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Bollettino U. M. I.
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On the Lyapunov Exponent and Exponential Dichotomy
for the Quasi-periodic Schrödinger Operator.

R. FABBRI (*)

Sunto. – In questo lavoro viene studiato l’esponente di Lyapunov b(E) per l’operatore
di Schrödinger in una dimensione con potenziale quasi periodico. Indicato con
G%Rk l’insieme delle frequenze le cui componenti sono razionalmente indipendenti
e considerato 0GrE1, si fa vedere come b(E) risulti zero sul complementare in
G3C r (Tk ) dell’insieme D in cui si ha dicotomia esponenziale (D.E.). Le tecniche
ed i metodi usati sono basati sulle proprieta’ del numero di rotazione e della D.E.
per l’operatore considerato.

Summary. – In this paper we study the Lyapunov exponent b(E) for the one-dimen-
sional Schrödinger operator with a quasi-periodic potential. Let G%Rk be the set of
frequency vectors whose components are rationally independent. Let 0GrE1, and
consider the complement in G3C r (Tk ) of the set D where exponential dichotomy
holds. We show that b40 is generic in this complement. The methods and tech-
niques used are based on the concepts of rotation number and exponential
dichotomy.

1. – Introduction.

The purpose of this paper is to study the positivity of the Lyapunov expo-
nent for linear differential equations where we consider cocycles based on
flows rather than cocycles based on a discrete dynamical system. In particular,
we refer to the one-dimensional Schrödinger operator with a quasi-periodic
potential. The quasi-periodic Schrödinger operator has been intensively stud-
ied in the last 25 years, in the discrete and in the continuous formulation. In
the theory of discrete 1-dimensional Schrödinger operator, Lyapunov expo-
nents can decide if the spectrum of such operator is or is not absolutely contin-
uous. In this paper, we will study the self-adjoint differential operator

(*) The author was supported by a Post-Doctorate grant from the University of
Florence.
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(Schrödinger operator)

H42
d 2

dt 2
1q(t)

on L 2 (R), where q(t) is a quasi-periodic function with at least two basic fre-
quencies. The real-valued function q(t) is called quasi-periodic with k frequen-
cies if there exists a continuous, real-valued function Q on the k-torus Tk and a
vector of frequencies g4 (g 1 , R , g k )�Rk whose components are rationally
independent and a point c4 (c 1 , R , c k )�Tk such that

q(t)4Q(c 11g 1 t , R , c k1g k t)4Q(t t (c) )

where t t : TkKTk given by t t (c)4c1gt is the Kronecker quasi periodic
flow defined on the torus. So what we consider is the operator

Hc : 2
d 2

dt 2
1Q(c1gt)

on L 2 (R) with c�Tk, Q : TkKR continuous and g�Rk with components ra-
tionally independent.

We want to study the Lyapunov exponent of the equation

Hc f4Ef

where E�R. Let’s give the exact definition of this object. If we fix E�R, we
can write the equation Hc f4Ef in a system form given by:

.
`
´

f

f 8

ˆ
`
˜

8
4

.
`
´

0

2E1Q(c1gt)

1

0

ˆ
`
˜

(1)

where we put A(c1gt)4g 0

2E1Q(c1gt)
1
0
h with A(c1gt)�sl(2 , R). So

the system (1) becomes equivalent to the system;

x84A(c1gt) x(2)

where x4g f

f 8
h. Let F(t)4F c , E (t) be the fundamental matrix of the system

(1) such that F(0)4Id. Then we can define the Lyapunov exponent b of the
system (1)

b(E)4 lim
tKQ

1

t
ln VF(t)V(3)

where V QV indicates any norm on the set of 232 matrices. For each E�R, the
limit exists and takes on the same value b(E) for Lebesgue-a.a. c�T k ; see,
e.g., [JPS] for basic facts about Lyapunov exponents. Sometimes it is useful to
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suppress the parameter E and study the system

g W

W 8
h4g 0

Q(c1gt)

1

0
hg W

W 8
h .(4)

