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A New Metrization Theorem.

F. G. ARENAS (*) - M. A. SÁNCHEZ-GRANERO (**)

Sunto. – Presentiamo un nuovo teorema di metrizzazione, utilizzando una nuova
struttura introdotta dagli autori in [2] detta struttura frattale. Come corollario ot-
teniamo i teoremi di metrizzazione di Nagata-Smirnov e di Uryshon.

Summary. – We give a new metrization theorem on terms of a new structure intro-
duced by the authors in [2] and called fractal structure. As a Corollary we obtain
Nagata-Smirnov’s and Uryshon’s metrization Theorems.

1. – Introduction.

Metrization is, from the beginnings of General Topology, one of the most
important fields in it, and still is. There are many metrization theorems in the
literature. Although the thesis is always the same, the hypotheses to ensure
metrizability are very different from one metrization theorem to another.
Moreover, not only the proofs are very different, but there is no easy way to
deduce one metrization theorem from another one, too.

On the other hand, looking for a generalization of symbolic self-similar sets
for compact metric spaces, we developed in [2] the concept of GF-space (or
generalized fractal space) and found that it is a common framework for the
study of self-similar sets (the most important class of fractals, and the impor-
tance of fractals nowadays needs no emphasis) and non-archimedeanly
quasimetrizable spaces. In that paper we introduced GF-spaces and we used
them to characterize non-archimedeanly quasimetrizable spaces in several
ways (including some relations with inverse limits of partially ordered sets).
And non-archimedeanly quasimetrizable spaces are the starting point in our
study of metrizability.

In [3] we found a new metrization theorem and we used it to relate many
metrization theorems among them. In the present paper we improve that
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metrization theorem to include more different aspects of the theory of GF-
spaces, for example, metrizabilty in terms of inverse limits of posets. As a
cosequence we can obtain Urysohn’s and Nagata-Smirnov’s metrization
theorems.

The paper is organized as follows. In section 2 we introduce all the relevant
information about GF-spaces (definitions and some useful results), quasiuni-
formities, quasimetrics, posets and certain kind of coverings. Section 3 is de-
voted to the metrization theorem, and includes some technical results about
how to obtain from a covering another one that has the same properties and is
also a tiling. Nagata-Smirnov’s metrization theorem is one of the corollaries at
the end of the section. Finally, section 4 gives a characterization of second
countable spaces in terms of the fractal structure and allows to obtain
Urysohn’s metrization theorem.

2. – GF-spaces.

In order to obtain our metrization theorem, we need to develop the theory
of GF-spaces, started in [2] by the authors; our metrization theorem charac-
terizes metrizability in terms of certain conditions over the so called «fractal
structure» that a topological space may have.

Now, we recall some definitions and introduce some notations that will be
useful in this paper.

Let G4]G n : n�N( be a countable family of coverings. Recall that
St(x , G n )4 0

x�An , An�G n
An ; we also define Uxn

G 4St (x , G n )0 0
x�An , An�G n

An which

will be noted also by Uxn if there is no doubt about the family. We also denote
by St(x , G)4]St(x , G n ) : n�N( and Ux4]Uxn : n�N(.

A (base B of a) quasiuniformity U on a set X is a (base B of a) filter U of bi-
nary relations (called entourages) on X such that (a) each element of U con-
tains the diagonal D X of X3X and (b) for any U� U there is V� U satisfying
V i V’U . A base B of a quasiuniformity is called transitive if B i B4B for all
B� B. The theory of quasiuniform spaces is covered in [6].

If U is a quasiuniformity on X , then so is U214]U 21 : U� U(, where
U 214](y , x) : (x , y)�U(. The generated uniformity on X is denoted by U*.
A base is given by the entourages U *4UOU 21 . The topology t(U) induced
by the quasiuniformity U is that in which the sets U(x)4]y�X : (x , y)�U(,
where U� U, form a neighbourhood base for each x�X . There is also the
topology t(U21 ) induced by the inverse quasiuniformity. In this paper, we con-
sider only spaces where t(U) is T0 .

A quasipseudometric on a set X is a nonnegative real-valued function d on
X3X such that for all x , y , z�X : (i) d(x , x)40, and (ii) d(x , y)Gd(x , z)1
d(z , y). If in addition d satisfies the condition (iii) d(x , y)40 iff x4y , then d



A NEW METRIZATION THEOREM 111

is called a quasi-metric. A non-archimedean quasipseudometric is a quasipseu-
dometric that verifies d(x , y)Gmax ]d(x , z), d(z , y)( for all x , y , z�X .

