Bollettino

Unione Matematica Italiana

Cristina Giannotti

On the range of elliptic operators discontinuous at one point

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 5-B (2002), n.1, p. 123-129.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2002_8_5B_1_123_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On the Range of Elliptic Operators Discontinuous at One Point.

Cristina Giannotti

Sunto. - Si considerano operatori uniformemente ellittici del secondo ordine in forma non variazionale, L, a coefficienti misurabili e limitati in $\mathbb{R}^{d}(d \geqslant 3)$ e continui in $\mathbb{R}^{d} \backslash\{0\}$ e si prova il seguente risultato: se $\Omega \subset \mathbb{R}^{d}$ è un dominio limitato, allora $L\left(W^{2, p}(\Omega)\right)$ è denso in $L^{p}(\Omega)$ per ogni $p \in(1, d / 2]$.

Summary. - Let L be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in $\mathbb{R}^{d}(d \geqslant 3)$ and continuous in $\mathbb{R}^{d} \backslash\{0\}$. Then, if $\Omega \subset \mathbb{R}^{d}$ is a bounded domain, we prove that $L\left(W^{2, p}(\Omega)\right.$) is dense in $L^{p}(\Omega)$ for any $p \in(1, d / 2]$.

1. - Introduction.

Let \mathfrak{L} be the class of second order, uniformly elliptic, non variational operators L with bounded measurable coefficients in $\mathbb{R}^{d}(d \geqslant 3)$. Also, for any $p \in$ $(1,+\infty)$ and any bounded domain $\Omega \subset \mathbb{R}^{d}$, let $\mathcal{R}(p, \Omega)$ be the subfamily of the operators satisfying $\overline{L\left(W^{2, p}(\Omega)\right)}=L^{p}(\Omega)$. We recall that if L has second order coefficients continuous on $\bar{\Omega}$ then $L \in \mathcal{R}(p, \Omega)$ for every $p>1$; actually if Ω is also smooth then it is known that $L\left(W_{\gamma_{0}}^{2, p}(\Omega)\right)=L^{p}(\Omega)$.

On the other hand, there exist operators with discontinuous coefficients which belong to $\mathcal{R}(p, \Omega)$ for every $p>1$. Examples of this kind are the operator

$$
S_{\alpha}:=\alpha \Delta+(1-d \alpha) \sum_{i, j=1}^{d} \frac{x_{i} x_{j}}{|x|^{2}} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

which is discontinuous at the origin of \mathbb{R}^{d} (see [2], [4], [7]) and the operator

$$
\mathcal{U}_{\alpha}:=\alpha \Delta+(1-3 \alpha) \sum_{i, j=1}^{3} \frac{x_{i} x_{j}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

which is discontinuous on the x_{3} axis of \mathbb{R}^{3} (see [8], [1]).

At the same time, in [5] it is proved that there exists an elliptic operator L_{0} in \mathbb{R}^{3} with coefficients which are discontinuous on a circumference C and Hölder continuous on $\mathbb{R}^{3} \backslash C$ and which is not in $\mathcal{R}(p, \Omega)$ for any $p>2$ and $\Omega \supset C$. It is therefore natural to ask which conditions on the coefficients imply that an elliptic operator belongs to $\mathcal{R}(p, \Omega)$.

In [5] the following characterization of $\mathcal{R}(p, \Omega)$ has been given: $L \in$ $\mathcal{R}(p, \Omega)$ if and only if there is no nontrivial solution to $L^{\star} u=0$ with support in $\bar{\Omega}$. Moreover, it is proved that if L is Lipschitz continuous outside a closed set N of measure 0 and such that $\mathbb{R}^{d} \backslash N$ is connected, then L is in $\mathcal{R}(p, \Omega)$ for all $p>1$ and any bounded domain Ω. This result is obtained as consequence of a unique continuation theorem for L^{\star} in $\mathbb{R}^{d} \backslash N$.