In this case b4b(Q) is defined by setting E40 in (3).
To formulate our result exactly, let G%Rk be the set of vector of frequen-

cies g4 (g 1 , R , g k ) whose components are independent over Q. Then G,
with the topology induced by Rk, is a Baire space and hence it can be given a
metric d with respect to which (G , d) is a complete metric space [Ch]. Let us
define C r4C r (Tk ) and consider the Banach space (C r , V QVr ) where Q�C r if
and only if

VQVr4VQV01sup
c

NQ(c 1 )2Q(c 2 )N

Nc 12c 2 N
r

is finite. Let Wr4G3C r be the product topological space. Our main result is
the following

THEOREM 1.1. – Suppose 0GrE1. There is a residual subset W*%Wr with
the following property: if w4 (g , Q)�W* then either equations (1) admit an
E. D. or the Lyapunov exponent b4b(w) equals zero.

We will give the exact definitions of the concept of exponential dichotomy
(E.D) and some other ones in the next section. Let’s observe that this Theo-
rem can be viewed as a development of a result of Mañè [Ma].

We can refer to many papers concerning the study of the Lyapunov expo-
nent for the random Schrödinger operator. In the papers of [S], [CS], [FSW]
we have certain C 2 open sets of potentials for which the Lyapunov exponent
for the corresponding discrete cocycle is positive. We have also papers of
Eliasson [E1] and Moser-Pöschel [MP] where the study of the quasi periodic
Schrödinger operator with smooth potential give us some information about
the Lyapunov exponent. We want also to mention the paper of [FJP] where we
have given a result of genericity of the positive Lyapunov exponent for a resid-
ual subset of frequencies contained in G in the C r topology with rF0 for the
operator Hc on a set of locally positive measure other than results about the
spectrum of such operator.

The question of the positivity of the Lyapunov exponent is a well
studied subject: if we have exponential dichotomy for the system (1), this
implies that the corresponding Lyapunov exponent is positive. It is not
always true the viceversa ([M1], [M2]), so it is interesting to determine
the class of system for which b is zero. In a recent paper ([FJ1]), we



R. FABBRI152

have proved an analogue of the Theorem 1.1 for a quasi-periodic SL(2 , R)-
valued cocycle defined on the torus Tk.

We would like also to mention some other results concerning the positivity
of the Lyapunov exponent; in a paper of Kotani ([K]), the positivity of b is
studied for a general base flow ]Y , t t( and in another one of Nerurkar ([N]),
we have a result of density for bD0 for continuous SL(2 , R)-valued cocycles
using some control-theoretic techniques. We have also the papers of Herman
([H]) and Wojthowski ([W1], [W2]) where we have some eximates for the Lya-
punov exponents for some special integer Sl(2 , R)-valued cocycles and those
of Young ([Y1], [Y2]) for certain integer cocycles.

We would like to finish this Introduction by saying that the techniques
used are based on the concepts of rotation number and exponential dichotomy
associated to our system; in the proof of the Theorem 1.1 we will use some cal-
culations due to Moser for the study of the spectrum of the almost periodic
Schrödinger operator [Mo].

2. – Preliminaries.

In this chapter we want to introduce the definitions and the concepts we
will use for the proof of our main Theorem. First of all let’s recall what we
mean by rotation number. It can be defined for any quasi-periodic
Schrödinger operator or more generally for any «random» operator, see [JM].
Consider the quasi-periodic operator

Hc : 2
d 2

dt 2
1Q(c1gt)

with the corresponding system

g f

f 8
h84g 0

2E1Q(c1gt)

1

0
hg f

f 8
h .

For fixed E�R and c�Tk if we consider the polar coordinates, we have that

w(t)4arctan f 8

f
, where u f(t)

f 8 (t)
v is any non trivial solution of (1), satisfies the

equation:

w 84 [2E1Q(c1gt) ] cos2 w2sin2 w .

So we can define the rotation number a(E) by

a(E)42 lim
tKQ

w(t)

t
.