Each quasipseudometric d on X generates a quasiuniformity Ud on X which
has as a base the family of sets of the form ](x , y)�X3X : d(x , y)E22n(,
n�N . Then the topology t(Ud ) induced by Ud , will be denoted simply by
t(d).

A space (X , t) is said to be (non-archimedeanly) quasipseudometrizable
if there is a (non-archimedean) quasipseudometric d on X such that
t4t(d).

A relation G on a set G is called a partial order on G if it is a transitive anti-
symmetric reflexive relation on G . If G is a partial order on a set G , then
(G ,G) is called a partially ordered set.

(G ,G, t) will be called a poset (partially ordered set) or T0-Alexandroff
space if (G ,G) is a partially ordered set and t is that in which the sets [g ,K
[4]h�G : gGh( form a neighborhood base for each g�G (we say that the
topology t is induced by G). Note that then ] g(4]J, g] for all g�G .

Let us remark that a map f : GKH between two posets G and H is contin-
uous if and only if it is order preserving, i.e. g1Gg2 implies f ( g1 )G f ( g2 ).

Let G be a covering of X . G is said to be locally finite if for all x�X there
exists a neighborhood of x which meets only a finite number of element of G . G
is said to be a tiling, if all elements of G are regularly closed an they have dis-
joint interiors (see [1]). We say that G is quasi-disjoint if A7OB4¯ or AO
B74¯ holds for all AcB�G . Note that if G is a tiling, then it is quasi-dis-
joint.

DEFINITION 2.1. – Let X be a topological space. A pre-fractal structure over
X is a family of coverings G4]G n : n�N( such that Ux is an open neighbor-
hood base of x for all x�X .

Furthermore, if G n is a closed covering and for all n , G n11 is a refinement
of G n , such that for all x�An , with An�G n , there is An11�G n11 : x�An11’
An , we will say that G is a fractal structure over X .

If G is a (pre-) fractal structure over X , we will say that (X , G) is a gener-
alized (pre-) fractal space or simply a (pre-) GF-space. If there is no doubt
about G , then we will say that X is a (pre-) GF-space.

If G is a fractal structure over X , and St(x , G) is a neighbourhood base of x
for all x�X , we will call (X , G) a starbase GF-space.

If G n has the property P for all n�N , and G is a fractal structure
over X , we will say that G is a fractal structure over X with the property
P, and that X is a GF-space with the property P. For example, if G n

is locally finite for all natural number n , and G is a fractal structure
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over X , we will say that G is a locally finite fractal structure over X ,
and that (X , G) is a locally finite GF-space.

Call Un4](x , y)�X3X : y�Uxn(, Uxn
214Un

21 (x) and Ux
214]Uxn

21 : n�N(.
The following proposition is proved in [2], Prop. 3.2, though we state here

with the proof.

PROPOSITION 2.2. – Let X be a pre-GF-space. Then Uxn
214 1

x�An
An .

PROOF. – y�Uxn
21 if and only if x�Uyn . Now, if x�An then y�An (since

x�Uyn4X0 0
y�An

An ). r

In [2], the authors introduce the following construction. Let G be a fractal
structure, and let define Gn4]Uxn* : x�X(, and define in Gn the following or-
der relation Un*(x)Gn Un*(y) if y�Un (x). It holds that Gn is a poset with this
order relation and its associated topology.

Let r n be the quotient map from X onto Gn which carries x in X to Un*(x) in
Gn . It holds that r n is continuous.

We also consider the map f n : GnKGn21 defined by f n (r n (x) )4r n21 (x).
It holds that f n is continuous.

Let r be the map from X to lim
J

Gn which carries x in X to (r n (x) )n in lim
J

Gn .

Note that r is well defined and continuous (by definition of f n and the continu-
ity of r n and f n for all n). It holds that r is an embedding of X into
lim
J

Gn .

REMARK 2.3. – Note that if G is a tiling pre-GF-space, then if x�An7 , we
have that Uxn

214An , since An7OBn4¯ .

