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Eigenfunctions of the Laplace Operators
for Buildings of type BA2 (*)

A. M. MANTERO - A. ZAPPA

Sunto. – Si considera per un palazzo affine di tipo BA2 la congettura di Helgason relati-
va a operatori di Laplace definiti su diversi tipi di vertici. Si prova che ci sono casi
in cui la congettura non è verificata, in quanto esistono autofunzioni che non sono
la trasformata di Poisson di misure finitamente additive sulla frontiera massima-
le del palazzo.

Summary. – We consider for an affine building of type BA2 Helgason’s conjecture with
respect to Laplace operators defined over different types of vertices. We prove that
there are cases in which the conjecture fails, since there exist eigenfunctions which
are not the Poisson transform of finitely additive measures at the maximal bound-
ary of the building.

1. – Introduction.

In his paper [4] S. Kato proved a p-adic analogue of the classical Helga-
son’s conjecture, giving a characterization of the eigenspaces of the Hecke al-
gebra H of a p-adic reductive group G with respect to a maximal compact sub-
group K . One can give a definition of this algebra which uses only the geome-
try of the affine building associated with the group G and which therefore ap-
plies also to buildings not arising from linear groups. According to this defini-
tion, the algebra H is generated by averaging operators, called Laplacians.

Since all buildings of rank greater than 2 are linear, we focus our attention
on buildings of rank 2. In [5] we considered for a type AA2 building two Laplace
operators defined on all vertices, whereas in [6] we dealt with Laplacians defi-
ned on just one special type of vertices of a type GA2 building. In both cases we
have had success in characterizing the eigenfunctions of these operators in
terms of the Poisson transform of a unique finitely additive measure on the
maximal boundary V of the building, making use of only its combinatorial
structure, never considering the linear p-adic group eventually acting on it.

In this paper we treat a building D of type BA2 . We recognize three possible

(*) 1991 Mathematics Subject Classification: Primary 90A09, 60J20; Secondary
05C05, 43A80.

Work partially supported by MURST.
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ways to define the Laplace operators on D , by considering firstly averages on
just one special type of vertices, then on all special vertices and finally on non-
special vertices. Unlike the buildings of types AA2 and GA2 , for building of type
BA2 we prove the existence of singular cases in which the conjecture fails. Ac-
tually either for special vertices of one type or for non-special vertices, parti-
cular choices of the valencies of the edges of D lead to the existence of eigen-
functions of the Laplace operators that cannot be expressed in terms of a fini-
tely additive measure.

Also for buildings of type AA2 it is possible to define Laplace operators ac-
ting only on one type of vertices. We didn’t consider this possibility in [5], but
in a forthcoming paper we show that, as in the case BA2 , Helgason’s conjecture
sometimes fails in this case as well. Therefore the Helgason’s conjecture is sa-
tisfied for all buildings of rank 2, apart from their type, only if the Laplace
operators are two operators averaging on all special vertices of D .

According to the strategy adopted for the other types of buildings of rank
2, a fundamental step in solving the conjecture is to determine the dimension
of the joint eigenspace of the operators obtained by retracting on the abstract
apartment A (with respect to a chamber) the Laplacians and then to construct
a basis for this space by retracting the Poisson kernel for suitable boundary
points. To this end we have to define, in each case, a fundamental region on A
and to evaluate on its vertices the retraction of the Poisson kernel. This com-
putation may be realized using the algorithm described in [6].

In Section 2 we describe the features of buildings of type BA2 which we need
here.

In Section 3 we analyze the case of the special vertices of type 0 (resp. of
type 2) and we identify all possible eigenvalues for which Helgason’s conjectu-
re fails, for particular choices of the valencies.

In Section 4 we solve Helgason’s conjecture for all special vertices.
Finally in Section 5 we explicitly describe the cases where the conjecture

fails for non-special vertices.
We would like to thank Tim Steger for some useful comments and sugge-

stions about the content of this paper.

2. – The building.

A building D of type BA2 is a simplicial] complex of rank 2, consisting of ver-
tices, edges and triangles (the «chambers»), which contains a family of sub-
complexes (the «apartments»), each of which is isomorphic to the Coxeter
complex A (the «abstract apartment») of a Coxeter group

W4 a]r0 , r1 , r2( : r0
24r1

24r2
241, (r0 r1 )44 (r0 r2 )24 (r1 r2 )441 b .



EIGENFUNCTIONS OF THE LAPLACE OPERATORS ETC. 165

The associated Coxeter graph is

Figure 1

and W acts as an affine reflection group on the Euclidean plane E 2 , in such a
way that the associated Coxeter complex A is isomorphic to a Euclidean plane
tessellated by isosceles right triangles. We refer to [7] and [1] for formal defi-
nition and further details.

We denote by C the set of chambers of D . We assign the «type» to the ver-
tices and to the edges of any chamber according to the notation of the Coxeter
graph, as shown in Figure 1; thus the angle between the i-edge and the j-edge
of any chamber is p/mij , where m014m1244 and m0242. Two chambers are
said to be «i-adjacent» if they share an edge of type i . Any two chambers c , c 8
(resp. any two vertices x , x 8) may be joined by a «minimal» gallery [c , c 8 ] (re-
sp. [x , x 8 ]) of two by two adjacent and distinct chambers c0 , R , cl , such that
c04c and cl4c 8 (resp. x�c0 and x 8�cl). If ck21 and ck are ik2adjacent, then
p4 (i1 , R , il ) is the «type» of the gallery, denoted by p(c , c 8 ) (resp. p(x , x 8 ))
and the number l11 is its «length». If we denote by d the usual graph-theore-
tic distance on the set of vertices of D , then d(x , x 8 ) is not greater than the
length of [x , x 8 ]. The residue St(x) of any vertex x is a spherical building,
whose type depends on t(x). Actually St(x) has type B2 if t(x)40 or t(x)42
and type A13A1 if t(x)41 (see [7] or [1]). Therefore if t(x)40 or t(x)42 the
finite Coxeter group W0 associated to St(x) is the dihedral group of order 8

D44 a]r1 , r2( : r1
24r2

24 (r1 r2 )441 b

and W4Z2 JW0 . Thus the vertices of both type 0 and 2 are «special».
Since the building D is assumed to be locally finite, any edge belongs to fi-

nitely many chambers. We call the «valency» of an edge the number of cham-
bers sharing it, and we denote by qi11 the valency of any edge of type i . For
ease of notation we set p4q0 , q4q1 and r4q2 . There are restrictions on p , q
and on r ; actually in [2] and in [3] W. Feit and G. Higmann proved that the fol-
lowing relations must be satisfied:

pq(pq11)

p1q
,

qr(qr11)

q1r
�Z ,

pGq 2 , qGp 2 and qGr 2 , rGq 2 .
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If t(x)40, the residue St(x) contains (q11)(qr11) vertices of type 1,
(r11)(qr11) vertices of type 2 and (q11)(r11)(qr11) chambers. If t(x)42,
we obtain the number of vertices of type 0 and 1 and the number of chambers
in St(x) simply replacing r by p . If t(x)41, the residue St(x) contains (p11)
vertices of type 0, (r11) vertices of type 2 and (p11)(r11) chambers.

For any special vertex x , a sector Qx based at x is a simplicial cone of vertex x
determined, in any apartment containing x , by a chamber (the «base chamber» of
the sector) having x as one of its vertices [7]. We call the «i-wall» of Qx , for
i41, 2, the wall containing the edge of type t(x)1i emanating from x . Two sectors
based at a same vertex are said to be «i-adjacent» if they share an i-wall.

