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Groups in Which the Prime Graph is a Tree.

MARIA SILVIA LUCIDO

Sunto. – Il «prime graph» G(G) di un gruppo finito G è definito nel modo seguente: l’in-
sieme dei vertici è p(G), cioè l’insieme dei primi che dividono l’ordine del gruppo e
due vertici p , q costituiscono un lato (e si indica pAq) se esiste un elemento in G
di ordine pq . Si studiano i gruppi G tali che il grafo G(G) è un albero, dimostrando
che, in questo caso, Np(G)NG8.

Summary. – The prime graph G(G) of a finite group G is defined as follows: the set of
vertices is p(G), the set of primes dividing the order of G , and two vertices p , q are
joined by an edge (we write pAq) if and only if there exists an element in G of or-
der pq . We study the groups G such that the prime graph G(G) is a tree, proving
that, in this case, Np(G)NG8.

1. – Introduction.

Given a finite group G , we construct its prime graph, G(G), as follows: the
vertices of G(G) are the primes dividing the order of G and two vertices p , q
are joined by an edge (we write pAq) if there is an element in G of order pq .

We denote the set of all the connected components of the graph G(G) by
]p i (G), for i41, 2 , R , t(G)( and, if the order of G is even, we denote by
p 1 (G) the component containing 2. We also denote by p(n) the set of all
primes dividing n , if n is a natural number.

The concept of prime graph arose during the investigation of certain coho-
mological questions associated with integral representations of finite groups.
It turned out that G(G) is not connected if and only if the augmentation ideal
of G is decomposable as a module (see [7]). This is an example of an application
of the properties of the prime graph of a finite group G . In general, we can
study how some properties of the graph influence the structure of the group.

The structure of a finite group G such that G(G) is not connected has been
determined by Gruenberg and Kegel, in un unpublished article. Moreover all
the simple groups G such that G(G) is not connected have been described in
[15], [8] and [9] and the almost simple ones in [10]. The diameter has also been
studied: it has been proved in [11] that the diameter of G(G) is less or equal 5
for any finite group G .
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In this paper we study the finite groups G such that G(G) is a tree, that is a
connected graph without loops. We say that a graph is a forest if any connected
component of the graph is a tree.

If G is a soluble group, we prove that Np(G)NG4 (Proposition 2) and in the
case Np(G)N44, the Fitting length of G is determined, in a more general
situation.

PROPOSITION 3. – Let G be a soluble group with diam (G(G) )43. Then ei-
ther lF (G)G3 or G has a normal section isomorphic to H , and lF (G)G4.

We then consider the simple non abelian groups S such that G(S) is a for-
est, describing them in List A. We show that no G(S) is a tree. We classify all
almost simple groups G with G(G) a tree in Lemma 3. We show an example of a
simple group S such that for any group H with SGHGAut(S), we have that
G(H) is not a tree, while there exists a group G with S as a composition factor
and G(G) a tree (see Example 3).

We study the general case, proving that if G(G) is a tree, then G has the fol-
lowing structure.

THEOREM 5. – Let G be a finite group such that G(G) is a tree. If R is the
soluble radical of G , then

i) G4G/R is an almost simple group, that is SGGGAut (S), with S a
finite simple non abelian group of List A;

ii) if Gc1, then Np(R)NG3.

We then describe the «non-modular» situation, that is groups G such that
p(R) is not contained in p(G).

LEMMA 6. – Let R be the soluble radical of G , with G(G) a tree.

i) If R is a t-group for some prime t not dividing NGN , then G is one of
the groups of List B;

ii) if p(R)4]p1 , p2 , p3(, then p(R)’O p(G) and either

l p242, p343 and S4PSL(2 , r), with r47, 9 , 17 or r42a 3b11 and
r1142 t for some prime t , or

l p242 and S4A5 ;

iii) if p(R)4]p1 , p2(, and p1 does not divide NG/RN , then p242, and
either

l S4A5 or PSL(2 , r), with r47, 9 , 17 or r42a 3b11 and r1142 t
for some prime t , or

l S4Sz(8), Sz(32) or PSL2 (8), or
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l S4A7 , M11 , M22 , B2 (3), G2 (3), U4 (3) or PSL2 (q) and Np 1 (S)NG2
and Np i (S)N41 for any iD2.

We show with an example how to construct most of them (see Example 3).
We prove that Np(G)NG8 (Theorem 6) and show with an example that this

bound is the best possible. In fact we prove that there is an extension G of a
Suzuki group with a field automorphism, with G(G) a tree and Np(G)N48 (see
Example 2). If G(G) a tree and Np(G)N48, we conjecture that the only non
abelian composition factor of G is a Suzuki group. This conjecture is related to
the unsolved problem in Number Theory, known as «twin prime problem».

2. – Soluble groups.

We begin with soluble groups. We say that a graph is a forest if any con-
nected component of the graph is a tree. We observe that if p(G) contains only
two primes and G(G) is connected, then G(G) is a tree. We recall Proposition 1
of ([11]).

PROPOSITION 1 ([11]). – Let G be a finite soluble group. If p , q , r are three
different primes of p(G), then G contains an element of order the product of
two of these primes.

We also need to point out some facts about soluble groups in which the
prime graph is not connected. We recall that G is a Frobenius group if it has a
subgroup H such that HOH x41 for all x�G0H . Then G4HF , where F is
the Fitting subgroup of G and H is called a Frobenius complement.

LEMMA 1. – If G is soluble and G(G) has more than two connected compo-
nents, then G is either a Frobenius or a 2-Frobenius group and has exactly
two components, one of which consists of the primes dividing the lower
Frobenius complement; moreover G/F2 is a cyclic group.

