BOLLETTINO UNIONE MATEMATICA ITALIANA

F. CAMMAROTO, G. NORDO, B. A. PASYNKOV

On trivially semi-metrizable and D-completely regular mappings

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.1, p. 197–203.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_197_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

On Trivially Semi-Metrizable and D-Completely Regular Mappings.

F. CAMMAROTO - G. NORDO - B. A. PASYNKOV

- Sunto. In questo lavoro si definiscono le nozioni di funzione T-simmetrizzabile, Tsemi-metrizzabile e T-D-completamente regolare. Esse vengono caratterizzate in termini di parallelismo rispettivamente a spazi simmetrizzabili, semi-metrizzabili e D-completamente regolari. Viene inoltre provato che le sottofunzioni di funzioni D-completamente regolari (ossia le sottofunzioni di un prodotto per fibre di funzioni sviluppabili) coincidono (a meno di omemorfismi) con le sottofunzioni di prodotti per fibre di funzioni semi-metrizzabili.
- Summary. Trivially symmetrizable, trivially semi-metrizable and trivially D-completely regular mappings are defined. They are characterized as mappings parallel to symmetrizable, semi-metrizable and D-completely regular spaces correspondently. One shows that trivially D-completely regular mappings, i.e. submappings of fibrewise products of developable mappings coincide (up to homeomorphisms) with submappings of fibrewise products of semi-metrizable mappings.

Introduction.

Generalizing the notions of symmetrizable and semi-metrizable spaces, the notions of trivially symmetrizable (T-symmetrizable, for short) and trivially semi-metrizable (T-semi-metrizable, for short) mappings are introduced in the first section of the paper. It is proved that a continuous mapping is T-symmetrizable (T-semi-metrizable) if and only if it is parallel to some symmetrizable (semi-metrizable) space.

In the second section, generalizing the notion of D-completely regular space $[B_1, B_2]$ the trivially D-completely regular (T-D-CR, for short) mappings (as submappings of fibrewise products of developable mappings) are defined. T-D-CR mappings are characterized as mappings parallel to D-CR spaces and as submappings of fibrewise products of semi-metrizable mappings.

Preliminaries.

Throughout the paper «space» means «topological space» and a continuous mapping is a continuous mapping between spaces.

Let we have a continuous mapping $f: X \rightarrow Y$. Then (see [P]):

• f is called T_0 - (respectively, T_1 -) mapping if for any two distinct points $x_1, x_2 \in X$ with $fx_1 = fx_2$ there exist an open set O of X such that $|\{x_1, x_2\} \cap O| = 1$ (respectively, there exist neighborhoods O_i of $x_i, i = 1, 2$, such that $x_1 \notin O_2, x_2 \notin O_1$);

• a family \mathcal{B} of open in X sets is called a base for f at a point $x \in X$ if, for any neighborhood O of x, there exist $U \in \mathcal{B}$ and a neighborhood V of fx such that $x \in U \cap f^{-1}V \subset O$ and a family \mathcal{B} of open sets in X is called base for f if it is a base for f at any point $x \in X$ (hence, $\mathcal{B} \cup f^{-1}\tau$, where τ is the topology of Y, is a prebase of the topology of X);

• f is parallel to a space F if there exists and embedding e of X in $Y \times F$ such that $f = p \circ e$, where p is the projection of $Y \times F$ onto Y.

Let us note that, in the last situation, if q is the projection of $Y \times F$ onto F and \mathcal{B} is a base of F, then $(q \circ e)^{-1}\mathcal{B}$ is, evidently, a base for f.

Let we have a family $\{f_a\}_{a \in A}$ of mappings $f_a: X_a \to Y$. The fibrewise product $\bigotimes_{a \in A} f_a$ of $\{f_a\}_{a \in A}$ is the mapping $f: X \to Y$ defined on the subspace

$$X = \left\{ x = (x_{\alpha})_{\alpha \in A} \in \Pi = \prod_{\alpha \in A} X_{\alpha} \colon f_{\beta}(pr_{\beta}(x)) = f_{\gamma}(pr_{\gamma}(x)) \text{ for any } \beta, \gamma \in A \right\}$$

of Π by the relations $f = f_a \circ pr_a$ for every $a \in A$ (where $pr_a: \Pi \to X_a$ is the *a*-th projection of the product Π).