The maximal boundary V of D is defined as the set of equivalence classes v
of parallel sectors, two sectors Qx , Qy being equivalent, or parallel, QxAQy , if
they contain a common subsector. We denote by Qx (v) the sector based at x
associated with v . If we fix a special vertex e (the «fundamental vertex» of the
building), V may be endowed with a totally disconnected compact Hausdorff
topology, generated by the family B consisting of the sets

V(c)4]v�V : c%Qe (v)( , ( c� C .

The definition of the retraction rc of D to A with respect to a chamber c and
that of the retraction rv

x0 of D to A with respect to a boundary point v (of initial
vertex any special vertex x0) generalize those given in [5].

3. – The case of special vertices of type 0.

3.1. Coordinates on an apartment.

In this section we only consider vertices of type 0 and we denote by U0

(resp. U0) the set of such vertices of D (resp. of A).
Given an apartment A and a sector Qx0

on it, with x0� U0 , each type 0 ver-
tex in A may be assigned a pair of integer coordinates (m , n) (with respect to
Qx0

), in the same manner we did for a building of type GA2 (see [6]). We select
the line H1 (resp. H2) passing through x0 and containing the 2-wall of Qx0

(resp.
the 2-wall of the sector Q 8x0

1-adjacent to Qx0
). The type 0 vertices of H1 (resp. of

H2) are assigned coordinates (m , 0 ), m�Z , (resp. (0 , n), n�Z ,) assuming
that (1 , 0 ) (resp. (0 , 1 )) are the coordinates of the vertex of Qx0

OH1 (resp.
Q 8x0

OH2) at distance 2 from x0 . With this assumption, the type 0 vertices of Qx0

are characterized by coordinates (m , n) with 0GnGm (see Figure 2).
As usual, these coordinates are independent of the apartment containing

the vertex and the sector; moreover vertices lying on two different sectors ba-
sed at the same vertex of U0 have the same coordinates with respect to both
sectors.

On the abstract apartment A we set X4Xm , n if the vertex X has coordina-
tes (m , n) (with respect to a sector Q).
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Figure 2

As for a building of type GA2 , each chamber c of A may be assigned a triple
of integer coordinates (k , m , n) (with respect to Qx0

), where (m , n)�Z2 are
the coordinates of the vertex x� U0 of c (with respect to Qx0

) and k�
]1, R , 8(, characterizes (among the chambers of A sharing the vertex x) the
position of c with respect to the sector QxAQx0

. In Figure 3 we exhibit the cho-
sen numbering.

3.2. Poisson kernel.

Fix a sector Q on the fundamental apartment A .

DEFINITION 3.2.1. – For every (a , b)� (C3 )2 , let f a , b : U0KC be the mul-
tiplicative function

f a , b (Xm , n )4a m b n , ((m , n)�Z2 ,

with respect to the coordinate system associated to Q.

Figure 3
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For x0� U0 , the function defined by

Pa , b
x0 (x , v)4f a , b (rv

x0 (x) ) , (x� U0 , (v�V ,

is called the Poisson kernel of initial point x0 and of parameters a , b .
We simply write P(x , v)4Pa , b

x0 (x , v), whenever there is no ambiguity.
This definition extends Definition 2.3.1 of [6]. The Poisson kernel depends

on the initial point according to the following formula:

P y0 (x , v)4P x0 (x , v) (P x0 (y0 , v) )21 , (x� U0 , (v�V .(1)

We refer the reader to [5, Lemma 2.8] for the proof of (1).
Given a chamber c0 , we denote by fAc0

the retraction of a function f with re-
spect to c0 , defined by

fAc0
(X)4

1

Nrc0
21 (X)N

!
x�rc0

21 (X)
f (x) .

The method described in [6, Section 3] to determine the retraction of the Pois-
son kernel with respect to a chamber applies also in the present case. Actually,
if c0 is a fixed chamber of D and rc0

(c0 )4C04rv
x0 (c0 ), the following theorem

holds.

THEOREM 3.2.2. – Let (k , m , n) be the coordinates of the chamber C0 . For
every X� U0 , let C be the chamber containing X in a minimal gallery connec-
ting C0 to X . Let p4 (i1 , R , il ) be the type of [C0 , C]; then

PA(X , v)4
1

Nrc0
21 (C)N

a m b n V0 Mp ek ,

where V0 is the 138-matrix such that V0, h41, ek is the 831-matrix such
that eh , k4d hk and Mp4Mil

RMi1
, where M0 , M1 and M2 are the 838-matri-

ces

M04M0(a,b)4

.
`
`
`
`
`
´

p21

0

0

0

0

0

a

0

0

p21

0

0

0

0

0

a

0

0

p21

b

0

0

0

0

0

0

pb21

0

0

0

0

0

0

0

0

0

p21

b

0

0

0

0

0

0

pb21

0

0

0

pa21

0

0

0

0

0

0

0

0

pa21

0

0

0

0

0

0

ˆ
`
`
`
`
`
˜

,
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M14

.
`
`
`
`
`
´

0

0

q

0

0

0

0

0

0

0

0

q

0

0

0

0

1

0

q21

0

0

0

0

0

0

1

0

q21

0

0

0

0

0

0

0

0

0

0

q

0

0

0

0

0

0

0

0

q

0

0

0

0

1

0

q21

0

0

0

0

0

0

1

0

q21

ˆ
`
`
`
`
`
˜

,

M24

.
`
`
`
`
`
´

0

r

0

0

0

0

0

0

1

r21

0

0

0

0

0

0

0

0

0

0

r

0

0

0

0

0

0

0

0

r

0

0

0

0

1

0

r21

0

0

0

0

0

0

1

0

r21

0

0

0

0

0

0

0

0

0

r

0

0

0

0

0

0

1

r21

ˆ
`
`
`
`
`
˜

.

REMARK 3.2.3. – Let F be any complex valued function on U0 ; for every
v�V and x0� U0 consider F Qrv

x0 . If c0� C and rc0
(c0 )4C04rv

x0 (c0 ), then

!
x�rc0

21 (X)
F(rv

x0 (x) )4 !
X 8�R

A
(X)

h(X 8 )F(X 8 ) ,

where

RA(X)4]X 84rv
x0 (x), (x�rc0

21 (X)(

and

h(X 8 )4N]x�rc0
21 (X) : rv

x0 (x)4X 8(N ,

for every X� U0 , X 8�RA(X).
Since RA(X) and h(X 8 ) do not depend on the function F , we may evaluate

them by considering F4f a , b and by using Theorem 3.2.2.
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Figure 4

3.3. Laplace operators on the abstract apartment A.

For every X� U0 , we define (see Figure 4):

S1 (X)4]Y� U0 : p(X , Y)4 (0)(4]X1 , X2 , X3 , X4( ,

S2 (X)4]Y� U0 : p(X , Y)4 (0 , 1 , 0 )(4]X5 , X6 , X7 , X8( .

If X4Xm , n , then

X14Xm11, n , X24Xm , n11 , X34Xm , n21 , X44Xm21, n ,

X54Xm11, n11 , X64Xm11, n21 , X74Xm21, n11 , X84Xm21, n21 .

DEFINITION 3.3.1. – The linear operators

Li F(X)4 !
Y�Si (X)

F(Y) , X� U0 , i41, 2 ,

acting on the space of the complex valued functions F on U0 are called «Lapla-
ce operators» on A .

The linear operators

L i F(X)4 !
Y�Si (X)

hi (X , Y) F(Y), X� U0 , i41, 2 ,

with coefficients hi(X , Y)�C3 , are called «generalized» Laplace operators on A .
The operators L 1 , L 2 are called «homogeneous» if hi (X , Y)4hi (Y), for

every X� U0 ; they are called «symmetric homogeneous» if

hi (X , Y)4hi , (X� U0 , (Y�Si (X) , i41, 2 .
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Figure 5

For every pair (l 1 , l 2 )�C2 , we denote

SL 1 , L 2
(l 1 , l 2 )4]F : U0KC : L i F4l i F , i41, 2( .