PROOF. – The first statement is the corollary to Theorem A of [15]. A group
is called 2-Frobenius if F2 and G/F1 are Frobenius groups, where F14Fit (G)
and F2 /F14Fit (G/F1 ). To prove the second statement we observe that if G is a
soluble Frobenius group, then G4F2 . If G is a 2-Frobenius group, then F2 /F1

is either cyclic or the product of an odd order cyclic group C by a generalized
quaternion group Q2n (see for example 10.5.6 of ([14]). In the first case, G/F2 is
both a subgroup of Aut (F2 /F1 ), which is abelian, and a Frobenius complement
of G/F1 , which implies G/F2 cyclic. In the second case G/F2GAut (C)3
Out (Q2n ). Now Out (Q2n ) is either an abelian 2-group, if nD3, or S3 if n43.
Since (NG/F2 N , NF2 /F1 N)41, the prime 2 does not divide the order of G/F2 ,
which is therefore abelian and hence cyclic as before.
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We can now prove

PROPOSITION 2. – Let G be a finite soluble group. If G(G) is a forest, then
Np(G)NG4.

PROOF. – We first suppose that G(G) is connected. We observe that if there
are three distinct primes p , q , r� p(G) such that pAqArAp , then G(G) can-
not be a tree.

Then for any prime p�p(G), there are at most two primes q1 , q2 such that
q1ApAq2 . In fact, if there exists q3 such that pAq3 , then by applying Propo-
sition 1 of [11] to q1 , q2 , q3 , we obtain, for example, q1Aq2 and this contradicts
the fact that G(G) is a tree.

Then G(G) must be a chain. If q1 , R , qn are the primes in p(G), we can or-
der them in a way such that d(qi , qi1 j )4 j , for any i41, R , n21 and j4
1, R , n2 i . If nF5, we apply again Proposition 1 of [11] to q1 , q3 , q5 , and ob-
tain, for example, q1Aq3 and this contradicts again the fact that G(G) is a tree.
This proves the Proposition in the case in which G(G) is connected.

Let now F4Fit (G) be the Fitting subgroup of G and F2 be the subgroup
of G such that F2 /F4Fit (G/F). If G(G) is not connected, then by Lemma 1 we
know that the connected components of G(G) are

p 1 (G)4p(NFN)Np(NG/F2N) p 2 (G)4p(NF2 /FN) .

Then Np 2 (G)NG2FNp(F)N since we suppose that G(G) is a tree. If p , q are
two distinct primes that divide NFN and if there exists r�p 1 (G)0]p , q(, then r
divide NG/F2 N and is coprime with NF2N . Let Op (G) be the p-Sylow subgroup of
F and xOp (G) an element of order r in G/Op (G) that acts on F2 /Op (G). Since
F2 /Op (G) is not a nilpotent group, xOp (G) must fix some element. From the
fact that r is in p 1 (G), the only possibility is that xOp (G) fixes an element of or-
der q . Therefore we have rAq . In exactly the same way we can prove that
rAp . But, since pq divides NFN , we also have pAq , against our hypothesis
that G(G) is a tree.

Then NFN4p n . If there exist two other primes r , s in p 1 (G)0]p( we can
consider again an element x of order r of G0F2 acting on F2 . Since the action
can not be fixed points free, the elements that can be fixed by x must have or-
der p i , that is rAp in p(G). Similarly sAp and from the fact that G/F2 is cyclic
by lemma , we conclude that rAs , contradicting our hypothesis again.

We conclude that also Np 1 (G)N can not contain more than two primes and
therefore Np(G)NG4.

We would like to examine now the soluble groups in which the prime graph
is a tree and which have exactly 4 prime divisors. It is easy to see that in this
case the diameter of the prime graph is 3 and we want to prove that the Fitting
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length is bounded. Since it can be proved for the more general case of a soluble
group in which the diameter of the prime graph is 3, we here give this proof.
Before stating the Proposition we want to introduce the following group H and
its subgroups T and V:

H4 aa , b , x , y : a 44b 44x 44y 341, a 24b 24x 2 , [b , a]4a 2 ,

[x , a]4 [y , b]4ab , [y , a]4b 3 , [x , y]4y 2 , [x , b]4a 3 bb ;

T4 ax , yb ; V4 aa , bb4Fit (H) .

Then H is the non-splitting covering of S4 , H4VT , where V4 aa , bb4
Fit (H)`Q8 , the quaternion group of order 8 and H/V`S3 .

If G is a soluble group, then the Fitting subgroup of G is not trivial. We can
therefore define the Fitting series of a soluble group G , as follows:

F0 (G)41,
Fn (G)

Fn21 (G)
4Fitg G

Fn21 (G)
h , for nF1 .

Since G is a finite group, there exists a least n�N such that Fn (G)4G . Then
n is exactly the Fitting lenght of the group G , that we denote by lF (G).

PROPOSITION 3. – Let G be a soluble group with diam (G(G) )43. Then ei-
ther lF (G)G3 or G has a normal section isomorphic to H , and lF (G)G4.

PROOF If diam (G(G) )43, there exist two primes p1 , p4�p(G) such that
d(p1 , p4 )43; therefore there exist two other primes p2 , p3 such that

Q
p1
`̀ Q

p2
`̀ Q

p3
`̀ Q

p4
.

As p1 ’p4 , we can apply Proposition 1 to p , p1 , p4 for any prime p�p(G). We
therefore obtain pAp1 or pAp4 . Moreover pAp1 implies that p’p4 because,
otherwise, d(p1 , p4 )G2, against our hypothesis. If p4]p�p(G) : pAp1(N
]p1(, then p 84p (G)0p is exactly the set ]p�p(G) : pAp4(N ]p4(.

We apply Proposition 1 to p , q , p4 for p , q�p and obtain pAq; similarly
for p 8 . Therefore both p and p 8 determine complete subgraphs of G(G).

