BOLLETTINO UNIONE MATEMATICA ITALIANA

CRISTINA GIANNOTTI

On the range of elliptic operators discontinuous at one point

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **5-B** (2002), n.1, p. 123–129.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_123_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2002.

On the Range of Elliptic Operators Discontinuous at One Point.

CRISTINA GIANNOTTI

Sunto. – Si considerano operatori uniformemente ellittici del secondo ordine in forma non variazionale, L, a coefficienti misurabili e limitati in \mathbb{R}^d ($d \ge 3$) e continui in $\mathbb{R}^d \setminus \{0\}$ e si prova il seguente risultato: se $\Omega \subset \mathbb{R}^d$ è un dominio limitato, allora $L(W^{2, p}(\Omega))$ è denso in $L^p(\Omega)$ per ogni $p \in (1, d/2]$.

Summary. – Let *L* be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in \mathbb{R}^d ($d \ge 3$) and continuous in $\mathbb{R}^d \setminus \{0\}$. Then, if $\Omega \subset \mathbb{R}^d$ is a bounded domain, we prove that $L(W^{2, p}(\Omega))$ is dense in $L^p(\Omega)$ for any $p \in (1, d/2]$.

1. - Introduction.

Let \mathscr{L} be the class of second order, uniformly elliptic, non variational operators L with bounded measurable coefficients in \mathbb{R}^d $(d \ge 3)$. Also, for any $p \in$ $(1, +\infty)$ and any bounded domain $\Omega \subset \mathbb{R}^d$, let $\mathscr{R}(p, \Omega)$ be the subfamily of the operators satisfying $\overline{L(W^{2, p}(\Omega))} = L^p(\Omega)$. We recall that if L has second order coefficients continuous on $\overline{\Omega}$ then $L \in \mathscr{R}(p, \Omega)$ for every p > 1; actually if Ω is also smooth then it is known that $L(W^{2, p}_{\gamma_0}(\Omega)) = L^p(\Omega)$.

On the other hand, there exist operators with discontinuous coefficients which belong to $\Re(p, \Omega)$ for every p > 1. Examples of this kind are the operator

$$S_{\alpha} := \alpha \varDelta + (1 - d\alpha) \sum_{i, j = 1}^{d} \frac{x_i x_j}{|x|^2} \frac{\partial^2}{\partial x_i \partial x_j}$$

which is discontinuous at the origin of \mathbb{R}^d (see [2], [4], [7]) and the operator

$$\mathcal{U}_{\alpha} := \alpha \varDelta + (1 - 3\alpha) \sum_{i, j=1}^{3} \frac{x_i x_j}{(x_1)^2 + (x_2)^2} \frac{\partial^2}{\partial x_i \partial x_j}$$

which is discontinuous on the x_3 axis of \mathbb{R}^3 (see [8], [1]).

At the same time, in [5] it is proved that there exists an elliptic operator L_0 in \mathbb{R}^3 with coefficients which are discontinuous on a circumference C and Hölder continuous on $\mathbb{R}^3 \setminus C$ and which is not in $\mathcal{R}(p, \Omega)$ for any p > 2 and $\Omega \supset C$. It is therefore natural to ask which conditions on the coefficients imply that an elliptic operator belongs to $\mathcal{R}(p, \Omega)$.

In [5] the following characterization of $\mathcal{R}(p, \Omega)$ has been given: $L \in \mathcal{R}(p, \Omega)$ if and only if there is no nontrivial solution to $L^* u = 0$ with support in $\overline{\Omega}$. Moreover, it is proved that if L is Lipschitz continuous outside a closed set N of measure 0 and such that $\mathbb{R}^d \setminus N$ is connected, then L is in $\mathcal{R}(p, \Omega)$ for all p > 1 and any bounded domain Ω . This result is obtained as consequence of a unique continuation theorem for L^* in $\mathbb{R}^d \setminus N$.

The previously quoted operator L_0 shows that, in general, the condition on the Lipschitz continuity on $\mathbb{R}^d \setminus N$ of the coefficients cannot be removed. However we expect that this can be done if the set N is of some special kind. Note also that, if L has merely continuous coefficients, then the unique continuation for L and L^* fails and the technique of [5] cannot be used.

In this note, we consider the case of operators L which are continuous on $\mathbb{R}^d \setminus \{0\}$, with no other condition on the regularity of the coefficients. We show that these operators are in $\mathcal{R}(p, \Omega)$ for any $1 and any bounded domain <math>\Omega \subset \mathbb{R}^d$.