In particular we denote by S(l 1 , l 2 ) the joint eigenspace of the Laplace opera-
tors L1 , L2 associated with eigenvalues (l 1 , l 2 ).

We may choose on A a particular region R0 characterized by the property
that knowing the values of a function of SL 1 , L 2

(l 1 , l 2 ) on the vertices of this
region allows one to reconstruct the whole function on U0 .

DEFINITION 3.3.2. – We call «fundamental region» any region R0 of A ob-
tained applying any element w�W to the region pictured in Figure 5.

By the same argument used in [6, Proposition 4.4.2] we prove:

PROPOSITION 3.3.3. – Let F� SL 1 , L 2
(l 1 , l 2 ); then F is uniquely determined

by its values on the type 0 vertices of R0 .

As an evident consequence of this proposition we obtain:

COROLLARY 3.3.4. – For every pair (l 1 , l 2 )�C2 , dim SL 1 , L 2
(l 1 , l 2 )G8.

Proposition 3.3.3 and Corollary 3.3.4 easily extend to the operators

L l--l
i F(X)4 !

Y�S l--li (X)
hi (X , Y)F(Y), X� U0 , i41, 2 ,

where

S l--l
1 (X)4S1 (X)N ]X( ,

S l--l
2 (X)4S2 (X)NS1 (X)N ]X( ,

provided hi (X , Y)c0, for Y�Si (X).
We restrict now to the symmetric homogeneous operators L1 , L2 ; in this

case we can explicitly determine their joint eigenvalues.
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For every (j , h)� (C3 )2 , let f j , h be the multiplicative function of parame-
ters j , h , with respect to the coordinate system associated with a sector Q.

PROPOSITION 3.3.5. – For every (j , h)� (C3 )2 , the function f j , h belongs to
the eigenspace S(l 1 , l 2 ), associated with eigenvalues l i4l i (j , h), where

l 1 (j , h)4j1h1j211h21 ,

l 2 (j , h)4 (j1j21 )(h1h21 ) .

PROOF. – Since f j , h is multiplicative, (f j , h (X) )21 !
Y�Si (X)

f j , h (Y) does not

depend on the choice of the vertex X . An explicit computation gives the
result. r

REMARK 3.3.6. – Let us assume that the finite Coxeter group W0 stabilizes
the base vertex X of Q. Thus for every (j , h)� (C3 )2 , and for every s�W0 , the
function

s Qf j , h (X)4f j , h (s(X) ) , X� U0 ,

is multiplicative; we denote by (j s , h s ) the pair of (C3 )2 such that s Qf j , h4

f j s , h s
. Moreover

l 1 (j , h)4 !
s�W0

f j , h (s(X1, 0 ) )4 !
s�W0

f j s , h s
(X1, 0 ) ,

l 2 (j , h)4 !
s�W0

f j , h (s(X1, 1 ) )4 !
s�W0

f j s , h s
(X1, 1 ) .

Therefore l 1 (j , h) and l 2 (j , h) are W0-invariant.

COROLLARY 3.3.7.. – For every pair (l 1 , l 2 )�C2 , there exists (j , h)�
(C3 )2 such that l i4l i (j , h), i41, 2 . Moreover l i (j , h)4l i (j 8 , h 8 ) implies
(j 8 , h 8 )4 (j s , h s ), for some s�W0 .

PROOF. – The statement easily follows by setting a14j1j21 and
a24h1h21 . r

REMARK 3.3.8. – We give an useful characterization of the Laplace opera-
tors on A . We first remark that U0 may be seen as a W0-invariant lattice of the
Euclidean plane, if we set X1Y4Xm1 j , n1k , for X4Xm , n and Y4Xj , k . Then,
for every X� U0 , we define a difference operator TX (acting on the complex
valued functions on U0) by setting TX (F)(Y)4F(X1Y). Thus

L14 !
s�W0

Ts(X1, 0 ) , L24 !
s�W0

Ts(X1, 1 )
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and L1 , L2 generate the algebra of W0-invariant difference operators with con-
stant coefficients.

Moreover, for every (j , h)� (C3 )2 , the eigenspace S(l 1 , l 2 ) associated
with eigenvalues l i4l i (j , h) coincides with the space of the solutions of the
system of difference equations:

S f j , h
: !

s�W0

Ts(X) (F)4 g !
s�W0

f j , h (s(X) )h F , (X� U0 .

In view of the previous remark, we may improve, for the Laplace operators,
the result of Corollary 3.3.4.

PROPOSITION 3.3.9. – For every pair (l 1 , l 2 )�C2 , dim S(l 1 , l 2 )48.

PROOF. – The characterization of the Laplace operators given in Remark
3.3.8 allows us to apply to these operators Proposition 1.1 of [4]. Therefore
dim S(l 1 , l 2 )F8. r

REMARK 3.3.10. – The equality in Proposition 3.3.9 corresponds to the fact
that the stabilizer in W0 of the multiplicative function f j , h is a reflection group
(see [4, Proposition 1.1]).

3.4. Laplace operators on D.

For every x� U0 we define

S1 (x)4]y� U : p (x , y)4 (0)( ,

S2 (x)4]y� U : p (x , y)4 (0 , 1 , 0 )( .

The cardinality of Si (x) does not depend on x . Actually, if we consider the re-
traction of D on A with respect to a chamber c containing x , then

Si (x)4 0
Y�Si (X)

rc
21 (Y) , i41, 2 ,

where X4rc (x). This implies, denoting Ki4NSi (x)N ,

K14p(q11)(qr11) K24p 2 q(r11)(qr11) .

Starting from this definition of S1 (x) and S2 (x), we extend, to a building of
type BA2 , the definition of Laplace operators on D given in [6] for the case GA2 .

DEFINITION 3.4.1. – The linear operators

Li f (x)4Ki
21 !

y� Si (x)
f (y) , (x� U0 , i41, 2 ,
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acting on the space of complex valued functions f on U0 , are called Laplace
operators on D .

For every pair (g 1 , g 2 )�C2 , we denote

S(g 1 , g 2 )4] f : U0KC : Li f4g i f , i41, 2( .

PROPOSITION 3.4.2. – For every v�V and x0� U0 , the function P x0 (Q , v)
belongs to the eigenspace S(g 1 , g 2 ), associated with the eigenvalues g i4

g i (a , b) given by

g 1 (a , b)4K1
21 (a1qb1pqrb211pq 2 ra21 )1c1 ,

g 2 (a , b)4K2
21 (p21)(a1qb1pq 2 ra211pqrb21 )

1K2
21 (ab1prab211pq 2 ra21 b1p 2 q 2 r 2 a21 b21 )1c2 ,

where c14K1
21 (p21)(q11), c24K2

21 [q(p21)21p(q21)(r11) ].

PROOF. – Let c be the base chamber of the sector Qx (v) and C4rc (c)4
r x

v (c). If X4rc (x), we evaluate !
y�rc

21 (Xi )
P x (y , v) ), for every i41, R , 8 , by

using Theorem 3.3.2. We conclude by the same argument as in Proposition
4.2.1 of [6]. r

REMARK 3.4.3. – For every (a , b)� (C3 )2 , let j4a/qkpr and h4b/kpr . If
l 1 (j , h), l 2 (j , h) are the eigenvalues of the Laplace operators on the funda-
mental apartment corresponding to parameters (j , h), then

g 1 (a , b)4K1
21 qkpr (j1j211h1h21 )1c1

4K1
21 qkprl 1 (j , h)1c1 ,

g 2(a, b)4K2
21qkpr (p21)(j1j211h1h21)1K2

21pqr(j1j21)(h1h21)1c2

4K2
21 qkpr (p21) l 1 (j , h)1K2

21 pqrl 2 (j , h)1c2 .