The previously quoted operator L_{0} shows that, in general, the condition on the Lipschitz continuity on $\mathbb{R}^{d} \backslash N$ of the coefficients cannot be removed. However we expect that this can be done if the set N is of some special kind. Note also that, if L has merely continuous coefficients, then the unique continuation for L and L^{\star} fails and the technique of [5] cannot be used.

In this note, we consider the case of operators L which are continuous on $\mathbb{R}^{d} \backslash\{0\}$, with no other condition on the regularity of the coefficients. We show that these operators are in $\mathcal{R}(p, \Omega)$ for any $1<p \leqslant d / 2$ and any bounded domain $\Omega \subset \mathbb{R}^{d}$.

2. - Range of Elliptic Operators discontinuous at one point.

Let \mathfrak{L} be the family of the uniformly elliptic, second order operators of the form

$$
L:=\sum_{i, j=1}^{d} a^{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b^{j} \frac{\partial}{\partial x_{j}}+c
$$

with bounded, measurable coefficients, defined in $\mathbb{R}^{d},(d \geqslant 3)$, satisfying

$$
\begin{gathered}
\sum_{i, j=1}^{d}\left(a^{i j}\right)^{2} \leqslant M^{2}, \quad \sum_{j=1}^{d}\left(b^{j}\right)^{2} \leqslant M^{2}, \quad-M \leqslant c \leqslant 0, \\
\sum_{i, j=1}^{d} a^{i j} \lambda_{i} \lambda_{j} \geqslant \alpha|\lambda|^{2}, \quad \forall \lambda \in \mathbb{R}^{d}
\end{gathered}
$$

for some positive constants M and α. We will use the summation convention and L will be written as $L=a^{i, j} \partial_{i, j}+b^{j} \partial_{j}+c$.

We begin with an approximation lemma.
Lemma 1. - Let D be a smooth bounded domain in \mathbb{R}^{d} and let $L \in \mathfrak{L}$ with continuous second order coefficients in \bar{D}. Let $1<p<\infty$ and $s \in L^{p^{\prime}}(D)$
$\left(p^{\prime}=p /(p-1)\right)$, satisfying

$$
\int_{D} s L \varphi d x=0 \quad \forall \varphi \in C_{0}^{\infty}(D)
$$

Let $L_{n} \in \mathfrak{L}, L_{n}=a_{n}^{i, j} \partial_{i, j}+b_{n}^{j} \partial_{j}+c_{n}$, with coefficients in $C^{\infty}(\bar{D})$ and the same α and M as L. Let us also assume that

$$
\begin{equation*}
\left\|a_{n}^{i, j}-a^{i, j}\right\|_{C^{0}(\bar{D})} \rightarrow 0, \quad b_{n}^{j} \rightarrow b^{j}, \quad c_{n} \rightarrow c \quad \text { a.e. in } D . \tag{1}
\end{equation*}
$$

Then there exists a sequence $\left\{s_{n}\right\}$, with each s_{n} smooth on \bar{D} and such that

$$
\begin{equation*}
L_{n}^{\star} s_{n}=0 \text { in } D, \quad \lim _{n \rightarrow \infty}\left\|s_{n}-s\right\|_{L^{p^{\prime}(D)}}=0 \tag{2}
\end{equation*}
$$

Proof. - Let $W^{1-\frac{1}{p}, p}(\partial D)$ be the Banach space of the traces on ∂D of the functions in $W^{1, p}(D)$ and let X^{p} its dual. By standard facts on elliptic equations (see e.g. [3] and [6]), it can be checked that there exists a unique $T_{s}^{L} \in X^{p}$ which satisfy

$$
\int_{D} s L v d x=T_{s}^{L}\left(\left.\frac{\partial v}{\partial N}\right|_{\partial D}\right) \quad \forall v \in W_{\gamma_{0}}^{2, p}(D)
$$