2. - Range of Elliptic Operators discontinuous at one point.

Let $\ensuremath{\mathcal{L}}$ be the family of the uniformly elliptic, second order operators of the form

$$L := \sum_{i, j=1}^{d} a^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{d} b^j \frac{\partial}{\partial x_j} + c,$$

with bounded, measurable coefficients, defined in \mathbb{R}^d , $(d \ge 3)$, satisfying

$$\sum_{i,j=1}^{d} (a^{ij})^2 \leq M^2, \qquad \sum_{j=1}^{d} (b^j)^2 \leq M^2, \qquad -M \leq c \leq 0,$$
$$\sum_{i,j=1}^{d} a^{ij} \lambda_i \lambda_j \geq \alpha |\lambda|^2, \qquad \forall \lambda \in \mathbb{R}^d$$

for some positive constants M and α . We will use the summation convention and L will be written as $L = a^{i,j} \partial_{i,j} + b^j \partial_j + c$.

We begin with an approximation lemma.

LEMMA 1. – Let D be a smooth bounded domain in \mathbb{R}^d and let $L \in \mathcal{L}$ with continuous second order coefficients in \overline{D} . Let $1 and <math>s \in L^{p'}(D)$

(p' = p/(p-1)), satisfying

$$\int_{D} sL\varphi \, dx = 0 \qquad \forall \varphi \in C_0^{\infty}(D) \,.$$

Let $L_n \in \mathcal{L}$, $L_n = a_n^{i,j} \partial_{i,j} + b_n^j \partial_j + c_n$, with coefficients in $C^{\infty}(\overline{D})$ and the same α and M as L. Let us also assume that

(1) $||a_n^{i,j}-a^{i,j}||_{C^0(\overline{D})} \rightarrow 0, \quad b_n^j \rightarrow b^j, \quad c_n \rightarrow c \quad a.e. \ in \ D.$

Then there exists a sequence $\{s_n\}$, with each s_n smooth on \overline{D} and such that

(2)
$$L_n^* s_n = 0 \quad in \quad D, \qquad \lim_{n \to \infty} \|s_n - s\|_{L^{p'}(D)} = 0.$$

PROOF. – Let $W^{1-\frac{1}{p}, p}(\partial D)$ be the Banach space of the traces on ∂D of the functions in $W^{1, p}(D)$ and let X^p its dual. By standard facts on elliptic equations (see e.g. [3] and [6]), it can be checked that there exists a unique $T_s^L \in X^p$ which satisfy

$$\int_{D} sLv \, dx = T_s^L \left(\frac{\partial v}{\partial N} \Big|_{\partial D} \right) \quad \forall v \in W^{2, p}_{\gamma_0}(D)$$

(N outward normal to ∂D) and

(3)
$$k_1 \|s\|_{L^{p'}(D)} \leq \|T_s^L\|_{X^p} \leq k_2 \|s\|_{L^{p'}(D)}$$

where k_1 and k_2 are two constants depending on d, $D \alpha$, M and the modulus of continuity of $\alpha^{i,j}$. Note also that if L is smooth on \overline{D} then s is smooth on \overline{D} , it satisfies the equation $L^*s = \partial_{i,j}(\alpha^{i,j}s) - \partial_j(b^js) + cs = 0$ and we can write

$$T^L_s(\varphi) = \int_{\partial D} s a^{i,j} N_i N_j \varphi \, d\sigma \quad \forall \varphi \in W^{1-\frac{1}{p}, p}(\partial D) \, .$$

Now, it is possible to find a sequence of smooth functions $\{t_n\}$ such that, if we set $T_n(\varphi) = \int_{\partial D} t_n a_n^{i,j} N_i N_j \varphi d\sigma$, then

(4)
$$\lim_{n \to \infty} \|T_n - T_s^L\|_{X^p} = 0.$$

Moreover, if s_n is the (unique) solution to $L_n^{\star} s_n = 0$ in D with $s_{n|\partial D} = t_n$ then

(5)
$$k_1 \| s_n \|_{L^{p'}(D)} \leq \| T_n \|_{X^p} \leq k_2 \| s_n \|_{L^{p'}(D)}.$$

By (1) and the fact that each $L_n \in \mathcal{L}$ with the same constants α and M as L, we may use the same k_1 , k_2 in (5) and (3).