LEMMA 3.4.4. – For every pair (g 1 , g 2 )�C2 , there exists (a , b)� (C3 )2

such that g i4g i (a , b), i41, 2 . Moreover g i (a , b)4g i (a 8 , b 8 ), i41, 2 if
and only if (a 8 , b 8 )4s(a , b), for some s�W0 , where

s (a , b)4 (qkpr j s , kpr h s )

and j4a/qkpr and h4b/kpr .

PROOF. – Let G i (j , h)4g i (qkpr j , kpr h), i41, 2 . Keeping in mind Re-
mark 3.4.3, Corollary 3.3.7 shows that there exists a pair (j , h) such that G i4
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G i (j , h); moreover it proves that G i (j , h)4G i (j 8 , h 8 ) if and only if
(j 8 , h 8 )4 (j s , h s ), for some s�W0 . Thus the lemma is proved. r

COROLLARY 3.4.5. – Let g i4g i (a , b), i41, 2 . For every s�W0 , the fun-
ction P x0

s(a , b) (Q , v) belongs to S(g 1 , g 2 ).

Later on it will be useful the following definition.

DEFINITION 3.4.6. – The pairs (a , b) and (a 8 , b 8 ) are said to be «equiva-
lent», and we write (a , b)A (a 8 , b 8 ), if g i (a , b)4g i (a 8 , b 8 ), i41, 2 .

3.5. Retraction on A of the Laplace operators L1 , L2 .

As for buildings of type AA2 and GA2 , we prove that the Laplace operators on
D retract (with respect to a chamber) to a pair of linear operators on A .

LEMMA 3.5.1. – Let c0� C; then, for every function f on U0 ,

(Li f )
A

c0
(X)4 !

Y�S l--li (X)
x i (X , Y) fAc0

(Y) , i41, 2 ,

for suitable non negative x i4x i (X , Y). Moreover x i (X , Y)D0 if Y�
Si (X).

We refer the reader to [6, Proposition 4.3.1] for the proof of this
lemma.

From now on we denote by L
A

1 and L
A

2 the linear operators on A obtained by
retracting L1 and L2 with respect to any chamber:

L
A

i F(X)4 !
Y�S l--li (X)

x i (X , Y) F(Y) , (X� U0 , i41, 2 .

The following lemma exhibits two homogeneous operators L1* , L2* on A asso-
ciated with the Laplace operators L1 , L2 on D .

LEMMA 3.5.2. – Consider, for any F on A , the function f4F Qrv
x0 . For every

x� U0 , let X4rv
x0 (x). Then

L1 f (x)4K1
21 L1* F(X)1c1 F(X) ,

L2 f (x)4K2
21 [L2* F(X)1 (p21) L1* F(X) ]1c2 F(X)

where

L1* F(X)4F(X1 )1qF(X2 )1pqrF(X3 )1pq 2 rF(X4 ) ,

L2* F(X)4F(X5 )1prF(X6 )1pq 2 rF(X7 )1p 2 q 2 r 2 F(X8 ) .
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PROOF. – Let c be the base chamber of the sector Qx (v) and C4rv
x0 (c);

then, assuming rc (c)4C , we have

Li f (x)4Ki
21 !

Y� Si (X)
g !

y�rc
21 (Y)

F(rv
x0 (y) )h .

By using Remark 3.2.3 we obtain the requested identities. r

REMARK 3.5.3. – For every chamber c , we set FA4 (F Qr x0
v

A
)c . If Qq is the sec-

tor of A opposite to Q, then

FA(X)4F(X) , (X�Qq ,

since r x0
v (x)4X , for every X�Qq and x�rc

21 (X). This implies that in a sub-
sector of Qq we have

L
A

14K1
21 L1*1c1 I ,

L
A

24K2
21 [L2*1 (p21) L1*]1c2 I .

We also remark that a suitable change of variables turns the homogeneous
operators L1* , L2* into the Laplace operators L1 , L2 . Actually, a direct compu-
tation shows that, by setting

G(Xm , n )4 (qkpr)2m (kpr)2n F(Xm , n ) ,

then

L*1 F(Xm , n )4qkpr(qkpr)m (kpr)n L1 G(Xm , n )

L*2 F(Xm , n )4pqr (qkpr)m (kpr)n L2 G(Xm , n ) .

Let us define

S
A

(g 1 , g 2 )4]F : U0KC : L
A

i F4g i F , i41, 2( .

As an evident consequence of the definition, for every chamber c0 , the function
fAc0

belongs to S
A

(g 1 , g 2 ), if f� S(g 1 , g 2 ). Moreover if F� S
A

(g 1 , g 2 ), then the
function f (x)4F(X), for x�r 21

c0
(X), belongs to S(g 1 , g 2 ); actually it is easy to

prove that, for such a function, Li f is constant on the rc0
-fibers and then the

identity (Li f
A

)c0
(X)4g i f

A
c0

(X) implies Li f (x)4g i f (x).
Let us denote by S*(r 1 , r 2 ) the joint eigenspace of the operators L*1 , L*2

corresponding to eigenvalues (r 1 , r 2 ). Remark 3.5.3 implies that there is a
bijection among S

A
(g 1 , g 2 ), S*(r 1 , r 2 ) and S(l 1 , l 2 ), for suitable choices of the

pairs (g 1 , g 2 ), (r 1 , r 2 ) and (l 1 , l 2 ).

PROPOSITION 3.5.4. – Let (g 1 , g 2 )�C2 . If

g 14K1
21 r 11c1 , g 24K2

21 ( (p21) r 11r 2 )1c2(2)
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and

l 14
1

qkpr
r 1 , l 24

1

pqr
r 2 ,

then the eigenspaces S
A

(g 1 , g 2 ), S*(r 1 , r 2 ) and S(l 1 , l 2 ) are isomorphic.

PROOF. – For every function F , we consider the function G defined in Re-
mark 3.5.3. It is evident that F� S*(r 1 , r 2 ) if and only if G�S(l 1 , l 2 ); hence
the map FKG is a bijection from S*(r 1 , r 2 ) onto S(l 1 , l 2 ). We observe now
that, for any choice of (g 1 , g 2 ), there exists a unique pair (r 1 , r 2 ) such that (2)
holds. It is then evident that, for every F� S*(r 1 , r 2 ), then F Qr x0

v belongs to
S(g 1 , g 2 ) and hence, for every chamber c , the function FA4 (F Qr x0

v )
A

c belongs to
S
A

(g 1 , g 2 ). As we observed in Remark 3.5.3,

FA(X)4F(X) , (X�Qq .

Choose a fundamental region R0 in Qq ; since each function of S
A

(g 1 , g 2 ) (resp.
S*(r 1 , r 2 )) is uniquely determined by its values on the vertices of R0 , we con-
clude that the map FKFA is a bijection from S*(r 1 , r 2 ) onto
S
A

(g 1 , g 2 ). r

As an evident consequence of Proposition 3.5.4, we have the following
result.

COROLLARY 3.5.5. – For every pair (g 1 , g 2 )�C2 , dim S
A

(g 1 , g 2 )48.

3.6. Bijectivity of the Poisson transform.

Let H(V) be the linear space of all locally constant functions on V and let
H 8 (V) be its dual (consisting of all finitely additive measures defined on the
algebra generated by the open sets of V). For every x0 , x� U0 the function
P x0 (x , Q) belongs to H(V).

