega}(\Omega)$ is strongly analytic on X if it is strongly analytic at every point of X.

It is not hard to exhibit an example of an analytic function on an analytic subset X that is not strongly analytic. Let us consider an analytic subset X of \mathbb{R}^n such that the ideal \mathcal{J}_X is generated by an analytic function θ at a point $a \in X$ and the differentiable function defined by $\phi(x) = \exp(-1/||x-a||^2)$, for $x \neq a$, and $\phi(a) = 0$. For every analytic function h on a neighbourhood of a, the differentiable function $\phi\theta + h$ is analytic but not strongly analytic at the point a.

LEMMA 4. – Let X be an analytic subset of an open domain Ω of \mathbb{R}^n . For every strongly analytic function f on X there exists an analytic function $g \in \mathcal{O}_{\Omega}(\Omega)$ such that $f - g \in \Gamma(\Omega, \mathbb{J}_X^2)$.

PROOF. – For every $x \in \Omega$ the canonical inclusion $\mathcal{O}_{\Omega,x} \to \mathcal{E}_{\Omega,x}$ is faithfully flat and then, by the cited result of B. Malgrange, $\mathcal{J}_{X,x}^2 \cap \mathcal{O}_{\Omega,x} = \mathcal{J}_{X,x}^2$. It follows that the sheaf $\mathcal{O}_{\Omega}/\mathcal{J}_X^2$ identifies with a subsheaf of $\mathcal{E}_{\Omega}/\mathcal{J}_X^2$. Let $\pi : \mathcal{O}_{\Omega} \to \mathcal{O}_{\Omega}/\mathcal{J}_X^2$ and $\tau : \mathcal{E}_{\Omega} \to \mathcal{E}_{\Omega}/\mathcal{J}_X^2$ be the canonical morphisms and let us consider the section $\tau_{\Omega}(f) \in \Gamma(\Omega, \mathcal{E}_{\Omega}/\mathcal{J}_X^2)$; since f is strongly analytic on X and $\tau_x(f_x) = 0$ for every $x \in \Omega - X$, it follows that $\tau_x(f_x) \in \mathcal{O}_{\Omega,x}/\mathcal{J}_{X,x}^2$ for every $x \in \Omega$ and so $\tau_{\Omega}(f) \in \Gamma(\Omega, \mathcal{O}_{\Omega}/\mathcal{J}_X^2)$. By Cartan's Theorem B (see [2]) there exists an analytic function $g \in \mathcal{O}_{\Omega}(\Omega)$ such that $\pi_x(g_x) = \tau_x(f_x)$ for every $x \in \Omega$ and so $f - g \in$ $\Gamma(\Omega, \mathcal{J}_X^2)$.

THEOREM 3. – Let Ω be an open domain in \mathbb{R}^n , X an analytic subset of Ω and $f \in \mathcal{E}_{\Omega}(\Omega)$ a strongly analytic function on X. For every continuous positive function η on Ω there exists an analytic function $h \in \mathcal{O}_{\Omega}(\Omega)$ such that

i) |D^αf(x) - D^αh(x)| < η(x), for |α| ≤ 1/η(x);
ii) h(x) ≥ f(x) for every x ∈ Ω;
iii) h|_x = f|_x.

PROOF. – By Lemma 4 there exists $g \in \mathcal{O}_{\Omega}(\Omega)$ such that $f - g \in \Gamma(\Omega, \mathcal{J}_X^2)$. By Theorem 2 there exists $\delta \in \mathcal{O}_{\Omega}(\Omega)$ such that $|D^{\alpha}(f-g)(x) - D^{\alpha}\delta(x)| < \eta(x)$, for $|\alpha| \leq \frac{1}{\eta(x)}$, $\delta(x) \geq f(x) - g(x)$ for every $x \in \Omega$ and $\delta|_X = 0$. The analytic function $h = \delta + g$ satisfies the required conditions.

COROLLARY 1. – A differentiable function $f \in \mathcal{E}_{\Omega}(\Omega)$ is approximable, in the strong Whitney's topology, by analytic functions $h \in \mathcal{O}_{\Omega}(\Omega)$ such that $h|_X = f|_X$ and $h(x) \ge f(x)$ for every $x \in \Omega$ if and only if it is strongly analytic on X.