We consider now the following sets:

p 14]p�p : d(p , p4 )43(,
p 24]p�p : d(p , p4 )42(,
p 34]p�p 8 : d(p , p1 )42(,
p 44]p�p 8 : d(p , p1 )43(.

We observe that pi�p i , for i41, 2 , 3 , 4 . If we set C4p 1Np 4 , then
C 84p 2Np 3 .

If OC (G)c1, then, for example, Op 1
(G)c1. If x is an element of G of or-

der p4 , x acts fixed-point-freely on Op (G)FOp 1
(G)c1. Therefore Op (G) is
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nilpotent and it is contained in the Fitting subgroup Fit (G)4F of G . Since p
divides NOp (G)N , for some p�p 1 , and Op (G)GF , the Fitting subgroup F is a
p-group and we can conclude that Op (G)4F .

Let F2 be the subgroup of G such that F2 /F4Fit (G/F). Then F2 /F is a
nilpotent p 8-group. Let Q be a q-Sylow subgroup of G , for q�p 8 . Q acts fixed-
point-freely on Op 1

(G) because q’p for any p�p 1 . Therefore Q is a cyclic or a
generalized quaternion group. Then F2 /F is either a cyclic group or the prod-
uct of a cyclic group C of odd order by a generalized quaternion group Q`Q2n .
If nc3, G/F2 is a nilpotent group and therefore lF (G)G3. If n43, then G/F2

is isomorphic to a subgroup of a direct product of an abelian group and a group
isomorphic to S3 , the outer automorphism group of Q . If G/F2 has not a normal
subgroup isomorphic to S3 , then again lF (G)G3. Otherwise G/F has a normal
section isomorphic to H , the Fitting length of G/F2 is equal to 2 and therefore
lF (G)44.

We can now suppose OC (G)41. Then for any p�C the p-Sylow subgroups
of G are cyclic or generalized quaternion. In fact if p�p 1 , then for any q�p 8

we have that p’q . Let P be a p-Sylow subgroup of G: if Op 8 (G)c1, then P
acts fixed-points-freely on Op 8 (G). If Op 8 (G)41, then Op (G)c1, as G is solu-
ble. Moreover, since Op (G)41 by our assumption, p does not divide NOp (G)N .
Therefore P acts fixed-points-freely on Op , p 8 (G) /Op (G). In both cases P is a
cyclic or a generalized quaternion group. The same argument holds if
p�p 4 .

We consider now a ]p1 , p4(-Hall subgroup of G . We can suppose that its
Fitting subgroup is a p1-group. Since G is soluble, N4OC 8 (G) is non-trivial.
Let Ni be a p i-Hall subgroup of N , i42, 3; then N4N2 N3 and, applying the
Frattini argument to N and N2 , we obtain G4NNG (N2 ). As p1 and p4 do not
divide NNN , there exists a ]p1 , p4(-Hall subgroup U of G such that UG

NG (N2 ). If x is an element of order p4 of U , x acts fixed-points-freely on N2 ,
which is therefore nilpotent. Then N24DirQi , with i41, R , r , Qi�Sylqi

(N2 )
and qi�p 2 for any i41, R , r . If L4V 1 (Fit (U) ), then, by the above remark,
L4E lD is a cyclic group. If Qi is an abelian group, by Theorem 2.3 of [G], we
have Qi4CQi

(L)3 [Qi , L]. If [Qi , L]c1 and the action of U on [Qi , L] is
fixed-points-free, U should be a Frobenius complement and its centre should
be non-trivial by Theorems 8.5, 8.8 of [H1]. But, as p(U)4]p1 , p4(, G(U) is
not connected and the centre of U is trivial. Therefore there must exist a non-
trivial p1-element x�U such that C[Qi , L] (x)c1. This means that C[Qi , L] (L)c1,
while CQi

(L)O [Qi , L]41. Thus L centralizes Qi .
If Qi is not abelian, we consider the abelian group Qi /Frat (Qi ). By the

above argument [Qi /Frat(Qi ), L]41. By Burnside’s Theorem we also have
that [Qi , L]41. Then L centralizes N2 .

Let n4n2 n3�N , with n2�N2 , n3�N3 and l�L , then [n2 n3 , l]4 [n3 , l]
and therefore [N , L]4 [N3 , L].
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We can also suppose that [N3 , L]GN3 . In fact as L permutes the p 3-Hall
subgroups of N and NLN is coprime with NN : NN (N3 )N which divides NN2 N , L
must fix a p 3-Hall subgroup of N . Since L acts fixed-points-freely on N3 , N3 is
nilpotent and therefore N34Dir Ri , with i41, R , s , Ri�Sylri

(N3 ) and ri�p 3

for any i41, R , s . As CRi
(L)41, by Theorem 3.5 of [G], Ri4 [Ri , L] for any

i41, R , s . Then [N , L]4 [N3 , L]4N3 is a normal subgroup of N , moreover
it is also characteristic. Let FA be the normal subgroup of G such that FA /N4

Fit (G/N). Then FA /N is a nilpotent C 8-group. By the above remark, all its Sy-
low subgroups are cyclic or generalized quaternion. Moreover if 2 divides
NFA /NN , then the element of order 2 of FA /N should be central in G/N . There-
fore diam (G(G/N) )42, while both p1 and p4 divide NG/NN and their distance is
3 . Therefore FA /N is a cyclic group of odd order and G/FA is an abelian group.
Since FA /N is nilpotent it must be either a p 1-group or a p 4-group. We prove
that it is not a p 4-group. In fact let UA be a C 8-Hall subgroup of G , containing
U . The connected components of G(UA) are exactly p 1 and p 4 . If we suppose
that FA /N is a p 4-group and set K a p 1-Hall subgroup of UA, by Corollary A of
[W], for any g�UA, we have KOK g41. In particular, if KFFit (U) and g is an
element of order p4 of U . But this is false because Fit (U) JU and therefore
FA /N is a p 1-group. As N/N3`N2 is a p 2-group, we have that FA /N3 is a p-group
and therefore an element of order p4 acts fixed-points-freely on FA /N3 . By
Thompson’s Theorem, F/N3 is nilpotent and the Fitting length of G is less or
equal 3.