For every pair (a , b) and every x0� U0 , the Poisson transform (having in-
itial point x0 and parameters a , b) of any n�H 8 (V) is defined as the
function

P x0
a , b n(x)4s

V

P x0
a , b (x , v) dn(x) , x� U .

For ease of notation, we simply denote this function by P x0 n , when (a , b) is
fixed.

As a direct consequence of Proposition 3.4.2, P x0 n belongs to the eigenspa-
ce S(g 1 , g 2 ), if g i4g i (a , b).

In order to investigate the bijectivity of the Poisson transform, according
to the machinery used in cases AA2 and GA2 , a fundamental step is to prove that
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Figure 6

there exists a basis for the eigenspace S
A

(g 1 , g 2 ) consisting of functions obtai-
ned by retracting the Poisson kernel for a suitable choice of boundary points.

Fix a chamber c0 and assume x0�c0 .

DEFINITION 3.6.1. – We denote by V k4V k(c0 ) the set of all boundary points
v such that the base chamber of the sector Qx0

(v) has coordinates (k , 0, 0) with
respect to the sector based at c0 in any apartment containing both sectors.

We pick a point v k in V k , for each k41, R , 8 , and we consider PA(Q , v k ).
In order to investigate the linear independence of these functions, we fix, in
the abstract apartment A , a fundamental region R0 as in Figure 6 and we de-
note by Y1 , R , Y8 its vertices (of type 0). Moreover, we assume that r x0

v maps
Qx0

(v) onto the sector Qk based at the chamber Ck of coordinates (k , 0 , 0 )
(with respect to Q). Then we construct the 838-matrix P4 (Pj , k ), where
Pj , k4PA(Yj , v k ), for every j , k , according to the following proposition, which
extends Proposition 4.5.3 of [6].

PROPOSITION 3.6.2. – For every j41, R , 8 , let p j be the type of a minimal
gallery connecting C to Yj ; then

PA(Yj , v k )4
1

Nrc0
21 (Yj )N

V0 Mp j
ek , for kc4, 5 ,

PA(Yj , v 4 )4
1

Nrc0
21 (Yj )N

V0 Mp j
e5 ,

PA(Yj , v 5 )4
1

Nrc0
21 (Yj )N

V0 Mp j
e4 ,
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PROOF. – If kc4, 5 , the chamber C has coordinates (k , 0 , 0 ) with respect
to Qk ; moreover C has coordinates (5 , 0 , 0 ) with respect to Q4 and coordinates
(4 , 0 , 0 ) with respect to Q5 . Applying Theorem 3.2.2, we conclude. r

The following definition extends that given in [6, Section 4.5].

DEFINITION 3.6.3. – A pair (a , b) is called «singular» if det P40 and «ul-
trasingular» if s (a , b) is singular for every s�W0 . We call the eigenvalues
(g 1 , g 2 ) «singular» if they correspond to ultrasingular pairs (a , b).

THEOREM 3.6.4. – Let (g 1 , g 2 )�C2 and g i4g i (a , b), i41, 2 .

(1) The Poisson transform P x0
a , b is injective.

(2) If (a , b) is non singular, then for every f� S(g 1 , g 2 ) there exists a
unique n�H 8 (V) such that f4 Pa , b n .

(3) If (g 1 , g 2 ) are singular, then Pa , b
x0 (H 8 (V) ) is properly contained in

S(g 1 , g 2 ).

PROOF. – We assume that the initial point x0 is the fundamental vertex e .
The injectivity follows as in [5, Proposition 4.1].
Let (a , b) be non singular; the functions PA(Q , v 1 ), R , P(Q , v 8 ) are linearly

independent and so they can be chosen as a basis for S
A

(g 1 , g 2 ). Starting from
this property we obtain the required characterization of the eigenfunctions of
the Laplacians, as in the case GA2 (see [5]).

Let (g 1 , g 2 ) be singular. By Lemma 3.5.3 dim S
A

(g 1 , g 2 )48, but the fun-
ctions PA(Q , v k ), k41, R , 8 are not linearly independent. Thus there exists a
function F� S

A
(g 1 , g 2 ) which does not belong to their linear span.

Let us consider the function f� S(g 1 , g 2 ) defined by

f (x)4F(X) , (x�rc
21 (X) , (X� U0 .

If f4 Pa , b n , for some n�H 8 (V), then we can write (see [5, Proposition
4.1])

F(X)4 fAc (X)4 !
k41

8

m k PA(X , v k ) , (X� U0 ,

for suitable m 1 , R , m 8 , but this is absurd because of the choice of F . r

In the following proposition we exhibit the singular pairs.

PROPOSITION 3.6.5. – The pair (a , b) is singular in the following ca-
ses:

a4q , a42pq , b41 , b42p , b4a , ab4pr .
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PROOF. – We consider the 838 matrix P4 (Pjk ), where Pjk4PA(Xj , v k ).
The entries of this matrix are polynomials in the five variables p , q , r , a , b .
Therefore for computing its determinant we give step by step commands to
the mathematical software «Mathematica 2» in order to operate appropriate
simplifications on the columns of the matrix, so reducing the computation of its
determinant to that of a 535-matrix. We get, for every (a , b),

det P4Ka28 b28 (a2q)4 (a1pq)4 (b21)4 (b1p)4 (a2b)4 (ab2pr)4 ,

where K is a constant depending on p , q and r . r

While for buildings of both types AA2 and GA2 (if the Laplace operators are
defined on all vertices in the case AA2 and only on the vertices of type 0 in the
case GA2) no pair (a , b) is ultrasingular, for a building BA2 (considering only the
vertices of type 0) there exist ultrasingular pairs for particular choices of the
valencies p , q , r .

PROPOSITION 3.6.6. – There exist ultrasingular pairs if and only if p4r ,
qr or q 2 r . Moreover the ultrasingular pairs (a , b) are the following:

(1) (a , b)4s(2pq , t) or (a , b)4s (t , 2p), for s�W0 and t�C , if
p4r ,

(2) (a , b)4 (2pq , 2p)A (2p , 2r)A (2pq , 2r)A (2pq , 2pq), if
p4qr ,

(3) (a , b)4 (2p , 2p)A (2pq , 2qr)A (2p , 2r)A (2qr , 2qr), if
p4q 2 r .

PROOF. – Setting a4qkpr j , b4kpr h , the pair (j , h) is singular if and
only if at least one of the following relations is satisfied:

j41/kpr , j42kp/r ,

h41/kpr , h42kp/r ,(3)

h4qj , jh41/q .

Replacing, if necessary, (j , h) by an equivalent pair, we may assume 1G
NhNGNjN . Let us denote

F 4](j , h) : 1GNhNGNjN( .

If pEr , none of the conditions (3) may be satisfied by a pair of F; so in this ca-
se there are no ultrasingular pairs.

When p4r , the only singular pairs in F are

(21, h) , for NhN41 ; (j , 21) , for NjNF1 .

It is easy to check that each of these pairs is ultrasingular.
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Let assume pDr . In this case the singular pairs of F are the follo-
wing:

(2kp/r , h) , for 1GNhNGkp/r ; (j , 2kp/r) , for NjNFkp/r .

If h (resp. j) is not real, then (2kr/p , h) (resp. (j , 2kr/p)) is a non-singular
pair which is equivalent to (2kp/r , h) (resp. (j , 2kp/r)); so we restrict to
j , h�R .

If 1GhGkp/r , the pair (j , h)4 (2kp/r , h) is not ultrasingular because
the equivalent pair (j 8 , h 8 )4 (j21 , h) is not singular. Analogously, if jF
kp/r the pair (j , h)4 (j , 2kp/r ) is not ultrasingular because (j 8 , h 8 )4
(j , h21 ) is not singular.