Let us now define

$$\|L_n - L\| := \sum_{i,j} \|a_n^{i,j} - a^{i,j}\|_{C^0(\overline{D})} + \sum_j \|b_n^j - b^j\|_{L^{p'}(D)} + \|c_n - c\|_{L^{p'}(D)}.$$

The limit (2) is proved if we can show that

(6)
$$||s_n - s||_{L^{p'}(D)} \leq k(||L_n - L|| + ||T_n - T_s^L||_{X^p}).$$

To prove this, let $f \in L^p(D)$ and $u \in W^{2, p}_{\gamma_0}(D)$ the solution to Lu = f in D. Then

(7)
$$\left| \int_{D} (s_n - s) f dx \right| \leq \left| \int_{D} (sLu - s_n L_n u) dx \right| + \left| \int_{D} s_n (L_n u - Lu) dx \right|.$$

By (4) and (5), there exists a $k_3 > 0$ so that $||s_n||_{L^{p'}(D)} \leq k_3$. Therefore

(8)
$$\left| \int_{D} s_n (L_n u - L u) \, dx \right| \leq k_3 \| (L_n - L) \, u \|_{L^p(D)} \leq k_4 \| L_n - L \| \, \| f \|_{L^p(D)}.$$

Moreover

(9)
$$\left| \int_{D} (sLu - s_n L_n u) \, dx \right| = \left| T_n \left(\frac{\partial u}{\partial N} \Big|_{\partial D} \right) - T_s^L \left(\frac{\partial u}{\partial N} \Big|_{\partial D} \right) \right| \leq$$

$$\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\left\|\left\|\frac{\partial u}{\partial N}\right\|_{W^{1-(1/p), p}(\partial D)} \leqslant k_{5}\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\left\|u\right\|_{W^{2, p}} \leqslant k_{6}\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\left\|f\right\|_{L^{p}}\right\|_{X^{p}}$$

From (7)-(9), (6) follows immediately. \blacksquare

LEMMA 2. – Let $L \in \mathcal{L}$ with continuous second order coefficients and let D be a smooth bounded domain in \mathbb{R}^d . Let also $s \in L^{p'}(D)$ be a function satisfying $\int sL\varphi \, dx = 0$ for any $\varphi \in W_0^{2, p}(D)$. Then

(10)
$$\int_{D} |s| L\varphi \, dx \ge 0 \quad \forall \varphi \in W_0^{2, p}(D), \ \varphi \ge 0.$$

Moreover, if $\overline{supp(s)} \in D$, the claim is true for every $\varphi \in W^{2, p}(D), \varphi \ge 0$.

PROOF. – Let $\phi_{\varepsilon}(t)$ be the $C^{1,1}$ function

$$\phi_{\varepsilon}(t) = \begin{cases} |t| & \text{if } |t| \ge \varepsilon \\ \frac{\varepsilon}{2} + \frac{t^2}{2\varepsilon} & \text{if } |t| < \varepsilon \end{cases}.$$

Assume first that *L* has C^{∞} coefficients and hence that $s \in C^{\infty}(\overline{D})$ and it satis-

126

fies $L^*s = 0$. We have that $\phi_{\varepsilon}(s) \in C^{1,1}(D)$ and that

$$L^{\star}(\phi_{\varepsilon}(s)) = \begin{cases} \frac{1}{\varepsilon} a^{i,j} \partial_{i} s \partial_{j} s + \left(\frac{\varepsilon}{2} - \frac{s^{2}}{2\varepsilon}\right) (\partial_{i,j} a^{i,j} - \partial_{j} b^{j} + c) & \text{if } |s| < \varepsilon \\ 0 & \text{if } |s| \ge \varepsilon \end{cases}$$

Now for any $\varphi \in C_0^{\infty}(D), \ \varphi \ge 0$

$$\begin{split} \int_{D} \phi_{\varepsilon}(s) \, L\varphi \, dx &= \int_{D} L^{\star}(\phi_{\varepsilon}(s)) \, \varphi \, dx = \\ &\int_{|s| < \varepsilon} \left\{ \frac{1}{\varepsilon} a^{i,j} \partial_{i} s \partial_{j} s + \left(\frac{\varepsilon}{2} - \frac{s^{2}}{2\varepsilon}\right) (\partial_{i,j} a^{i,j} - \partial_{j} b^{j} + c) \right\} \varphi \, dx \ge \\ &\frac{\varepsilon}{2} \int_{|s| < \varepsilon} (\partial_{i,j} a^{i,j} - \partial_{j} b^{j} + c) \, \varphi \, dx - \frac{\varepsilon}{2} \int_{|s| < \varepsilon} |\partial_{i,j} a^{i,j} - \partial_{j} b^{j} + c | \varphi \, dx \, . \end{split}$$