EXAMPLE 1. – We give an example of a soluble group G , whose prime
graph is a tree and has diameter equal to 3. Its Fitting length lF (G) is 4 and
it has a normal section isomorphic to H .

We consider the following example of a fixed-point-free action of H , the
group defined before the preceding Proposition, on P4 au , v : u 74v 74

[u , v]41 b, an elementary abelian group of order 49. The action is the
following

u a4u 2 v 2 , u b4u 21 v , u x4u 5 v , u y4u 4 v 2 ;

v a4uv 5 , v b4u 5 v , v x4u 2 v 2 , v y4v 2 .

Now we consider F4P3Q , where Q4 as , t : s 134 t 134 [s , t]41 b is an ele-
mentary abelian group of order 169. We can define an action of H on Q in the
following way:

s a4s4s b , s x4 t , s y4s 3 , t a4 t4 t b , t x4s , t y4 t 9 .

Let G4FH , where the action of H on P and Q are the ones just described.
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Then the Fitting length of G is 4, diam (G(G) ) = 3 and G(G) is the following
tree

G(G)4 Q
3
`̀ Q

2
`̀ Q

13
`̀ Q

7
.

3. – The general case.

For the study of the general case, we begin with the finite non abelian sim-
ple groups. We first prove a numerical Lemma.

LEMMA 2. – Let q4p f , where p is a prime and f a natural number;
then

i) if f is even, 3N(2 f21), if f is odd 3N(2 f11);

ii) Np(q 221)NG2 ` q42, 3 , 4 , 5 , 7 , 8 , 9 , 17;

iii) Np( (q 221) /(3 , q21)NG2 ` q42, 3, 4, 5, 7, 8, 9, 16, 17, 25, 49, 97
or q4p , p2143 Q2a , p1142 t , aF2 and t an odd prime;

iv) Np( (q 221) /(3 , q11)NG2 ¨ q42 f, f a prime or q43, 9 or q4p
and p1143 Q2a ;

v) Np( (q21) /(2 , q21)NG2FNp( (q11) /(2 , q21)N¨ q4
4, 9 , 16 , 81 or q4p f , f41 or an odd prime.

PROOF. – i) Let f42c , then 34(2221) divides 22c21. If f is odd, 34211
divides (2 f11).

ii) We first suppose p42. If f is even we have q114 t m for some prime t
and q2143n . Let f42c and suppose that c is even, then 3 does not divide
2c11 and therefore q21 cannot be a power of 3. Then c is odd but then c41
and q44.

If f is odd we have q1143m and q214 t n for some prime t . From lemma
4 of [10] we know that ((2 f11) /(211), 211)4 ( f , 211)4 ( f , 3 ). If r is an
odd prime that divide f , and rc3, then (2r11)N(2 f11) and 2r11 is not a
power of 3.

Then f43s . If we suppose sF2, we can write f49 Q3s22 . But then (291

1)419 Q33 divides 2 f11, that therefore can not be a power of 3.
Let now p be an odd prime, then either q2142 f and q1142 Q t m , or

q2142 Q t m and q1142 f, for some prime t .
In the first case q42 f11 and, if f is odd, we conclude that q43 or 9 . If f is

even, f21 is odd and again we can conclude that t43 and q45 or 17.
In the second case q42f21 and, if f is even, p43 and therefore q43. If f

is odd, we have t43 and q47.
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iii) If (3 , q21)41 then we are in case ii). We can therefore suppose that
3 divides (q21). If p42, then f42c . If c4c1 c2 is not a prime, then we have
three distinct primitive Zsigmondy’s divisor respectively of (4c121), (4c1 c221)
and (4c1 c211). If c42, then we add q416 to the list. If cD1, then we apply
the same argument to (4c21), (411) and (4c11). We can now suppose p odd
and qF11. We first suppose q2143 Q2 Qs a and q1142b , and therefore
2b212143s a . But then we are in case ii), since b21 is even. The only case
we have to add is q431. Then q2143 Q2a and q1142 Q t b . Then either f42
or f41. If f42, then we are again in case ii), and we get q425 and 49 . It can
be easily seen that t b2143 Q2a21 and again we conclude b41 (the case b42
does not give any new value for q).

iv) The proof is similar to the one of iii).
v) Suppose p( (q21) /(2 , q21) )4]r , t(. If q4p f1 f2, and q21D2, then

by Zsigmondy’s argument, we can conclude that f is a prime or f41. Moreover
if f42, we conclude by ii). We now consider p42, 3 and suppose ( f1 , f2 )41,
then

p f121

p21
4r a ,

p f221

p21
4 t b ,

p f1 f221

p f121
4 t b r a ,

which is clearly impossible. Then q4p f 2
, and f a prime. We then use the sec-

ond inequality and Zsigmondy’s argument to conclude that f cannot be odd.
We therefore get q416 or 81 .

We give now a list of simple non abelian groups S , such that the connected
components of G(S) are trees, as we prove in proposition 4. We recall that if G
is not soluble, the connected components p i (G), iD2 are complete, that is if
r1 , r2�p i (G) then r1Ar2 (see Lemma 5 and 6 of [15]).