(N outward normal to ∂D) and

$$
\begin{equation*}
k_{1}\|s\|_{L^{p^{\prime}}(D)} \leqslant\left\|T_{s}^{L}\right\|_{X^{p}} \leqslant k_{2}\|s\|_{L^{p^{\prime}}(D)} \tag{3}
\end{equation*}
$$

where k_{1} and k_{2} are two constants depending on $d, D \alpha, M$ and the modulus of continuity of $a^{i, j}$. Note also that if L is smooth on \bar{D} then s is smooth on \bar{D}, it satisfies the equation $L^{\star} s=\partial_{i, j}\left(a^{i, j} s\right)-\partial_{j}\left(b^{j} s\right)+c s=0$ and we can write

$$
T_{s}^{L}(\varphi)=\int_{\partial D} s a^{i, j} N_{i} N_{j} \varphi d \sigma \quad \forall \varphi \in W^{1-\frac{1}{p}, p}(\partial D) .
$$

Now, it is possible to find a sequence of smooth functions $\left\{t_{n}\right\}$ such that, if we set $T_{n}(\varphi)=\int_{\partial D} t_{n} a_{n}^{i, j} N_{i} N_{j} \varphi d \sigma$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}=0 \tag{4}
\end{equation*}
$$

Moreover, if s_{n} is the (unique) solution to $L_{n}^{\star} s_{n}=0$ in D with $s_{n \mid \partial D}=t_{n}$ then

$$
\begin{equation*}
k_{1}\left\|s_{n}\right\|_{L^{p^{\prime}}(D)} \leqslant\left\|T_{n}\right\|_{X^{p}} \leqslant k_{2}\left\|s_{n}\right\|_{L^{p^{\prime}}(D)} \tag{5}
\end{equation*}
$$

By (1) and the fact that each $L_{n} \in \mathfrak{L}$ with the same constants α and M as L, we may use the same k_{1}, k_{2} in (5) and (3).

Let us now define

$$
\left\|L_{n}-L\right\|:=\sum_{i, j}\left\|a_{n}^{i, j}-a^{i, j}\right\|_{C^{0}(\bar{D})}+\sum_{j}\left\|b_{n}^{j}-b^{j}\right\|_{L^{p^{\prime}(D)}}+\left\|c_{n}-c\right\|_{L^{p^{\prime}(D)}} .
$$

The limit (2) is proved if we can show that

$$
\begin{equation*}
\left\|s_{n}-s\right\|_{L_{p^{p^{\prime}}(D)} \leqslant k\left(\left\|L_{n}-L\right\|+\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\right) . . . ~}^{\text {. }} \tag{6}
\end{equation*}
$$

To prove this, let $f \in L^{p}(D)$ and $u \in W_{\gamma_{0}}^{2, p}(D)$ the solution to $L u=f$ in D. Then
(7) $\left|\int_{D}\left(s_{n}-s\right) f d x\right| \leqslant\left|\int_{D}\left(s L u-s_{n} L_{n} u\right) d x\right|+\left|\int_{D} s_{n}\left(L_{n} u-L u\right) d x\right|$.

By (4) and (5), there exists a $k_{3}>0$ so that $\left\|s_{n}\right\|_{L^{p^{\prime}(D)}} \leqslant k_{3}$. Therefore

$$
\begin{equation*}
\left|\int_{D} s_{n}\left(L_{n} u-L u\right) d x\right| \leqslant k_{3}\left\|\left(L_{n}-L\right) u\right\|_{L^{p}(D)} \leqslant k_{4}\left\|L_{n}-L\right\|\|f\|_{L^{p}(D)} \tag{8}
\end{equation*}
$$

Moreover
(9) $\quad\left|\int_{D}\left(s L u-s_{n} L_{n} u\right) d x\right|=\left|T_{n}\left(\left.\frac{\partial u}{\partial N}\right|_{\partial D}\right)-T_{s}^{L}\left(\left.\frac{\partial u}{\partial N}\right|_{\partial D}\right)\right| \leqslant$
$\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\left\|\frac{\partial u}{\partial N}\right\|_{W^{1-(1 / p), p}(\partial D)} \leqslant k_{5}\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\|u\|_{W^{2, p}} \leqslant k_{6}\left\|T_{n}-T_{s}^{L}\right\|_{X^{p}}\|f\|_{L^{p}}$.
From (7)-(9), (6) follows immediately.
Lemma 2. - Let $L \in \mathfrak{L}$ with continuous second order coefficients and let D be a smooth bounded domain in \mathbb{R}^{d}. Let also $s \in L^{p^{\prime}}(D)$ be a function satisfying $\int_{D} s L \varphi d x=0$ for any $\varphi \in W_{0}^{2, p}(D)$. Then