Moreover a direct computation shows that all pairs (2kp/r , h), correspon-
ding to 2kp/rEhE21, and all pairs (j , 2kp/r ), corresponding to jE
2kp/r , are not ultrasingular.

Finally we check that the pair (2kp/r, 2kp/r) (resp. the pair (2kp/r, 21))
has an equivalent pair which is not singular if and only if pcqr (resp.
pcq 2 r).

Keeping in mind the relation between (j , h) and (a , b), the proposition is
proved. r

COROLLARY 3.6.7. – There exist singular eigenvalues (g 1 , g 2 ) if and only if
p4r , qr or q 2 r . Moreover

(1) if p4r , then (g 1 , g 2 ) are singular if and only if p(q11)g 11

p 2 qg 21140;

(2) if p4qr , or p4q 2 r , then (g 1 , g 2 )4 (21/p , 1 /p 2 ) is the only pair of
singular eigenvalues.

PROOF. – By a direct computation we show that if p4qr (resp. p4q 2 r)
then g 1 (2pq , 2p)421/p and g 2 (2pq , 2p)41/p 2 (resp. g 1 (2p , 2p)4
21/p and g 2 (2p , 2p)41/p 2). Moreover, if p4r , then

g 1 (2pq , t)4pqK1
21 T1 (2pq1p2q21) K1

21 ,

g 2 (2pq , t)42pq(p11) K2
21 T1 (p11)(q2p) K2

21 ,

where T4p 21 t1pt 21 , and

g 1 (t , 2p)4pqK1
21 U1 (2pq1p2q21) K1

21 ,

g 2 (t , 2p)42pq(p11) K2
21 U1 (p11)(q2p) K2

21 ,

where U4 (pq)21 t1pqt 21 . r
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REMARK 3.6.8. – Keeping in mind the relation between the valencies p , q
and r stated in Section 2, if p4q 2 r then p4q4r41 and hence the building
reduces to an apartment.

REMARK 3.6.9. – If we consider the set U2 of all vertices of type 2, all results
of Section 3 hold, simply replacing p , r by r , p .

4. – The case of all special vertices.

4.1. Coordinates on an apartment.

We consider now all special vertices of both types 0 and 2; we denote U 4

U0NU2 and U 4 U0NU2 .
Given an apartment A and a sector Qx0

on it, with x0� U, each special ver-
tex in A may be assigned a pair of integer coordinates (M , N) (with respect to
Qx0

), as we did in Section 3 for type 0 vertices. Now H1 is the line passing
through x0 and containing the 1-wall of Qx0

and H2 is that containing the 1-wall
of the sector Q 9x0

2-adjacent to Qx0
. With this assumption the special vertices of

Qx0
are characterized by coordinates (M , N) with 0GNGM (see Figure 7).
If we restrict to the vertices of the same type of x0 (say 0, for instance), and

(m , n) are the coordinates of x defined in Section 3, then

M4m1n , N4m2n .(4)

We observe that if (k , m , n) (resp. (k 8 , m , n)) are the coordinates of a cham-
ber c of A, defined in Section 3, with respect to its vertex of type 0 (resp. of

Figure 7
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Figure 8

type 2), then k and k 8 are related as in Figure 8 (in each chamber the number
near the type 0 vertex (marked l) denotes k and the other one denotes k 8).

4.2. Poisson kernel.

The definition of Poisson kernel is the same as that given in Section 3.2,
with respect to the new coordinate system, and the Poisson kernel depends on
the initial point, according to the formula (1) of Section 3.2.

The method described in [6, section 3] allows us to determine the retrac-
tion (with respect to a chamber) of the Poisson kernel. Indeed, for the vertices
of type 0 we apply Proposition 3.2.2, provided we consider, in view of the the
relation (4), parameters a 84ab , b 84ab21 ; for the vertices of type 2, we
choose an initial point of type 2 and then we apply the previous method and
formula (1).

4.3. Laplace operators on the abstract apartment.

The definition of Laplace operators L1 , L2 and generalized Laplace opera-
tors L 1 , L 2 given in Section 3.3 extends to the present case, if we define (see
Figure 9)

S1 (X)4]Y� U : d(X , Y)41(4]X1 , X2 , X3 , X4( ,

S2 (X)4]Y� U : p(X , Y)4 (0)(4]X5 , X6 , X7 , X8( .

We point out that each Y�S1 (X) has different type from X , while the vertices
of S2 (X) have the same type of X and coincide with the vertices of the set S1 (X)
defined in Section 3.3.

A fundamental region R0 in A consists now of four type 0 vertices and four
type 2 vertices, as shown in Figure 10.

All the results of Section 3.3 extend to the present case. In particular, for
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Figure 9

every pair (l 1 , l 2 )�C2 , dim SL l--l1 , L l--l
2
(l 1 , l 2 )G8, provided hi (X , Y)c0, for Y�

Si (X). The operators L1 , L2 generate the algebra of W0-invariant difference
operators with constant coefficients acting on the complex valued functions on
U and their joint eigenspaces have dimension 8.

4.4. Laplace operators on the building.

For every x� U we define

S1 (x)4]y� U : d(x , y)41( ,

S2 (x)4]y� U : p(x , y)4 (0)( .

In order to make the cardinality of Si (x) independent of the type of the vertex
x , we assume from now on p4r . Thus

K14NS1 (x)N4 (p11)(pq11) , K24NS2 (x)N4p(p11)(pq11) .

The Laplace operators are defined as in Section 3.4. The following proposition
extends Proposition 3.4.2 to all special vertices.

Figure 10



EIGENFUNCTIONS OF THE LAPLACE OPERATORS ETC. 185

PROPOSITION 4.4.1. – For every v�V and x0� U, the function P x0 (Q , v) is
a joint eigenfunction of the Laplacians, associated with the eigenvalues

g 14g 1(a, b)4K1
21 (a1pb1pqb211p 2qa21) ,

g 24g 2(a, b)4K2
21(ab1qab211p 2qa21b1p 2q 2a21b21)1K2

21(p21)(q11) .

PROOF. – Let c be the base chamber of the sector Qx (v) and C4rc (c)4
r x

v (c). If X4rc (x), we evaluate !
y�rc

21 (Xi )
P x (y , v), i41, R , 4 , by a direct com-

putation. Then we use Theorem 3.3.2, with parameters a 84ab , b 84ab21 , to
evaluate !

y�rc
21 (Xi )

P x (y , v), i45, R , 8 . We conclude by the same argument

used in Proposition 3.4.2. r

By the same notation of Section 3.4, we have the following corollary.

COROLLARY 4.4.2. – For every (g 1 , g 2 )�C2 there exists a pair (a , b)�
(C3 )2 such that g i4g i (a , b), i41, 2 ; moreover g i (a , b)4g i (a 8 , b 8 ) if
and only if, for some s�W0 , (a 8 , b 8 )4s(a , b)4 (pkqj s , kqh s ), where
j4a/pkq , h4b/kq . Therefore, for every s�W0 , the function P x0

s(a , b) (Q , v)
belongs to S(g 1 , g 2 ).

As in Section 3.5 we state that the joint eigenspaces of the operators L
A

1 , L
A

2

have dimension equal to the cardinality of the finite Weyl group W0 .

4.5. Bijectivity of the Poisson transform.

We can prove for the Poisson transform on all special vertices an analogous
of Theorem 3.6.4 if we choose a fundamental region R0 as in Figure 11.

The following proposition exhibits all singular pairs (a , b).

PROPOSITION 4.5.1. – The pair (a , b) is singular in the following ca-
ses:

a4p , a42p , b41 , b421 , b4a , ab4q .