LIST A:

A5 , A6 , A7 , A8; M11 , M22;
PSL4 (3); B2 (3), G2 (3), U4 (3), U5 (2), 2 F4 (2)8;
PSL2 (q) with Np( (q21) /(2 , q21) )NG2FNp( (q11) /(2 , q21) )N ,
PSL3 (q) with Np( (q 21q11) /(3 , q21) )NG2FNp( (q 221) /(3 , q21) )N ,
PSU3 (q) with Np( (q 22q11) /(3 , q11) )NG2FNp( (q 221) /(3 , q11) )N ,
Sz(q 2 ) with Np(q 22k2q11)NG2FNp(q 21k2q11)N , Np(q 221)NG2,

where q 242 f, or q42 f 2
with f an odd prime;

Ree (q 2 ) with Np(q 22k3q11)NG2FNp(q 21k3q11)N , Np(q 221)NG
2FNp(q 211)N , where q 243 f, with f an odd prime.

PROPOSITION 4. – Let G be a finite non abelian simple group. Then G(G) is
a forest if and only if G is in List A. Therefore, in any case, G(G) is not a
tree.
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PROOF. – The second statement follows immediately from the first. In fact
if G is not in List A and the first statement is true, then G(G) can not be a tree.
If G is in List A, then G(G) is not connected (see [15], [8] and [9]).

If G is not a group in List A, we prove there exists three different primes
p , q , r� p(G) such that pAqArAp . We use the classification of finite simple
groups.

If G is a sporadic group, GcM11 , M22 , we can check in the Atlas [1] that
2A3A5A2.

If G4An , the alternating group on n symbols, and nF9, we can choose
the following elements, with their respective orders:

N(12)(34)(567)N46, N(12)(34)(56789)N410 and N(123)(45678)N415 .

Then also in this case we have 2A3A5A2.
Let now G =d Ln (q) be a finite simple group of Lie type of rank n , defined

over the finite field K of order q4p f . We observe that if nGm , then d Lm (q)
contains an isomorphic copy of d Ln (q). It will therefore be sufficient to prove
the existence of three primes with that property for the groups of minimal Lie
rank, for any type.

We note that if the rank of G is greater or equal 3 or G is of type G2 , then
q 221 divides the order of a maximal torus T . Similarly, if G4B2 , there exists
a maximal torus of order (q 221) /(2 , q21), but p( (q 221) /(2 , q21) )4
p(q 221). Then if qF11 and qc17, by Lemma 1ii), we know that Np(q 22

1)ND2. We recall that the maximal tori are, in particular, abelian groups and
therefore if their order is divisible by more than three primes, the prime graph
of G can not be a tree. Therefore, if rank of G is greater or equal 3 , or G is of
type B2 or G2 , and qF11, qc17, G(G) is not a tree.

For the remaining primes, that is q42, 3 , 4 , 5 , 7 , 8 , 9 , 17 it is enough to
make some calculations on the order of the centralizers of involutions or on the
order of other maximal tori.

For the groups of type PSL2 (q), PSL3 (q), PSU3 (q), Sz(q) and Ree (q) it is
sufficient to recall which are the connected components.

We now examine the almost simple groups G , that is SGGGAut (S), with
S a finite simple non abelian group.

LEMMA 3. – Let G be an almost simple group such that G(G) is a tree. Then
G is one of the following:

Aut (A6 )
PSL2 (p f )EaD, where p is a prime greater than 3 , f is an odd prime and a

is a field automorphism of order f .
PGL(4 , 3 )GGGAut (PSL(4 , 3 ) )
Aut (B2 (3) ),
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PSU(4 , 3 )adbGGGAut (PSU(4 , 3 ) ), where d is a diagonal automorphism
of order 2 .

PGL(3 , 4 )GGGPGL(3 , 4 )aab with a a graph-field automorphism of or-
der 2 .

PSL(3 , q)aab, with q49, 25 , 49 and a a field automorphism of order 2 .
PGU(3 , 8 )GGGAut (PSU(3 , 8 ) ).
Sz(2 f 2

)aab with a a field automorphism of order f .

PROOF. – It is enough to consider the groups in List A and check the con-
nected components of the prime graph of the subgroups of their automorphis-
m’s group, using [10].

We recall the definition of soluble radical of a group G: it is the maximal
soluble normal subgroup of G .

We can now describe the structure of the groups in which the prime graph
is a tree.

THEOREM 5. – Let G be a finite group such that G(G) is a tree. If R is the
soluble radical of G , then

i) G4G/R is an almost simple group, that is SGGGAut(S), with S a
finite simple non abelian group of List A;

ii) if Gc1, then Np(R)NG3.

PROOF. – i) Let R be the soluble radical of G , G4G/R and F4F *(G) the
generalized Fitting subgroup of G. We note that the Fitting subgroup of G is

trivial and therefore F`»
i

n

Si , with Si simple non abelian groups. If nD1,

there exist two distinct odd primes p , q�p(S1 ), such that 2AqApA2. But
this contradicts our hypothesis that G(G) is a tree. Then F`S is a simple non
abelian group and, by Lemma 4, S must be one of List A.

ii) We can now suppose both R and G non trivial. Let S be the simple
group of List A such that SGGGAut (S). We prove that

if P�Sylp (R) is a cyclic or generalized quaternion group ,

then pAs ( s�p(S) .(̃ )

If N4NG (P), then by the Frattini argument, G4RN . If C4CG (P) is con-
tained in R , then N/C has a factor isomorphic to a non abelian simple group:
this contradicts the fact that N/CGAut(P), which is abelian. Then RC/R4C is
a normal non trivial subgroup of G. Therefore C must contain an isomorphic
copy of S and s divides the order of C , for any s�p(S). We also prove
that

if p�p(R), 2 ’p , then 2As( s�p(S) .(̃ )̃
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Let p be a prime in p(R) such that 2 ’p and P a p-Sylow subgroup of R . If
N4NG (P), then by the Frattini argument, G4RN . If C4CG (P) is not con-
tained in R , then RC/R4C is a normal non trivial subgroup of G. Therefore C
must contain an isomorphic copy of S and 2 divides the order of C , contradict-
ing our hypothesis. Then CGR , that is CGNOR . Since G`N/NOR , N/C
has a quotient isomorphic to G. Therefore 2 divides NN/CN and there exists an
element x in N , such that x acts fixed points free on P and NxCN42. This im-
plies that xC is a central element in N/C (see [13]). Then for any s�p(N/C),
and therefore for any s�p(S), we have 2As in N/C and therefore in G .