Since the last two terms tend to 0 as $\varepsilon \rightarrow 0$, it follows that

$$\int_{D} |s| L\varphi \, dx \ge 0 \qquad \forall \varphi \in W_0^{2, p}(D), \ \varphi \ge 0 \ .$$

Now, assume that L has continuous second order coefficients and let $L_n \to L$, where each L_n is with smooth coefficients as in Lemma 1. So there exists $\{s_n\}$, $s_n \in C^{\infty}(\overline{D})$, such that $L_n^{\star} s_n = 0$ and $s_n \to s$ in $L^{p'}(D)$. Then

$$\begin{split} \left| \int_{D} |s| L\varphi \, dx - \int_{D} |s_n| L_n \varphi \, dx \right| &\leq \\ \left| \int_{D} (|s| - |s_n|) L_n \varphi \, dx \right| + \left| \int_{D} |s| (L\varphi - L_n \varphi) \right| &\leq \\ &\leq \|s_n - s\|_{L^{p'}(D)} \|L_n \varphi\|_{L^p(D)} + \|s\|_{L^{p'}(D)} \|L_n - L\| \|\varphi\|_{W^{2, p}(D)} \xrightarrow{n \to \infty} 0 \end{split}$$

From the previous discussion on the operators with smooth coefficients, (10) follows. The last claim is straightforward. ■

THEOREM 1. – Let $L \in \mathcal{L}$ with continuous second order coefficients in $\mathbb{R}^d \setminus \{0\}, d \ge 3$. Then $L \in \mathcal{R}(p, \Omega)$ for any $1 and any bounded domain <math>\Omega \subset \mathbb{R}^d$.

PROOF. – Clearly, we just need to consider the case $0 \in \overline{\Omega}$. In what follows, B_r denotes the open ball of radius r and center 0.

Let R be so large that $B_R \supset \overline{\Omega}$ and let $\varphi = 1 - (|\cdot|/R)^N$, which is smooth

and positive on B_R and vanishing on ∂B_R . Moreover, from the expression

$$L\varphi = -\left(\frac{|x|}{R}\right)^{N-2} \cdot \left\{\frac{N(N-2)}{R^2} \sum_{i,j=1}^d a^{i,j} \frac{x_i x_j}{|x|^2} - \frac{N}{R^2} \sum_{j=1}^d a^{j,j} - \frac{N}{R^2} \sum_{j=1}^d b^j x_j\right\} + c\varphi$$

it follows that N > 2 can be chosen large enough so that $L\varphi \leq -\left(\frac{|x|}{R}\right)$. Consider also some nonnegative $\psi \in C^{\infty}[0, +\infty)$ which is identically 0 on a neighbourhood of [0, 1] and identically 1 on a neighbourhood of $[2, +\infty)$ and, for any $0 < \varepsilon < R/2$, let us define $\psi_{\varepsilon}(x) = \psi\left(\frac{|x|}{\varepsilon}\right)$. Finally, let $\varphi_{\varepsilon}(x) = \varphi(x) \psi_{\varepsilon}(x)$, which is smooth on B_R , equal to φ on $\mathbb{R}^d \setminus B_{2\varepsilon}$ and identically 0 on a neighbourhood of B_{ε} .

Let $s \in L^{p'}(\mathbb{R}^d)$ be a solution to $L^* s = 0$, with support in $\overline{\Omega}$. By Lemma 2, we have that $0 \leq \int_{B_p} |s| L\varphi_{\varepsilon} dx = \int_{\Omega \setminus B_{\varepsilon}} |s| L\varphi_{\varepsilon} dx$ and hence that

$$0 \leq \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} |s| L(\varphi \psi_{\varepsilon}) \, dx + \int_{\Omega \setminus B_{2\varepsilon}} |s| L\varphi \, dx \leq \int_{B_{2\varepsilon} \setminus B_{\varepsilon}} |s| L(\varphi \psi_{\varepsilon}) \, dx - \int_{\Omega \setminus B_{2\varepsilon}} |s| \left(\frac{|x|}{R}\right)^{N-2} dx \, .$$