PROOF. – We note that Z14Y1 , Z24Y2 , Z34Y4 , Z44Y6 , following notation
of Section 3.6; therefore we evaluate PA(Zj , v k ), j41, R , 4 , k41, R , 8 , by
using Proposition 3.6.2 with parameters a 84ab , b 84ab21 and p4r . The
row PA(Z5 , v k ), k41, R , 8 , is the following vector

(a , b , a , b21 , b , a21 , b21 , a21 ) .

Finally, for j46, 7 , 8 we fix as initial point the type 2 vertex of c0 , which re-
tracts to Z5 ; then we apply (1) and Proposition 3.6.2 with parameters a 84ab ,
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Figure 11

b 84ab21 and p4r . Keeping in mind the relation between the coordinates k
and k 8 of a chamber with respect to its type 0 and type 2 vertex respectively, il-
lustrated in Figure 8, we have

PA(Zj , v 1 )4a(V0 M8p j
) e6

PA(Zj , v 2 )4b(V0 M8p j
) e5

PA(Zj , v 3 )4a(V0 M8p j
) e8

PA(Zj , v 4 )4b21 (V0 M8p j
) e2

PA(Zj , v 5 )4b(V0 M8p j
) e7

PA(Zj , v 6 )4a21 (V0 M8p j
) e1

PA(Zj , v 7 )4b21 (V0 M8p j
) e4

PA(Zj , v 8 )4a21 (V0 M8p j
) e3 ,

where M804M2 , M814M1 , M824M0 (a 8 , b 8 ), and p 64 (2), p 74 (0 , 1 , 2 ),
p 84 (1 , 0 , 1 , 2 ). We can compute the determinant of P by using, as in Propo-
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sition 3.6.5, the mathematical software «Mathematica 2». We get, for every
(a , b),

det P4Ka28 b28 (a2p)4 (a1p)4 (b21)4 (b11)4 (a2b)4 (ab2q)4 ,

where K is a constant depending on p and q . r

Unlike the case of only one type of special vertices, for all special vertices
there not exist ultrasingular pairs.

PROPOSITION 4.5.2. – For every singular pair (a , b), there exists s�W0

such that s(a , b) is non-singular.

PROOF. – Setting a4pkqj , b4kqh , then (j , h) is singular if and only if
at least one of the following relation is satisfied:

j41/kq , j421/kq ,

h41/kq , h421/kq ,(5)

h4pj , jh41/p .

Replacing eventually (j , h) by an equivalent pair, we may assume (j , h)� F.
Since none of conditions (5) may be satisfied in F, there are no ultrasingular
pairs. r

Proposition 4.5.2 implies that, if we consider special vertices of both types 0
and 2, then all joint eigenvalues (g 1 , g 2 ) are non singular; therefore, denoted
by (a , b) a non singular pair such that g i4g i (a , b), we prove that for every
f� S(g 1 , g 2 ) there exists a unique n�H 8 (V) such that f4 Pa , b n .

5. – The case of non-special vertices.

5.1. Generalities.

In this section we consider the set U1 of all type 1 vertices, i.e. the non-spe-
cial vertices of the building; as usual, we denote by U1 the set of non-special
vertices of the abstract apartment A . For every x� U1 , S(x) contains (r11)
vertices of type 0, (p11) vertices of type 2 and (p11)(r11) chambers.

Given an apartment A and a sector Qx0
on it, say x0� U0 , each non-special

vertex in A may be assigned a pair of integer coordinates (with respect to Qx0
),

as we done in Section 3 and 4 for the special vertices. If z0 is the non-special
vertex of the base chamber of Qx0

, then we choose as H1 and H2 the lines pas-
sing through z0 and parallel to the lines containing the 1-wall of Qx0

and the 1-
wall of the sector Q 9x0

2-adjacent to Qx0
respectively. With this assumption the
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Figure 12

non-special vertices of Qx0
are characterized by coordinates (M , N) with 0G

NGM (see Figure 12).
We point out that the coordinates defined above are those defined in Sec-

tion 4 for all special vertices, simply replacing x0 by z0 . From now on, we deno-
te by zM , N , the non-special vertex of A of coordinates (M , N).

The coordinates of a chamber of A are defined as in Section 3.
If ]ck , m , n , k41, R , 8( are the chambers of A sharing a type 0 vertex of

coordinates (m , n), then we deduce from Figure 8 that (see Figure 13):

zm1n , m2n�ck , m , n , k41, 2 , zm1n , m2n21�ck , m , n , k43, 5 ,

zm1n21, m2n�ck , m , n , k44, 6 , zm1n21, m2n21�ck , m , n , k47, 8 .
(6)

Figure 13
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5.2. Poisson kernel.

We fix on A a sector Q based at a special vertex X and we denote by Z the
non-special vertex of the base chamber C of Q. The definition of Poisson kernel
given in Section 3.2 extends to the non-special vertices, if we refer to the coor-
dinate system defined in Section 5.1 with respect to Q; for every x0� U,

Pa , b
x0 (z , v)4f a , b (rv

x0 (z) ) , (z� U1 , (v�V .

Obviously, for every v�V , Pa , b
x0 (z0 , v)41, if z0 is the non-special vertex of

the base chamber of the sector Qx0
(v); nevertheless the vertex z0 depends on

the choice of v (as well as on x0). We point out that, if we consider a non-special
vertex z adjacent to x0 , then P x0 (z , v) may only assume the values:

1 , a21 , b21 , a21 b21 ,

according to the position of z with respect to Qx0
(v) in any apartment contai-

ning both them (see Figure 14).

Figure 14

The Poisson kernel depends on the choice of the vertex x0 , in the following
way.

LEMMA 5.4. – Let v�V and let x0 , x1 be special vertices. Then

P x1 (z , v)4P x0 (z , v)(P x0 (z1 , v) )21 , (z� U1 ,

where z1 is the non-special vertex of the base chamber of Qx1
(v).

The retraction of P x0 (Q , v) with respect to a chamber may be determined
using an algorithm analogous to that used in Section 3 for special vertices of a
fixed type.

Assume t(x0 )40. Let f a , b be the multiplicative function on U1 ; as usual it
may be considered as a function on the chambers of A , which is constant on
the four chambers sharing a non-special vertex. If (k , m , n) are the coordina-
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tes of a chamber C , then it is easy to check, using (6), that

f a , b (C)4c a 8 , b 8 (m , n) x(k) ,

where c a 8 , b 8 is the multiplicative function on U0 of parameters a 84ab , b 84
ab21 and the vector

V14 (x(1), R , x(8) )4 (1 , 1 , b21 , a21 , b21 , a21 , a21 b21 , a21 b21 )

plays the role of the vector V0 defined for the type 0 vertices. Therefore, refer-
ring to this vector, we may use the method applied in Section 3 for the type 0
vertices to evaluate in every C the retraction of P x0 (Q , v) with respect to a
chamber c0 , in terms of the coordinates of the chamber C04rc0

(c0 )4rv
x0 (c0 ),

and of the type of a minimal gallery joining C0 to C . The following theorem
holds.

THEOREM 5.2.2. – Let (k , m , n) be the coordinates of the chamber C0 (with
respect to Q). For every Z� U1 , let C be the chamber containing Z in a mini-
mal gallery connecting C0 to Z . Let p4 (i1 , R , il ) be the type of [C0 , C];
then

PA(Z , v)4PA(C , v)4
1

Nrc0
21 (C)N

c(m , n) V1 Np ek ,

where ek is the 831-matrix such that eh , k4d hk and Np4Nil
RNi1

, where
N04M0 (a 8 , b 8 ), N14M1 and N24M2 .