The space X is called the *fan product* of the spaces X_{α} relatively to mappings f_{α} (with $\alpha \in A$). The febrewise product f is also called the *long projection* of the Fan product X, the restrictions $\pi_{\alpha} = pr_{\alpha}|_{X}$ (with $\alpha \in A$) are called the *short projections* of the fan product X and we have

$$f_{\beta} \circ \pi_{\beta} = f_{\gamma} \circ \pi_{\gamma}$$
 for every $\beta, \gamma \in A$.

1. – T-symmetrizable and T-semi-metrizable mappings.

Let us recall, for a set X, that:

• a function $d: X \times X \rightarrow \mathbb{R}_+$ (the set of non negative real numbers) is a *symmetric* on X if, for each $x, y \in X$, the following holds:

(1) d(x, y) = 0 iff x = y;

(2) d(x, y) = d(y, x).

198

(1) d(x, y) = 0 if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, y) = 0 implies d(x, z) = d(y, z) for any $z \in X$.

Evidently, each symmetric is a pseudo-symmetric.

For a pseudo-symmetric d on X, $x \in X$ and $\varepsilon > 0$, the sets $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$ are called ε -balls.

The topology τ_d generated by a pseudo-symmetric d on X is defined in the following way:

$$U \in \tau_d$$
 iff $\forall x \in U \exists \varepsilon > 0 : B(x, \varepsilon) \subset U$.

Hence, a subset *F* of the space (X, τ_d) is closed if and only if $d(x, F) = \inf \{ d(x, y) : y \in F \} > 0$ for any $x \notin F$.

A space (X, τ) is called (*pseudo-*) symmetrizable if there exists a (pseudo-) symmetric d on X such that $\tau = \tau_d$.

Evidently, every symmetrizable space is a T_1 -space and every pseudo-symmetrizable space is an R_0 -space (i.e. $x \in cl\{x'\}$ if and only if $x' \in cl\{x\}$ for any $x, x' \in X$).

Let us note that if *d* is a pseudo-symmetric for a space *X* then $cl\{x\} = \{y \in X: d(x, y) = 0\}$ for any $x \in X$.

Let d be a pseudo-symmetric on a set X. Then

xdx' iff d(x, x') for any $x, x' \in X$

is an equivalence relation on X.

Let X/d be the set of all equivalence classes on X with respect to the equivalence d and $\pi_d: X \to X/d$ be the correspondent canonical function.

For any $A, B \in X/d$, put $\overline{d}(A, B) = d(x, y)$ for some $x \in A$ and $y \in B$. Evidently, the function \overline{d} is well-defined (i.e., it is independent of the choice of $x \in A$ and $y \in B$). It is clear that $d(x, y) = \overline{d}(\pi_d x, \pi_d y)$, \overline{d} is a symmetric on X/d, $\pi_d \tau_d = \tau_d$ and $\pi_d^{-1} \tau_d = \tau_d$. Hence $\pi_d: (X, \tau_d) \to (X/d, \tau_d)$ is continuous and open.

A (pseudo-) symmetric d on a set X is called a (pseudo-) semimetric on X if:

(4) for any $x \in X$ and any $\varepsilon > 0$, there exists $O \subset B(x, \varepsilon)$ such that $x \in O$ and for any $y \in O$ may be find $\varepsilon(y) > 0$ such that $B(y, \varepsilon(y)) \subset O$.

A topological space (X, τ) is called (*pseudo-*) *semi-metrizable* if there exists a (pseudo-) semi-metric d for the space (X, τ) , i.e., d is a (pseudo-) semi-metric on X such that $\tau_d = \tau$.