If G(R) is not connected and p 2 (R) contains two distinct primes p , q , we
know, by Lemma 1, that p , q�p(NF2 /FN), where F2 is the second Fitting sub-
group of R , and F2 is a Frobenius group. Therefore both the p- and the q-Sy-
low subgroups are cyclic or generalized quaternion.

If G(R) is connected, then by the proof of Lemma 2 ii) we get that also in
this case we have two primes p , q in p(R) such that both the p- and the q-Sy-
low subgroups are cyclic or generalized quaternion.

We can apply (̃ ) to p and q , but this gives a loop in G(G). Therefore G(R)
contains at most 3 primes.

We now want to list all the almost simple groups G such that Np i (G)N41
for any i .

LIST B:

A5 , S5 A6`PSL(2 , 9 ), PSL(2 , 9 )aab, with a a graph automorphism,
PSL(2 , 7 ), PSL(2 , 8 ), PSL(2 , 17), PSL(3 , 4 ), Sz(8), Sz(32).

LEMMA 4. – Let G be an almost simple group such that Np i (G)N41 for any
i , then G belongs to the List B.

PROOF. – 2 , 3�p 1 (S) for any group of List A , except for A5 , A6 , PSL(3 , 4 )
and the two families PSL(2 , q) and Sz(2 f).

For the groups PSL(2 , q), with q even, we must have Np(q21)NG1F
Np(q11)N , that is Np(q 221)NG2. If q is odd, then we must have Np( (q2
1) /2NG1FNp(q11) /2N , that is Np(q 221)NG2, since 8 divides q 221.
Therefore we are in case ii) of Lemma 2.

If G`Sz(q), then q42f with f an odd prime, and p 3 (G)Np 4 (G)4p(q 21

1). Since 5 divides 22 f11, we can suppose that p 3 (G)4]5(. But ((4 f1

1) /5 , 411)4 ( f , 411) (see Lemma 4 ii) of [10]), and therefore the highest
power of 5 dividing NGN is 25 . We conclude that q48 or q432.

For the almost simple groups which are not simple, it is enough to consider
the automorphism group of these simple groups.

We now want to examine more closely the situation in which p(R)’O p(G/R).
To do this we shall often need actions which are «nearly» fixed points free.
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When «nearly» means «except some elements of order a prime p», we have the
following definition. A group acts p 8-semiregularly over a finite dimensional
F-vector space V , F a field of characteristic t , if every nontrivial p 8-element
acts without fixed points over V0]0(. The action is said separable if t does not
divide NGN , inseparable otherwise. If the action is inseparable, then of course
p4 t (see [6]). The groups acting p 8-semiregularly have been classified by
Fleischmann, Lempken and Tiep in [6].

Another result that we shall need concerns the action of Frobenius
groups.

LEMMA 5. – Let G be a group acting faithfully on a vector space V defined
over a field of characteristic t . If Op (G)c1, for some pc t , then for any q�
p(G/Op (G) ), we have either pAq or tAq .

PROOF. – If Q�Sylq (G), we define N4Op (G) Q . Then if p’q , N is a
Frobenius group acting faithfully on V . Therefore by Lemma 1, iv) of [12]
there exists w�V such that for any x�Q , we have w x4w , that is tAq .

We fix some notations. If G(G) is a tree, then by Theorem 5 we know the
structure of G . Then we define

R= the soluble radical of G ,
S= the only non abelian simple factor of G ,
G4G/R ,
N= the normal subgroup of G such that N/R`S .

We finally want to remark that if we have a faithful action of a group G on a
vector space V , an element g�G acts fixed points free over V if and only if
(x NH , 1H )H40, where (. , .) is the inner product of characters, H4 agb and x is
the character defined by the action.

LEMMA 6. – Let R be the soluble radical of G , with G(G) a tree.

i) If R is a t-group for some prime t not dividing NGN , then G is one of
the groups of List B;

ii) if p(R)4]p1 , p2 , p3(, then p(R)’O p(G) and either

l p242, p343 and S4PSL(2 , r), with r47, 9 , 17 or r42a 3b11 and
r1142 t for some prime t , or

l p242 and S4A5 ;

iii) if p(R)4]p1 , p2(, and p1 does not divide NG/RN , then p242, and
either

l S4A5 or PSL(2 , r), with r47, 9 , 17 or r42a 3b11 and r1142 t
for some prime t , or

l S4Sz(8), Sz(32) or PSL2 (8), or
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l S4A7 , M11 , M22 , B2 (3), G2 (3), U4 (3) or PSL2 (q) and Np 1 (S)NG2
and Np i (S)N41 for any iD2.

PROOF. – i) Let R be a t-group for some prime t not dividing NGN . Let V be
V 1 (Z(R) ) and C be CG (V). Then RGC�G , and therefore either CFN , and
therefore any connected component of G(N) can contain at most one prime,
that is S�List B , or C4R and then we have an action of G on V .

It can be checked in the Atlas, that if S`A7 , A8 , M11 , M22 , A3 (3); B2 (3),
G2 (3), PSU4 (2), PSU4 (3), PSU5 (2), 2 F4 (2)8 , then 2A3A tA2.

For the groups PSL(2 , p f), the character table can be easily deduced from
the one of SL(2 , p f), which can be found in paragraph 38 of [5]. From these ta-
bles, one can see that if a connected component of G(S) contains two primes
s1 , s2 , then s1AtAs2 . Therefore we only need to consider the groups of List B .