This limit exists for all c�Tk and it does not depend on the choice of the initial
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value w(0) nor on c. [JM] We have also that the function EKa(E) is continu-
ous, non negative monotone non-decreasing, and it increases exactly on the
spectrum of Hc for all c�Tk. We have also the «gap-labelling formula» ([GJ]
[JM]):
if E belong to a resolvent interval of Hc, then a(E) is such that

2a(E)4 !
j41

k

nj g j

where n�Zk.
In the Theorem 1.1 we have referred to the exponential dichotomy (for

some references [Co], [P1], [P2]). Let’s give the definition of this concept.

DEFINITION 2.1. – Let Q�C r (Tk ), g�Rk any frequency vector. We say that
the equations (1) admit an exponential dichotomy (E.D.) over Tk if there
exists a continuous, projection-valued function P : TkKProj (R2 ) and some
positive constants K , d such that

VF c (t) Pc F c (s)21
VGKe 2d(t2s) tFs ;

VF c (t)(I2Pc ) F c (s)21
VGKe d(t2s) tGs .

If these conditions hold we have that dim Pc41 (c�Tk.
We can study the spectrum of the operator Hc using the concept of E.D.

We have indeed [J1] that, if g�G , E belongs to the resolvent R0s (Hc ) of Hc if
and only if equations (1) admit an exponential dichotomy over Tk. If the com-
ponents of the frequency vector g are not rationally independent this is true if
we consider the E.D. on the closure of the orbit ]c1gtNt�R(%Tk.

3. – Proof of the Theorem 1.1.

Let D 4](g , Q)�G3C rN(1) has E.D. (c�Tk(.
What we want to show is that there exists a residual subset W* contained

in G3C r such that, if w4 (g , Q)�W* 0 D then b(w)40 with 0GrE1. For
the proof we will use some results we have obtained in the general case when
the coefficient matrix A�sl(2 ; R) [F], [FJ1] inspired by the techniques and
methods used by Johnson [J2] and Moser [Mo]. We will consider two cases:
r40 and 0ErE1.

First case: r40. We have the following

PROPOSITION 3.1. – Let Fp be the set defined by: Fp4mw4 (g , Q)�W0N(1)

has Lyapunov exponent b(w)F 1

p
n with pF1. Then we have that Fp is closed

in W0 .
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This proposition can be proved using the semicontinuity properties of b. To
prove the Theorem 1.1 we will show that Fp 0 D is a nowhere dense set in W0 ,
(pF1.

PROOF OF THEOREM 1.1. – For contradiction consider an open set V%Fp 0 D

where V is given by V4VA13V2 with VA14V1OG where V1 is an open set in Rk

and V2 an open set in C 0. Let’s take the pair (g , Q)�V; we have the
following

PR O P O S I T I O N 3 . 2 . – T h e r e e x i s t s a ve c t o r g *�V1 a n d a fu n c t i o n

Q*�V2 such that g * has rational components g *4g p1

q1

, R , pk

qk
h with

T4l.c.m.(q1 , R , qk ) such that, for each c�Tk , the logarithm ln F c (T) of the
period matrix F c (T) of the periodic system

g f

f 8
h84g 0

2E1Q*(c1g * t)

1

0
hg f

f 8
h

lies on the surface of a certain cone C %sl(2 , R).

For the proof see [FJ1] where we have considered the case of the coeffi-
cient matrix A�sl(2 , R). Let’s pause briefly to explain the construction of the
cone C. Consider the periodic system

x4A*(c1g * t) x(5)

where A*(c1g * t)4g 0
2E1Q*(c1g * t)

1
0
h is periodic of period T. Suppose

that, for some integer m, we have that a(c)4 2pm

T
. This condition has a pre-

cise meaning that can be interpreted geometrically introducing the cone C.
Let F c (T) the period matrix of the periodic system (5): it satisfies one of

the following conditions:

i) F c (T)4Id. This means that all the solutions of (5) are periodic of
period T. In a spectral sense this implies that E defines a closed gap for the
operator Hc (elliptic case).

ii) F c (T) has eigenvalue 1 and a unique one-dimensional eigenspace.
This means that E is an endpoint of a resolvent interval for Hc (parabolic
case).

iii) F c (T) has two eigenvalues, this implies that E is in the interior of a
resolvent interval for Hc (hyperbolic case).