Clearly, a (pseudo-) symmetric *d* for a space *X* is a (pseudo-) semi-metric for this space if and only if $x \in int B(x, \varepsilon)$ for any $x \in X$ and any $\varepsilon > 0$.

It is not difficult to check the following: let d be a pseudo-semi-metric for a space X and $H \subset X$, then $x \in cl H$ if and only if d(x, H) = 0.

Obviously, if *d* is a pseudo-symmetric on a set *X*, then it is a pseudo-semimetric on *X* if and only if \overline{d} is a semi-metric on *X*/*d*. Hence, *d* is a pseudo-semimetric for (X, τ_d) if and only if \overline{d} is a semi-metric for $(X/d, \tau_{\overline{d}})$.

DEFINITION 1. – Let we have a mapping f of a set X to a space (Y, τ) . Any pseudo-symmetric (pseudo-semi-metric) on X will be called a *trivial pseudo-symmetric* (trivial pseudo-semi-metric) on f. A trivial pseudo-symmetric (trivial pseudo-semi-metric) d on f will be called a *trivial symmetric* (trivial *semi-metric*) on f if $d|_{f^{-1}y}$ is a symmetric (semi-metric) for any $y \in Y$. For a trivial pseudo-symmetric d on f, the topology on X with the prebase $f^{-1}\tau \cup \tau_d$ will be called the topology generated (or *induced*) by d and will be denoted by $\tau(d, f)$.

Evidently, the mapping $f:(X, \tau(d, f)) \to (Y, \tau)$ is continuous and τ_d is a base for it.

If d is a trivial symmetric on f, then all fibres $f^{-1}y$ (with $y \in Y$) are T_1 -spaces and so $f:(X, \tau(d, f)) \to (Y; \tau)$ is a T_1 -mapping.

DEFINITION 2. – Let $f:(X, \theta) \to (Y, \tau)$ be a continuous mapping. A trivial (pseudo-) symmetric (respectively, a trivial (pseudo)- semi-metric) d on $f: X \to (Y, \tau)$ is called a *trivial* (pseudo-) symmetric (respectively, (pseudo-) semi-metric) for the continuous mapping $f:(X, \theta) \to (Y, \tau)$ if $\theta = \tau(d, f)$ (i.e., if τ_d is a base for f). A continuous mapping is called *trivially* (pseudo-) symmetrizable (respectively, *trivially* (pseudo-) semi-metrizable) if there exists a trivial (pseudo-) symmetric (respectively, trivial (pseudo-) semi-metric) for it.

REMARK 1. – Evidently, every trivial pseudo-symmetric (respectively, every trivial pseudo-semi-metric) for a T_0 -mapping f is a trivial symmetric (respectively, trivial semi-metric) and so f is a T_1 -mapping.

THEOREM 1. – A continuous mapping $f: X \rightarrow Y$ is trivially symmetrizable (respectively, trivially semi-metrizable) if and only if f is parallel to a symmetrizable (respectively, semi-metrizable) space.

PROOF. – Let f be trivially symmetrizable (trivially semi-metrizable). Take a trivial symmetric (trivial semi-metric) d for f. Then $F = (X/d, \tau_d)$ is a symmetrizable (semi-metrizable) space and $\pi_d: X \to F$ is such that $\pi_d^{-1}\tau_d = \tau_d$. The diagonal product $e = f \bigtriangleup \pi_d: X \to Y \times F$ is continuous and $f = p \circ e, \pi_d =$ $q \circ e$, where p and q are the projections of $Y \times F$ onto Y and F respectively. Since d is a symmetric on f, for any $y \in Y$, any $x \in f^{-1}y$ and for the closure $cl_d\{x\}$ of the set $\{x\}$ in the space (X, τ_d) , we have that $f^{-1}y \cap cl_d\{x\} = \{x\}$. Hence, π_d and e are injective on each fibre $f^{-1}y$ (with $y \in Y$). Hence, also e is injective. Let $U \in \tau_d$, $O \in \tau$ and $V = f^{-1}O \cap U$. Since $U = \pi_d^{-1}\pi_d U$ and $\pi_d U$ is open in F, we see that the set $eV = e(e^{-1}p^{-1}O \cap \pi_d^{-1}\pi_d U) = e(e^{-1}p^{-1}O \cap e^{-1}q^{-1}\pi_d U) = ee^{-1}(p^{-1}O \cap q^{-1}\pi_d U \cap eX) = (p^{-1}O \cap q^{-1}\pi_d U) \cap eX$ is open in eX. Hence e is an embedding.