PROOF. – If there exists such an h, then by Lemma 3 the function f is strongly analytic on X. The other implication follows from Theorem 3.

The previous results allow us to say something about the following problem: let X be a closed coherent analytic subset of an open domain Ω of \mathbb{R}^n and let $\lambda \in \mathcal{O}_X(X)$ be a nonnegative function; does there exist a nonnegative function $h \in \mathcal{O}_\Omega(\Omega)$ such that $h|_X = \lambda$? As it is shown in [1], the answer is in general negative: the function $\lambda = x_1$ on the subset $X = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^3 - x_2^2 = 0\}$ does not even admit any local differential extension on a neighbourhood of O = (0, 0). Indeed, for such an extension f, the germ of $f - x_1$ at O would be a multiple of the generator of $\mathcal{J}_{X, O}$ and f could not be nonnegative in a neighbourhood of O. Moreover it is proved in [1] that there exists a local nonnegative analytic extension of λ if and only if there exists a local nonnegative differentiable extension. In the following corollary we give a necessary and sufficient condition for the global extension of functions defined on locally complete intersection coherent analytic subsets.

COROLLARY 2. – A nonnegative analytic function $\lambda \in \mathcal{O}_X(X)$ extends to a nonnegative analytic function $h \in \mathcal{O}_{\Omega}(\Omega)$ if and only if it extends to a differentiable function f on Ω which is a strongly analytic function on X.

PROOF. – By Theorem 3 there exists $h \in \mathcal{O}_{\Omega}(\Omega)$ such that $h|_{X} = f|_{X} = \lambda$ and $h(x) \ge f(x)$ for every $x \in \Omega$.

REMARK 1. – If there exists a nonnegative analytic extension g of λ to an open neighbourhood U of X in Ω , then there exists a nonnegative analytic extension $h \in \mathcal{O}_{\Omega}(\Omega)$. Indeed, let us consider an open neighbourhood V of X in U such that $\overline{V} \subset U$ and a differentiable function $\phi \in \mathcal{E}(\Omega)$ such that $\phi|_{\overline{V}} = 1$, $\phi(\Omega) \subset [0, 1]$ and $\operatorname{supp}(\phi) \subset U$. By Lemma 3 the differentiable function $f = \phi g \in \mathcal{E}_{\Omega}(\Omega)$ is strongly analytic on X and extends λ ; it follows from Corollary 2 that λ extends to a nonnegative analytic function.

Such an extension g can be determined when it is possible to find a family $(h_i)_{i \in I}$ of nonnegative analytic local extensions of λ to open sets U_i , which there exist by the cited result of [1], such that the functions h_i/h_j define an analytic cocycle on $U = \bigcup_i U_i$. In this situation there exist an analytic line bundle E on U, trivial on X, with an analytic section $s \in \Gamma(U, E)$ such that $s|_X = \lambda$. Since E is trivial on X, by Cartan's Theorem B (see [2]), the constant section 1 on X can be extended, by shrinking U if necessary, to an analytic section $t \in \Gamma(U, E)$ such that t(x) > 0 for every $x \in U$. The function g = s/t gives the required extension of λ .

REFERENCES

- [1] F. BROGLIA L. PERNAZZA, An Artin-Lang property for germs of \mathcal{C}^{∞} functions, preprint, 1999.
- [2] H. CARTAN, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 86 (1957), 77-99.
- [3] S. COEN, Sul rango dei fasci coerenti, Boll. Un. Mat. It., 22 (1967), 377-382.
- [4] B. MALGRANGE, Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. Fr., 91 (1963), 113-127.
- [5] R. NARASIMHAN, Analysis on real and complex manifolds, North-Holland, Amsterdam, New York, Oxford, 1985.
- [6] A. TOGNOLI, Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 54 (1973), 316-322.

Alessandro Tancredi: Dipartimento di Matematica, Università di Perugia Via Vanvitelli 1, I-06123 Perugia (PG), Italy; e-mail: altan@unipg.it

Alberto Tognoli: Dipartimento di Matematica, Università di Trento Via Sommarive 58, I-38050 Povo (TN), Italy

Pervenuta in Redazione il 24 ottobre 2000