To introduce the cone C, let’s observe that F c (T)�SL(2 , R), if we set D0%
SL(2 , R) as the set of the matrices F elliptic, parabolic or hyperbolic, we have
that there exists D%sl(2 , R) with D open with D0%D and a single-valued, re-
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al-analytic branch ln : DKsl(2 , R) such that ln F c (T)� C where C %sl(2 , R)
is the cone given by C 4](a , b , c)Nc 24a 21b 2( where (a , b , c) corresponds

to the matrix g a
b1c

b2c
2c
h. This means that:

1) ln F c (T)4 (0 , 0 , 0 ) closed gap case;

2) ln F c (T)� C but ln F c (T)c (0 , 0 , 0 ) parabolic case.
Let’s observe that F c (T) is hyperbolic if and only if ln F f (T) lies in the ex-

terior of C. For the introduction and use of the cone see [MP], [J2],
[Mo].

To summarize what we did until now: we have taken (g , Q)�V%Fp 0 D,
then we have determined (g *, Q*)�V such that for the corresponding peri-
odic system

g f

f 8
h84g 0

2E1Q*(c1g * t)

1

0
hg f

f 8
h

holds the Proposition 3.2. Note that if we are in the cone the Lyapunov expo-
nent b(E) of the periodic system equals zero. Now, from the property of semi-
continuity of b(E) we have the following

PROPOSITION 3.3. – Let’s consider eD0, if g�G is sufficiently close to g *,
then the Lyapunov exponent of the system

g f

f 8
h84g 0

2E1Q*(c1gt)

1

0
h

is less than e : 0GbEe.

But this gives us a contradiction, because if we choose 1

p
4e and g�V1 we

have bEe. So it is not true that Fp 0D contains an open set, that is to say
Fp 0D is nowhere dense in W0. What it remains to prove is how we can deter-
mine the periodic matrix

A*(c1g * t)4g 0

2E1Q*(c1g * t)

1

0
h

that is to say how to choose the perturbation Q*. Let a(E , g , Q) be the rota-
tion number of the system

g f

f 8
h84g 0

2E1Q(c1gt)

1

0
hg f

f 8
h .

For the property of the rotation number [J2] we have that, considering a se-
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quence g n�Qk with g n4g p1

q1

, R , pk

qk
h with g nKg we have that

a(E , c , g n , Q)Ka(E , g , Q)

and this convergence is uniform in (E , c)�I3Tk for every compact I4
[2h , h]%R. Moreover a(E , g , Q) is strictly increasing for E� [2h , h]; so,
considering the sequence g n�Qk with g nKg and r such that 0ErEh, we
have that there exists N0F1 such that for every nFN0 we can determine an
integer m4m(n) and a continuous real valued function En : TkKR such
that

a(En (c), c , g n , Q)4
2pm

T
(6)

and

VEn V0Gr .(7)

We determine the continuous function E(c)4En (c) by taking the smallest
real value for which (6) holds. Such function is constant along every orbit:
En (c1g n t)4En (c) (t� [0 , T], c�Tn. So, choosing

A*4A(c)1En (c) J with J4g0
1

0

0
h

we have obtained A*(c)�V2 . So, writing g *4g n , we have that a *(c)4 2pm

T
with m�Z and then we can apply the proposition 3.2 and the conclusions of

the Proposition 3.3. This proves Therem 1 if r40.

4. – Second case.

Consider rE1; what we want to find is the perturbation function En such
that VEn VrEe if VEn V0Er. As before let’s take (g , Q)�V where Q D A

4g 0
2E1Q()

1
0
h. We can suppose WLG that Q�C 1 (Tk ) where

NQN14!
i41

k

N ¯Q

¯c i
N

0
.