Now, let *f* be parallel to a symmetric (semi-metric) space *F* and let \overline{d} a symmetric (semi-metric) for the space *F*. There exists an embedding $e: X \to Y \times F$ such that $f = p \circ e$, where *p* is the projection of $Y \times F$ onto *Y*. Let *q* be the projection of $Y \times F$ onto *F*. Then $e^{-1}q^{-1}\tau_{\overline{d}}$ is a base for *f* and the function $d(x, x') = \overline{d}(q \circ e(x), q \circ e(x'))$, for any $x, x' \in X$, is a trivial symmetric (trivial semi-metric) for *f*.

2. – D-complete regular mappings.

The class of developable mappings was introduced in [CP] and it was proved there that a continuous mapping is developable if and only if it is parallel to a developable (and, by the definition of developable spaces in [CP], T_{1} -) space.

The following definition copies Brandenburg's definition of D-completely regular (D-CR, for short) spaces (see $[B_1, B_2]$).

DEFINITION 3. – A continuous mapping will be called *trivially D-completely regular* (T-D-CR, for short) if it may be embedded in the fibrewise product of a family of developable mappings $f_a: X_a \to Y$ (with $a \in A$).

Let us note that, by the definition of developable mappings in [CP], all the mappings f_{α} them are T_1 -mappings. Since the fibrewise product of T_1 -mappings is a T_1 -mapping and any submapping of a T_1 -mapping is also a T_1 -mapping, we have that all the T-D-CR mappings are T_1 -.

LEMMA 1. – Let a continuous mapping $f_a: X_a \to Y$ be parallel to a space F_a (for $a \in A$). Then the fibrewise product $f = \bigotimes_{a \in A} f_a$ is parallel to the product $F = \prod_{a \in A} F_a$, i.e., up to homeomorphisms, f is a submapping of the projection p of $Y \times F$ onto Y.

PROOF. – Let $e_a: X_a \to Y \times F_a$ is an embedding such that $f_a = p_a \circ e_a$, where p_a is the projection of $Y \times F_a$ onto Y. Let us note that the fibrewise product $p = \bigotimes_a p_a$ is the projection of the product $Y \times F$ to Y.

Identify X_a with $e_a X_a$ by means of e_a . Then f_a will be identified with the restriction $p_a |_{X_a \equiv e_a X_a}$ and the fibrewise product $f = \bigotimes_{a \in A} f_a |_{X_a}$ will be identified with some submapping of p.

It is known (see $[B_1, H]$) that, for a T_1 -space, the following properties are equivalent:

(i) X is D-CR;

- (ii) X can be embedded into the product of T_1 σ -spaces;
- (iii) X can be embedded into the product of semi-stratifiable spaces;
- (iv) X can be embedded into the product of perfect T_1 -spaces;
- (v) X can be embedded into some degree of the space D_1 ;
- (vi) X can be embedded into the product of semi-metrizable spaces.

If a mapping f is parallel to a space F and F can be embedded into a space G, then, evidently, f is also parallel to G. The equivalences cited above imply the equivalence of conditions (2)-(7) in the following theorem:

THEOREM 2. – For a continuous mapping $f: X \rightarrow Y$ the following conditions are equivalent:

- (1) f is T-D-CR;
- (2) f is parallel to a D-CR space;
- (3) f is parallel to the product of T_1 σ -spaces;
- (4) f is parallel to the product of semi-stratifiable spaces;
- (5) f is parallel to the product of perfect T_1 -spaces;
- (6) f is parallel to some degree of the space D_1 ;
- (7) f is parallel to the product of semi-metrizable spaces;

(8) f can be embedded in the fibrewise product of trivially semi-metrizable mappings.