Then

$$\begin{split} 0 &\leq \int_{\Omega \setminus B_{2\varepsilon}} |s| \left(\frac{|x|}{R}\right)^{N-2} dx \leq \\ &\int_{\varepsilon < |x| < 2\varepsilon} |s| \{\psi_{\varepsilon} L\varphi + \varphi(L-c) \ \psi_{\varepsilon} + 2a^{i,j} \partial_i \psi_{\varepsilon} \partial_j \varphi\} \ dx \,. \end{split}$$

Since $\psi_{\varepsilon} \ge 0$ and $L\varphi \le 0$ in $\varepsilon < |x| < 2\varepsilon$, we have

$$\begin{split} \int_{\Omega \setminus B_{2\varepsilon}} |s| \left(\frac{|x|}{R}\right)^{N-2} dx &\leq \int_{\varepsilon < |x| < 2\varepsilon} |s| \{\varphi(L-c) \ \psi_{\varepsilon} + 2a^{i,j} \partial_i \psi_{\varepsilon} \partial_j \varphi \} \, dx \leq \\ \int_{\varepsilon < |x| < 2\varepsilon} |s| \left\{ \frac{2a^{i,j}}{\varepsilon} \partial_j \varphi \psi_{\varepsilon}' \frac{x_i}{|x|} + \frac{\varphi}{\varepsilon^2} \cdot \left(a^{i,j} \psi_{\varepsilon}'' \frac{x_i x_j}{|x|^2} + \psi_{\varepsilon}' \left(a^{j,j} - \frac{a^{i,j} x_i x_j}{|x|^2}\right) \frac{\varepsilon}{|x|} + \varepsilon \psi_{\varepsilon}' b^j \frac{x_j}{|x|} \right) \right\} dx \, . \end{split}$$

Therefore, there exists C > 0, which depends only on d, M, α , r and N such that

$$\begin{aligned} \frac{2a^{i,j}}{\varepsilon} \partial_j \varphi \psi_{\varepsilon}' \frac{x_i}{|x|} + \\ \frac{\varphi}{\varepsilon^2} \left(a^{i,j} \psi_{\varepsilon}'' \frac{x_i x_j}{|x|^2} + \psi_{\varepsilon}' \left(a^{j,j} - \frac{a^{i,j} x_i x_j}{|x|^2} \right) \frac{\varepsilon}{|x|} + \varepsilon \psi_{\varepsilon}' b^j \frac{x_j}{|x|} \right) &\leq \frac{C}{\varepsilon^2} \end{aligned}$$

in $\varepsilon < |x| < 2\varepsilon$. Then

$$\int_{\Omega\setminus B_{2\varepsilon}} |s| \left(\frac{|x|}{R}\right)^{N-2} dx \leq \frac{C}{\varepsilon^2} \int_{\varepsilon^< |x|<2\varepsilon} |s| dx \leq C\varepsilon^{(d/p)-2} ||s||_{L^{p'}} |B_1|^{1/p} (2^d-1)^{1/p}.$$

Since $(d/p) - 2 \geq 0$ as $\varepsilon \to 0$, we get that $\int_{\Omega} |s| \left(\frac{|x|}{R}\right)^{N-2} dx = 0$ and hence that

 $s \equiv 0$ a.e. in \mathbb{R}^d . This implies the claim by the characterization of $\mathcal{R}(p, \Omega)$ in [5].

REFERENCES

- O. ARENA, On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations (P. Marcellini, G. Talenti, E. Vesentini Eds.) Dekker (1996).
- [2] D. GILBARG J. SERRIN, On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340.
- [3] D. GILBARG N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer (1983).
- [4] O. A. LADYZHENSKAYA N. N. URAL'TSEVA, Linear and Quasilinear Elliptic Equations, A.P. (1968).
- [5] P. MANSELLI, On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80.
- [6] J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson Paris 1967.
- [7] C. PUCCI, Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170.
- [8] N. N. URAL'TSEVA, Impossibility of W^{2, p} bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254.

Cristina Giannotti, Dipartimento di Matematica e Fisica, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino (Macerata) Italy e-mail: giannotti@campus.unicam.it

Pervenuta in Redazione il 19 aprile 2001