$$
\begin{equation*}
\int_{D}|s| L \varphi d x \geqslant 0 \quad \forall \varphi \in W_{0}^{2, p}(D), \varphi \geqslant 0 \tag{10}
\end{equation*}
$$

Moreover, if $\overline{\operatorname{supp}(s)} \subset D$, the claim is true for every $\varphi \in W^{2, p}(D), \varphi \geqslant 0$.
Proof. - Let $\phi_{\varepsilon}(t)$ be the $C^{1,1}$ function

$$
\phi_{\varepsilon}(t)= \begin{cases}|t| & \text { if }|t| \geqslant \varepsilon \\ \frac{\varepsilon}{2}+\frac{t^{2}}{2 \varepsilon} & \text { if }|t|<\varepsilon\end{cases}
$$

Assume first that L has C^{∞} coefficients and hence that $s \in C^{\infty}(\bar{D})$ and it satis-
fies $L^{\star} s=0$. We have that $\phi_{\varepsilon}(s) \in C^{1,1}(D)$ and that

$$
L^{\star}\left(\phi_{\varepsilon}(s)\right)= \begin{cases}\frac{1}{\varepsilon} a^{i, j} \partial_{i} s \partial_{j} s+\left(\frac{\varepsilon}{2}-\frac{s^{2}}{2 \varepsilon}\right)\left(\partial_{i, j} a^{i, j}-\partial_{j} b^{j}+c\right) & \text { if }|s|<\varepsilon \\ 0 & \text { if }|s| \geqslant \varepsilon\end{cases}
$$

Now for any $\varphi \in C_{0}^{\infty}(D), \varphi \geqslant 0$

$$
\begin{aligned}
\int_{D} \phi_{\varepsilon}(s) L \varphi d x & =\int_{D} L^{\star}\left(\phi_{\varepsilon}(s)\right) \varphi d x= \\
& \int_{|s|<\varepsilon}\left\{\frac{1}{\varepsilon} a^{i, j} \partial_{i} s \partial_{j} s+\left(\frac{\varepsilon}{2}-\frac{s^{2}}{2 \varepsilon}\right)\left(\partial_{i, j} a^{i, j}-\partial_{j} b^{j}+c\right)\right\} \varphi d x \geqslant \\
& \frac{\varepsilon}{2} \int_{|s|<\varepsilon}\left(\partial_{i, j} a^{i, j}-\partial_{j} b^{j}+c\right) \varphi d x-\frac{\varepsilon}{2} \int_{|s|<\varepsilon}\left|\partial_{i, j} a^{i, j}-\partial_{j} b^{j}+c\right| \varphi d x .
\end{aligned}
$$

Since the last two terms tend to 0 as $\varepsilon \rightarrow 0$, it follows that

$$
\int_{D}|s| L \varphi d x \geqslant 0 \quad \forall \varphi \in W_{0}^{2, p}(D), \varphi \geqslant 0
$$

Now, assume that L has continuous second order coefficients and let $L_{n} \rightarrow L$, where each L_{n} is with smooth coefficients as in Lemma 1 . So there exists $\left\{s_{n}\right\}$, $s_{n} \in C^{\infty}(\bar{D})$, such that $L_{n}^{\star} s_{n}=0$ and $s_{n} \rightarrow s$ in $L^{p^{\prime}}(D)$. Then

$$
\begin{aligned}
&\left|\int_{D}\right| s\left|L \varphi d x-\int_{D}\right| s_{n}\left|L_{n} \varphi d x\right| \leqslant \\
&\left|\int_{D}\left(|s|-\left|s_{n}\right|\right) L_{n} \varphi d x\right|+\left|\int_{D}\right| s\left|\left(L \varphi-L_{n} \varphi\right)\right| \leqslant \\
& \leqslant\left\|s_{n}-s\right\|_{L^{p^{\prime}(D)}}\left\|L_{n} \varphi\right\|_{L^{p}(D)}+\|s\|_{L^{p^{\prime}(D)}}\left\|L_{n}-L\right\|\|\varphi\|_{W^{2, p}(D)} \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

From the previous discussion on the operators with smooth coefficients, (10) follows. The last claim is straightforward.