The same is true for the Suzuki groups Sz(q). In fact we want to prove that
for any character x we have that (1H , x NH )c1, for H4T14 axb or H4T24

ayb with NxN4q1k2q11 and NyN4q2k2q11. We first consider the case
H4T1 . From the table of characters of the Suzuki groups [2], it is easy to
check that this is true for any character xcU l . We only prove this case. We
first observe that the inner product of P and U l is

04(P, U l)4q 2(q21)(q2k2q11)2q 2(q21)(q2k2q11)(S 1cg�T1
U l(g))/4

¨ S 1cg�T1
U l (g)44 ¨ (1H , U l NH )4U l (1)1S 1cg�T1

U l (g)D0 .

The proof for T2 is exactly the same. Then Sz(q) must belong to List B.
We observe that a p-Sylow subgroup of S acts on R . Since the 3-Sylow sub-

groups of PSL(3 , q), PSU(3 , q) and Ree(3 f) are not cyclic, they cannot act
fixed points free. Therefore for these groups, we have 2A3A tA2.

Therefore the only groups which admit a representation in coprime charac-
teristic are the groups in List B. Moreover for any group in List B we have
such a representation: if H� List B, and t is a prime not dividing NHN , there
exists a group G4VH , where V is an elementary abelian t-group V on which H
acts, such that tAs , for any s�p(H).

ii) We first suppose that

G(R)4 Q
p1
`̀ Q

p3
Q

p2

This implies that the p2-Sylow subgroups of R are cyclic or generalized quater-
nion groups. Then by (̃ ) of Theorem 5, we have p2As for any s�p(S). There-
fore we can suppose that p1 does not divide NSN . If R is a 2-Frobenius group
and F is the Fitting subgroup of R , then R/F is a Frobenius group and we can
suppose that the Frobenius complement is a p3-group. Therefore we can apply
(̃ ) of Theorem 5 both to the prime p2 and the prime p3 . This gives a contradic-
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tion, since Np(S)NF3 for any simple group S . The same is true if the Frobe-
nius complement is a p1-group. Then R is a Frobenius group, with Frobenius
kernel F , a ]p1 , p2(-Hall subgroup of R . Let P1 be a p1-Sylow subgroup of R ,
V14V 1 (Z(P1 ) ) and C14CG (V1 ). If C1 is not contained in R , then C1 must con-
tain N , but this gives a contradiction. Then C14F and G(N/F) is connected. If
p3 does not divide NSN , repeating the same argument, we get two actions of
N/F over V1 and V34V 1 (Z(P3 ) ), with P3 the p3-Sylow subgroup of R . Since
G(N/F) is connected, one of these actions must be fixed-points free. Therefore
N/F`SL2 (5) and p242. Otherwise p3 divides NSN and then the action of N/F
must be p38-semiregular and separable. Therefore by proposition 5.2 of [6],
p343 and N/F`SL(2 , r) with r47, 9 , 17 or r42a Q3b11 and r1142 Q t for
some prime t . Or N/F`SL(2 , 5 ) and p3 can be any prime. We conclude that
SL(2 , r)GG/FGGL(2 , r) and any of these groups can be realised, by theo-
rems 5.2 and 4.1 of [6].

We now suppose that G(R) is connected and p1Ap3Ap2 . If Op1 , p2
(R)c1,

then for example Op1
(R)c1, and a p2-Sylow P2 of R acts fixed points-free over

Op1
(R). Otherwise we can consider the quotient modulo Op3

(R) and use a simi-
lar argument. We can then suppose that, for example, the p2-Sylow subgroups
of R are cyclic or generalized quaternion. Then by (̃ ) of Theorem 5, we have
p2As for any s�p(S) and therefore p1 does not divide NSN . If O p1 (R)cR ,
then G/O p1 (R) is as in case 1. But this is not possible because in case 1 we
should have sAp1 for any s�p(S), giving a loop. Therefore O ]p3 , p2( (R)ER
and we consider GA4G/O ]p3 , p2(, p1 (R). We recall that p1Ap3Ap2As , for any
s�p(S). If p3 does not divide NSN , then we have a fixed points free action of
G/C1 over V14V 1 (Z(P1 ) ), where P1 is the p1-Sylow subgroup of GA and C14

CGA (V1 ). If p3 divides NSN , we have a p38-semiregular and separable action and
we can conclude as before.

In both cases, we have seen that p(R) is not contained in p(G) and the di-
ameter of G(G) is less or equal 3.

iii) We suppose that G(R) is not connected, p(R)4]p1 , p2(, and that p1

does not divide G/R . As in case ii), we can prove that R is a Frobenius group.
We first suppose that P14Fit (R)4Fit (G), with P1�Sylp1

(R). Then by (̃ ) of
the proof of Theorem 5 we have p2As for any s�p(S). If V14V 1 (Z(P1 ), then
C14CG (V1 ) ) is a normal subgroup of G . If C1 is not contained in R , then C1F

N , and this gives a loop in G(G), since p(S) contains at least 3 primes. There-
fore C14P1 and G(N/C1 ) is connected and the action of N/C1 over V1 must be
s 8-semiregular for some prime s�p(S). Then by Lemma 1.3(iv) of [6], we can
apply Proposition 5.2 of [6], concluding as in the previous case.

If P24Fit (R) is the p2-Sylow subgroup of R , we can consider the group
G/P2 and we are in case i), that is S�List B . Moreover we have an action of
G/C2 over V24V 1 (Z(P2 ) ), where C24CG (V2 ). Since G(G/C2 ) is connected, we
have C24P2 and the action must be p28-semiregular and inseparable. By theo-
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rem 4.1 and following of [6], we have p242 and G/R`Sz(8), Sz(32) or
PSL(2 , 8 ). Any of these representations exist.