Fix nFN1 and a corresponding integer m such that we have (6) and (7). Fol-
lowing [J2] and [FJ1] let b a number such that

b�g 2p(m21/2)

T
,

2pm

T
h
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and let Eb (c) be the unique value E�R such that

a(c , Eb (c) )4b .(8)

If b6 2pm

T
we have Eb (c)KEn (c). Following the discussion of the previous

chapter we have that, for every b�g 2p(m21/2)

T
, 2pm

T
h) , VEb V0Er. If we have

that Eb is Lipschitz continuous with Lipschitz constant verifying

Lip (Eb )GVQV1(9)

we can conclude that VEn VrEe. Indeed from (9) we have that

Lip EnGVQV1

and for every 0GrE1 one can verify that

VEn VrGVEn V0 (11Lip (En )r Q212r ) .(10)

Then, choosing r sufficiently small, we have VEn VrEe.
To prove (9) introduce the classical discriminant D4D(c , En ) of the

system

x 84 [A(c1g * t)1En J] x

where D(c , En )4 tr F c (T). If En4E�!
j

where !
j

is an interval in the spec-

trum of the operator Hc , we have that F c (T) is conjugate to the matrix

gcos aT
sin aT

2sin aT
cos aT

h and therefore

D(E)42 cos a(E) T .

Now, we can apply some calculations of Moser [Mo] and Johnson [J2]; let’s
take c�Tk and E� int !

j
, the function

qc (t)4Q*(c1g * t)

is an element of the Banach space C r [0 , T], so the functional D acts on
C r [0 , T]. We have then

dD

de
(qc , q)4 lim

eK0

D(qc1eq)2D(qc )

e
.

Let F c (t) be the fundamental matrix of the periodic system

x 84qc (t) x

and F c (t)1eF 1 (t) that of the perturbed system

x 84 [qc (t)1eq(t) ] x
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we have [Mo],[J2] and [FJ1]

F 1 (t)4F c (t)s
0

T

F c
21 (s) q(s) f c (s) ds

and then

dD

de
4 tr F 1 (T)4 tr F c (T)s

0

T

F c
21 (s) q(s) F c (s) ds

where q(t)4q1 (t) g0
1

0
0
h. Since

F c (T)4A 21gcos aT

sin aT

2sin aT

cos aT
h A

where A4ga11

a21

a12

a22
h and writing F c (t)4gu1 (t)

v1 (t)
u2 (t)
v2 (t)
h we have

dD

de
42sin aTs

0

T

K1 (s) q1 (s) ds

where we can calculate explicitly K1 (t) following Moser [Mo]

K1 (t)42u1 (t) u2 (t)(a12 a111a21 a22 )1u1
2 (t)(a12

2 1a22
2 )1

1u2
2 (t)(a11

2 1a21
2 ) .

We can observe that K1 (t)D0, (t� [0 , T]. If we consider indeed the
expression

B y u1 (t)

u2 (t)
z2

12C
u1 (t)

u2 (t)
1D

where

B4a12
2 1a22

2 D0

C4a12 a111a21 a22

D4a11
2 1a21

2 D0

we have that the discriminant of this second degree trinomial is given by

2(a11 a222a12 a21 )242( det A)2

that is always negative. In the general sl(2 , R) case ([F], [FJ1]) we obtain
Ki (t) with i41, 2 , 3 because we have

q(t)4q1 (t) J11q2 (t) J21q3 (t) J3
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where qi (t) are scalar functions and

J14g0
1

21

0
h , J24g1

0

0

21
h , J34g0

0

1

0
h .

Let us return to the equation (8); if we differentiate with respect to c j with j4
1, Rk, we have

¯a

¯c j

1
¯a

¯E
Q
¯Eb

¯c j

40 (j41, R k .

and then

¯a

¯E
42

1

2T sin aT
Q
¯D

¯E
4

1

2T
s
0

T

K1 (s) ds

and also

¯a

¯c j

42
1

2T sin aT

¯D

¯c j

4
1

2T
s
0

T

K1 (t)
¯Q*
¯c j

(t) dt .

We have hence

¯Eb

¯c j

4

2s
0

T

K1 (t) ¯Q*
¯c j

(c1g * t) dt

s
0

T

K1 (t) dt

.

From the positivity of K1 (t) we have

N ¯Eb

¯c j
NGNN ¯Q*

¯c j

NN
0

and then, considering sup
c

we have that (9) holds. Now we can apply the con-

clusions of the previous chapter and then prove completely the Theorem 1.1.
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