Theorem 1. - Let $L \in \mathfrak{L}$ with continuous second order coefficients in $\mathbb{R}^{d} \backslash\{0\}, d \geqslant 3$. Then $L \in \mathcal{R}(p, \Omega)$ for any $1<p \leqslant \frac{d}{2}$ and any bounded do$\operatorname{main} \Omega \subset \mathbb{R}^{d}$.

Proof. - Clearly, we just need to consider the case $0 \in \bar{\Omega}$. In what follows, B_{r} denotes the open ball of radius r and center 0 .

Let R be so large that $B_{R} \supset \bar{\Omega}$ and let $\varphi=1-(|\cdot| / R)^{N}$, which is smooth
and positive on B_{R} and vanishing on ∂B_{R}. Moreover, from the expression $L \varphi=-\left(\frac{|x|}{R}\right)^{N-2}$.

$$
\left\{\frac{N(N-2)}{R^{2}} \sum_{i, j=1}^{d} a^{i, j} \frac{x_{i} x_{j}}{|x|^{2}}-\frac{N}{R^{2}} \sum_{j=1}^{d} a^{j, j}-\frac{N}{R^{2}} \sum_{j=1}^{d} b^{j} x_{j}\right\}+c \varphi
$$

it follows that $N>2$ can be chosen large enough so that $L \varphi \leqslant-\left(\frac{|x|}{R}\right)^{N-2}$. Consider also some nonnegative $\psi \in C^{\infty}[0,+\infty)$ which is identically 0 on a neighbourhood of $[0,1]$ and identically 1 on a neighbourhood of $[2,+\infty)$ and, for any $0<\varepsilon<R / 2$, let us define $\psi_{\varepsilon}(x)=\psi\left(\frac{|x|}{\varepsilon}\right)$. Finally, let $\varphi_{\varepsilon}(x)=$ $\varphi(x) \psi_{\varepsilon}(x)$, which is smooth on B_{R}, equal to φ on $\mathbb{R}^{d} \backslash B_{2 \varepsilon}$ and identically 0 on a neighbourhood of B_{ε}.

Let $s \in L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$ be a solution to $L^{\star} s=0$, with support in $\bar{\Omega}$. By Lemma 2, we have that $0 \leqslant \int_{B_{R}}|s| L \varphi_{\varepsilon} d x=\int_{\Omega \backslash B_{\varepsilon}}|s| L \varphi_{\varepsilon} d x$ and hence that

$$
0 \leqslant \int_{B_{2 \varepsilon} \backslash B_{\varepsilon}}|s| L\left(\varphi \psi_{\varepsilon}\right) d x+\int_{\Omega \backslash B_{2_{\varepsilon}}}|s| L \varphi d x \leqslant
$$

$$
\int_{B_{2} \backslash B_{\varepsilon}}|s| L\left(\varphi \psi_{\varepsilon}\right) d x-\int_{\Omega \backslash B_{2 \varepsilon}}|s|\left(\frac{|x|}{R}\right)^{N-2} d x
$$

Then

$$
\begin{aligned}
& 0 \leqslant \int_{\Omega \backslash B_{2 \varepsilon}}|s|\left(\frac{|x|}{R}\right)^{N-2} d x \leqslant \\
& \int_{\varepsilon<|x|<2 \varepsilon}|s|\left\{\psi_{\varepsilon} L \varphi+\varphi(L-c) \psi_{\varepsilon}+2 a^{i, j} \partial_{i} \psi_{\varepsilon} \partial_{j} \varphi\right\} d x
\end{aligned}
$$