We now turn to the case G(R) connected. Since R is soluble, we can suppose
that R4FH , with F a normal p1- (or p2)-Sylow subgroup of R and H a p2 (or
p1)-Sylow subgroup of R , and G(R) connected. (It is enough to consider
O p1 , p2 (R) or O p1 , p2 , p1 (R) and make the quotient). If F is a p2-Sylow subgroup,
then the group G/F is as in case i) and G(G/F) is connected. Moreover we have
a p28-semiregular action of G/F on F and therefore p242 and S4Sz(8), Sz(32)
or SL(2 , 8 ).

Then F is the p1-Sylow subgroup of R and we define V14V 1 (Z(F) ) and
C14CG (V1 ). If C1 is not contained in R; then using the same argument as be-
fore we get again p242 and S4Sz(8), Sz(32) or SL(2 , 8 ). Then C1GR and
we consider the action of G/C1 over V1 . If p2c2, then 2Ap1 , since O2 (G/C1 )4
1. The same is true for p2 , and then we get a loop in G(G). Then p242. If C14

R , then S�List B and again S4Sz(8), Sz(32) or SL(2 , 8 ). If C1ER , then
O2 (G/C1 )c1, and we can apply Lemma 3, obtaining either sA2 or sAp1 .
Therefore Np i (S)N41 for iD1 and Np 1 (S)NG2. Then S can only be one of
these groups A7 , M11 , M22 , PSL(2 , q), B2 (3), G2 (3), U4 (3). In any case
diam (G(G) )G3.

THEOREM 6. – If G(G) is a tree, then Np(G)NG8.

PROOF. – If G is a soluble group, then Np(G)NG4 by Proposition 2.
If G is an almost simple group, then Np(G)NG6, except when G4

Sz(2 f 2
)EaD with a a field automorphism of order f , in which case Np(G)NG8.

If p(R)’O p(G) then by Lemma 6, Np(G)NG6.
Therefore the only case we have to consider is when p(R)’p(G). If S�

List A, then Np(S)NG7, except when S4Ree (q 2 ) and Np(S)NG8. We prove
that Np(G)0p(S)NG1. If this set is not empty, then S must be a finite simple
group of Lie type and there exists an element a of G0S conjugated to a field
automorphism of order a prime f that does not divide the order of S (see [10]).
We also know that 2 divides NCS (a)N . Therefore if there are two distinct
primes f1 and f2 in p(G)0p(S), we have f1A2A f2A f1 , against the hypothesis
that G(G) is a tree.

For the case S4 Ree (q 2 ), we can also prove that Np(G)0p(S)N is empty.
We recall that the characteristic of the field over which Ree (q) is defined is 3 ,
that is q43m . Therefore, if f�p(G)0p(S) and f is the order of a field automor-
phism a , then 3 divides NCS (a)N . Then we have fA2A3A f , against the hy-
pothesis that G(G) is a tree.

We now show some examples. First we prove that the bound of the theo-
rem 6 is the best possible.
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EXAMPLE 2. – This is an example of an almost simple group in which the
prime graph is a tree and Np(G)N48.

Let S4 2 B2 (q 2 ), with q 2429 , and G4Saab where a is a field automor-
phism of S of order 3 . Then the connected components of G(S) are described in
[8] and are the following

p 1 (S)4]2(,
p 2 (S)4p(q 221)4]7, 73(,
p 3 (S)4p(q 22k2q11)4]13, 37(,
p 4 (S)4p(q 21k2q11)4]5, 109(.

Moreover, since CS (a)` 2 B2 (23 ), we have that p(CS (a) )4]2, 5 , 7 , 13(
and therefore G(G) is a tree and Np(G)N48.

If Np(G)N48, then the only other possibility for S are the Ree groups
Ree (q 2 ), when q 243 f, with f a prime. Let f be a prime, fG100, Ree (q 2 ) be-
longs to the List A if and only if fG11 and in these cases NRee (q 2 )NG7.
Moreover the problem of finding a prime f such that 3f2142t and 3f1144r,
for some primes r , t , is equivalent to the «twin prime problem», which is still
unsolved. We therefore don’t know if there is any example of this type.

We now show an example with Rc1.

EXAMPLE 3. – This is an example of a group G such that Np(R)0p(G)N42
and G(G) is a tree, showing that also the bound in Theorem 6 ii) is the best
possible. Moreover this is an example of a group S�List A such that for any
group H with SGHGAut (S), we have that G(H) is not a tree, while there
exists a group G with S as a composition factor and G(G) a tree.

We consider the group M`SL(2 , 5 ) and its complex character x4u 1 (see
par. 38 of [5]). Let r be the corresponding complex representation of M of de-
gree 4 and V be the MC-module. Easy calculations shows that (x NH , 1H )H40
for any cyclic subgroup H of M except for the subgroups of order 3 . By theo-
rem 3.8 (see chapter 3) of [3], for any prime p coprime with the order of M ,
there exists a field Fq , q4p n such that for any irreducible representation of M
in GL(n , C), there is an irreducible representation of M in GL(n , Fq ).

Let then Q4Fq
4 , q as just described and suppose also that pc29. Then Q is

an elementary abelian p-group and we can make M acts 38-semiregularly over Q ,
while an element of order 3 of M centralizes a non trivial element of Q .

Let now P be an elementary abelian group of order 292 , then there is a
fixed points free action of M over P (see exercise 3.4.11 of [4]). If F4P3Q ,
then M acts over F in the way we have just described. Let G4FM , then the
soluble radical R of G is Fazb, where azb4Z(M) is a cyclic group of order 2,
p(R)0p(G)4]29, p( and

G(G)4 Q
29
`̀ Q

p
`̀ Q

3
`̀ Q

2
`̀ Q

5
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is a tree. We have already observed that neither G(A5 ) nor G(S5 ) are trees.
In a similar way we can construct examples for the groups described in

Lemma 6 i), ii) and the first two cases of iii).
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