PROOF. – (1) \Rightarrow (2) Let $f: X \rightarrow Y$ be embedded in the fibrewise product $g = \bigotimes_{a \in A} g_a$ of developable mappings $g_a: Z_a \rightarrow Y$ (with $a \in A$). Then g_a is parallel to a developable space F_a and, by Lemma 1, g is parallel to $F = \prod_{a \in A} F_a$. Then f is also parallel to F and the space F is D-CR.

 $(7) \Rightarrow (8)$ Let $f: X \to Y$ be parallel to the product $F = \prod_{a \in A} F_a$ of semimetrizable spaces F_a , i.e., there exists an embedding $e: X \to F$ such that $f = p \circ e$, where p is the projection of $Y \times F$ onto Y. Since p is the fibrewise product of the projections $p_a: Y \times F_a \to Y$ and every p_a is semi-metrizable (because it is parallel to the semi-metrizable space F_a), we have (8).

 $(8) \Rightarrow (1)$ Let $f: X \to Y$ can be embedded in the fibrewise product $\bigotimes_{a \in A} f_a$ of semi-metrizable mappings f_a . By Theorem 1, we can suppose that f_a is a submapping of the projection $p_a: Y \times F_a \to Y$ for some semi-metrizable space F_a . Then f can be embedded in the fibrewise product of the projections

202

 $p_a, a \in A$, and so in the projection $p: Y \times F \to Y$ for $F = \prod_{a \in A} F_a$. By equivalences cited before, F is D-CR and so F can be embedded into the product G of developable spaces G_β (with $\beta \in B$). Hence, f is parallel to G and so, as above, it can be embedded in the fibrewise product of the projections $q_\beta: Y \times G_\beta \to Y$. These projections are developable because they are parallel to the developable spaces G_β .

COROLLARY 1. – Let a continuous mapping $f : X \rightarrow Y$ be such that Y is a D-CR space. Then X is a D-CR space if and only if f is a T-D-CR mapping.

REFERENCES

- [B₁] H. BRANDENBURG, Some characterizations of developable spaces, Proc. A.M.S. 80 (1980), 157-161.
- [B₂] H. BRANDENBURG, On a class of nearness spaces and the epireflective hull of developable topological spaces, in: Proceedings of the International Symposium on Topology and its Applications, Beograd (1977).
- [CP] F. CAMMAROTO B. A. PASYNKOV, Some metrization theorems for continuous mappings, to appear (1999).
- [E] R. ENGELKING, General Topology, Heldermann, Berlin, 1989.
- [H] N. C. HELDERMANN, The category of D-completely regular spaces is simple, Trans. A.M.S., 262 (1980), 437-446.
- [P] B. A. PASYNKOV, On extension to mappings of certain notions and assertions concerning spaces, in: Mapping and Functors, Izdat. MGU, Moscow (1984), 72-102 (in Russian).

Filippo Cammaroto: Dipartimento di Matematica, Università di Messina Contrada Papardo, salita Sperone, 31 - 98166 Sant'Agata, Messina (Italy) E-mail: camfil@unime.it

Giorgio Nordo: Dipartimento di Matematica, Università di Messina Contrada Papardo, salita Sperone, 31 - 98166 Sant'Agata, Messina (Italy) E-mail: nordo@dipmat.unime.it

Boris A. Pasynkov: Chair of General Topology and Geometry Mechanics and Mathematics Faculty, Moscow State University Moscow 119899 (RUSSIA). E-mail: pasynkov@mech.math.msu.su

Pervenuta in Redazione il 20 gennaio 2000