Since $\psi_{\varepsilon} \geqslant 0$ and $L \varphi \leqslant 0$ in $\varepsilon<|x|<2 \varepsilon$, we have

$$
\begin{aligned}
\int_{\Omega \backslash B_{2_{\varepsilon}}}|s|\left(\frac{|x|}{R}\right)^{N-2} d x \leqslant & \int_{\varepsilon<|x|<2 \varepsilon}|s|\left\{\varphi(L-c) \psi_{\varepsilon}+2 a^{i, j} \partial_{i} \psi_{\varepsilon} \partial_{j} \varphi\right\} d x \leqslant \\
& \int_{\varepsilon<|x|<2 \varepsilon}|s|\left\{\frac{2 a^{i, j}}{\varepsilon} \partial_{j} \varphi \psi_{\varepsilon}^{\prime} \frac{x_{i}}{|x|}+\frac{\varphi}{\varepsilon^{2}}\right. \\
& \left.\left(a^{i, j} \psi_{\varepsilon}^{\prime \prime} \frac{x_{i} x_{j}}{|x|^{2}}+\psi_{\varepsilon}^{\prime}\left(a^{j, j}-\frac{a^{i, j} x_{i} x_{j}}{|x|^{2}}\right) \frac{\varepsilon}{|x|}+\varepsilon \psi_{\varepsilon}^{\prime} b^{j} \frac{x_{j}}{|x|}\right)\right\} d x
\end{aligned}
$$

Therefore, there exists $C>0$, which depends only on d, M, α, r and N such that

$$
\begin{aligned}
& \frac{2 a^{i, j}}{\varepsilon} \partial_{j} \varphi \psi_{\varepsilon}^{\prime} \frac{x_{i}}{|x|}+ \\
& \qquad \frac{\varphi}{\varepsilon^{2}}\left(a^{i, j} \psi_{\varepsilon}^{\prime \prime} \frac{x_{i} x_{j}}{|x|^{2}}+\psi_{\varepsilon}^{\prime}\left(a^{j, j}-\frac{a^{i, j} x_{i} x_{j}}{|x|^{2}}\right) \frac{\varepsilon}{|x|}+\varepsilon \psi_{\varepsilon}^{\prime} b^{j} \frac{x_{j}}{|x|}\right) \leqslant \frac{C}{\varepsilon^{2}}
\end{aligned}
$$

in $\varepsilon<|x|<2 \varepsilon$. Then

$$
\int_{\Omega \backslash B_{2 \varepsilon}}|s|\left(\frac{|x|}{R}\right)^{N-2} d x \leqslant \frac{C}{\varepsilon^{2}} \int_{\varepsilon<|x|<2 \varepsilon}|s| d x \leqslant C \varepsilon^{(d / p)-2}\|s\|_{L^{p^{\prime}}}\left|B_{1}\right|^{1 / p}\left(2^{d}-1\right)^{1 / p}
$$

Since $(d / p)-2 \geqslant 0$ as $\varepsilon \rightarrow 0$, we get that $\int_{\Omega}|s|\left(\frac{|x|}{R}\right)^{N-2} d x=0$ and hence that $s \equiv 0$ a.e. in \mathbb{R}^{d}. This implies the claim by the characterization of $\mathcal{R}(p, \Omega)$ in [5].

REFERENCES

[1] O. Arena, On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations (P. Marcellini, G. Talenti, E. Vesentini Eds.) Dekker (1996).
[2] D. Gilbarg - J. Serrin, On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340.
[3] D. Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (1983).
[4] O. A. Ladyzhenskaya - N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, A.P. (1968).
[5] P. Manselli, On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80.
[6] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson Paris 1967.
[7] C. Pucci, Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170.
[8] N. N. Ural'tseva, Impossibility of $W^{2, p}$ bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254.

Cristina Giannotti, Dipartimento di Matematica e Fisica, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino (Macerata) Italy
e-mail: giannotti@campus.unicam.it