5.3. Laplace operators on the abstract apartment.

The Laplace operators L1 , L2 and the operators L l--l
1 , L l--l

2 are defined as for
special vertices if, for Z� U1 , the sets S1 (Z) and S2 (Z) are the following (see
Figure 15):

S1 (Z)4]Y� U1 : p(Z , Y)4 (1)(4]Z1 , R , Z4( ,

S2 (Z)4]Y� U1 : p(Z , Y)4 (1 , i , 1 ), i40, 2(4]Z5 , R , Z8( .

We point out that, if Z4ZM , N , then

Z14ZM11, N , Z24ZM , N11 , Z34ZM , N21 , Z44ZM21, N ,

Z54ZM11, N11, Z64ZM11, N21, Z74ZM21, N11, Z84ZM21, N21.

A fundamental region R0 of A consists of eight non-special vertices, as shown
in Figure 16. Any joint eigenfunction of L l--l

1 , L l--l
2 is uniquely determined by its

values on the non-special vertices of this region. Hence the eigenspaces
SL l--l1 , L l--l2

(l 1 , l 2 ) have dimension less than or equal to 8.
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Figure 15

Let WA0 be the dual finite Weyl group of the building; WA0 acts on the ab-
stract apartment as the finite reflection group generated by sA1 , sA2 , where sA1 is
the reflection with respect to the line containing the edge of type 0 starting
from Z and sA2 is the reflection with respect to the line orthogonal to the edge
of type 1 opposite to Z. All the results stated in Section 3.3 for the Laplace ope-
rators L1 , L2 extend to the present case, if we refer to the group WA0 .

5.4. Laplace Operators on D.

For every z� U1 we define

S1 (z)4]y� U1 : p(z , y)4 (1)( ,

S2 (z)4]y� U1 : p(z , y)4 (1 , i , 1 ), i40, 2( .

The cardinality of Si (z) does not depend on the vertex z ; actually

K14NS1 (z)N4q(p11)(r11) K24NS2 (z)N4q 2 (p1r12pr) .

Starting from this definition of S1 (z) and S2 (z), we extend to non-special verti-
ces the definition of Laplace operators L1 and L2 on D given for special verti-

Figure 16
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ces. As before, we define, for every pair (g 1 , g 2 )�C2 , the eigenspaces
S(g 1 , g 2 ) and S

A
(g 1 , g 2 ).

We point out that, if pcr , the sum !
y�Si (z)

P x (y , v), for a fixed v�V , and z in

the base chamber of the sector Qx (v), depends on z . Precisely it assumes dif-
ferent values if x has type 0 or 2, because edges of type 0 and 2 have different
valencies. To avoid this problem, from now on we assume p4r . We state, as
for special vertices, the following proposition.

PROPOSITION 5.4.1. – For every v�V and for every special x0 , P x0 (Q , v) be-
longs to the eigenspace S(g 1 , g 2 ), associated with the eigenvalues

g 14g 1 (a , b)4K1
21 (a1pb1pqb211p 2 qa21 )1c1 ,

g 24g 2 (a , b)4K2
21 (q21)(a1pb1pqb211p 2 qa21 )

1K2
21 (a1p 2 qa21 )(b1qb21 )1c2 ,

where c14K1
21 (p11)(q21), c24K2

21 (pq 21p22q).

Using notation of Section 3.4, we have the following corollary.

COROLLARY 5.4.2. – For every (g 1 , g 2 )�C2 , there exists (a , b)� (C3 )2

such that g i4g i (a , b), i41, 2 ; moreover g i (a , b)4g i (a 8 , b 8 ) if and
only if, for some s�W0 , (a 8 , b 8 )4s(a , b)4 (pkqj s , kqh s ), where j4
a/pkq , h4b/kq . Therefore, for every s�W0 , the function P x0

s(a , b) (Q , v)
belongs to S(g 1 , g 2 ).

As in Section 3.5 and 4.4, we state that the joint eigenspaces of the opera-
tors L

A
1 , L

A
2 , obtained by retracting the Laplace operators with respect to a

chamber, have dimension equal to the cardinality of the finite Weyl group
W0 .

5.5. Bijectivity of the Poisson transform.

We can prove for the Poisson transform on non-special vertices an analog-
ous of Theorem 3.6.4 if we choose a fundamental region R0 as in Figure 17. We
denote by Z1 , R , Z8 its type 1 vertices; moreover, as in Section 3, we assume
that r x0

v maps Qx0
(v) onto the sector Qk based at the chamber Ck of coordinates

(k , 0 , 0 ) (with respect to Q). Then we construct the 838-matrix P4 (Pj , k ),
where Pj , k4PA(Zj , v k ), with the aid of the following proposition.
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Figure 17

PROPOSITION 5.5.1. – For every j41, R , 8 , let p j be the type of a minimal
gallery connecting C to Zj ; then

PA(Zj , v k )4
1

Nrc0
21 (Zj )N

V1 Np j
ek , for kc4, 5 ,

PA(Zj , v 4 )4
1

Nrc0
21 (Zj )N

V1 Np j
e5 ,

PA(Zj , v 5 )4
1

Nrc0
21 (Zj )N

V1 Np j
e4 .

The following proposition exhibits all singular pairs (a , b).

PROPOSITION 5.5.2. – The pair (a , b) is singular in the following ca-
ses:

a4p , a42pq , b41 , b42q , b4a , ab4q .

PROOF. – We compute the determinant of the 838 matrix P by using the
mathematical software «Mathematica 2» as in previous cases. We get, for
every (a , b),

det P4Ka 4 b212 (a2p)4 (a1pq)4 (b21)4 (b1q)4 (ab2q)4 (a2b)4 ,

where K is a constant depending on p and q . r

As for one type of special vertices, also for non-special vertices there exist
ultrasingular pairs; the following proposition exhibits them.
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PROPOSITION 5.5.3. – There exist ultrasingular pairs if and only if q4p ,
or p 2 . Moreover the ultrasingular pairs (a , b) are the following:

(7)
(a, b)4(2p 2,21)A(2p,2p)A(2p,21)A(2p 2,2p) , if q4p ,

(a, b)4(2p 3,2p)A(2p 2,21)A(2p,2p)A(2p 2,2p 2) , if q4p 2.

PROOF. – Setting a4pkqj , b4kqh , the pair (j , h) is singular if and only
if

j41/kq , j42kq ,

h41/kq , h42kq ,

h4pj , jh41/p .

Replacing, if necessary, (j , h) by an equivalent pair, we may assume (j , h)�
F. In this set the only singular pairs are those satisfying

j42kq , 1GNhNGkq ,

h42kq , NjNFkq .

If qcp , p 2 , for each of these pairs there exists an equivalent non-singular
pair.

If q4p or q4p 2 , the ultrasingular pairs lying in F are

(j , h)4 (2kp , 2kp ) , if q4p ,

(j , h)4 (2p , 21) , if q4p 2 .

Keeping in mind the relation between (j , h) and (a , b), (7) is pro-
ved. r

COROLLARY 5.5.4. – There exist singular eigenvalues (g 1 , g 2 ) if and only if
q4p or p 2 . Moreover in both cases (g 1 , g 2 )4 (21/q , 1 /q 2 ) is the only pair of
singular eigenvalues.

Corollary 5.5.4 implies that, if we consider joint eigenvalues (g 1 , g 2 )c
(21/q , 1/q 2 ), then, denoting by (a , b) a non singular pair such that g i4g i(a , b),
for every f� S(g 1 , g 2 ) there exists a unique n�H 8 (V) such that f4 Pa , b n . On
the contrary, if (g 1 , g 2 )4 (21/q , 1 /q 2 ), then Helgason’s conjecture fails.
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