PROPOSITION 2.4. – Let G be a pre-fractal structure over X . Then G n is clo-
sure-preserving for each n�N . Moreover, An is closed for all An�G n and for
all n�N .

PROOF. – Let x� 0
l�L

An
l. Then UxnO 0

l�L
An

l is non empty, so there exists

l�L and y�An
l such that y�UxnOAn

l , but then x�Uyn
214 1

y�An
An , and hence

x�An
l . Therefore 0

l�L
An

l is closed. r

Let G be a pre-fractal structure, we define fs (G)4]fs (G n ) : n�N(, where
fs (G n )4 m 1

iGn
Ai : Ai�G in and we call it the fractalization of the pre-fractal

structure G .
The next Proposition is proved in [3].
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PROPOSITION 2.5. – Let G be a pre-fractal structure over a topological space
X . Then fs (G) is a fractal structure over X . If G is starbase (resp. locally fi-
nite, finite) then so is fs (G).

3. – Metrization.

The next two results relate the local symmetry of quasi-uniformities and
quasimetrics with the starbaseness of fractal structures.

PROPOSITION 3.1. – Let X be a starbase pre-GF-space. Then ]Un( is base of
a locally symmetric transitive quasi-uniformity for X .

PROOF. – It is proved in [2], Prop. 3.5 that it is a transitive base of quasi-uni-
formity over X . Now, we will see that it is a locally symmetric one.

Given x�X and n a natural number, let m be such that St(x , G m )’Uxn .
Now, we are going to see that Um

21 (Um (x) )’Un (x).
To see this, let y�Um

21 (Um (x) ), then there exists z�X such that x , y�
Uzm

21 . Let Am�G m be such that z�Am ; then, since x , y�Uzm
214 1

z�Bm
Bm , we

have that x , y�Am , what means y�St(x , G m )’Uxn , and hence (x , y)�Un .
Therefore ]Un( is locally symmetric. r

COROLLARY 3.2. – Let X be a starbase pre-GF-space. Then X admits a lo-
cally symmetric quasimetric.

PROOF. – It follows from [6], Lemma 1.5 and Proposition 3.1. r

Now comes the first part of our metrization theorem.

THEOREM 3.3. – Let X be a starbase pre-GF-space. Then X is metri-
zable.

PROOF. – X admits a locally symmetric quasi-metric by Corollary 3.2, and
then we apply [6], Th. 2.32.

REMARK 3.4. – This Theorem can be proved using many different metriza-
tion Theorems as is shown in [3].

Now we are looking for a converse of Theorem 3.3. The first step is the fol-
lowing, which is proved in [3].

THEOREM 3.5. – Let X be a metrizable space. Then there exists a locally fi-
nite starbase fractal structure over X .

The proof of the following lemma is straightforward, so we omit it.
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LEMMA 3.6. – Let X be a topological space, and let ]Fi : i�I( be a finite
family of closed set in X . Suppose that g 0

i�I
Fih 7 is non empty. Then there

exists i0�I , such that Fi7 is nonempty.

Now, we construct the regularization of a fractal structure and study how
properties are induced from the fractal structure to its regularization.

THEOREM 3.7. – Let G be a locally finite fractal structure over a regular
space X and let G n8 4reg (G n )4]An84Cl (An7) : An�G n(. Then G84]G n8 : n�
N( (called the regularization reg (G) of G) is a locally finite fractal structure
over X . Moreover, if G is starbase, then G8 also is.

PROOF. – (1) G n8 is a closed covering.
It is obvious that Cl An7 is closed. Let see that G n8 is a covering.
Suppose, there exists n�N and x�X such that

x� 0
x�An

Cl An74Cl g 0
x�An

An7h
(since the union is finite). Then there exists a natural number m such that
UxmOg 0

x�An
An7h4¯ . That is, UxmOAn74¯ for all An�G n with x�An .

Let Am�G m with x�Am , then there exists An�G n with x�Am’An . But
then Am7OUxm’UxmOAn74¯ . Therefore Am7OUxm4¯ for all Am�G m with
x�Am .

On the other hand, x�Uxm4UxmO (St(x , G m ) ) 74UxmOg 0
x�Am

Amh 74
g 0

x�Am
(UxmOAm )h 7 and since G m is locally finite, the union is finite and UxmO

Am is closed in Uxm and by the previous lemma, there exists Am�G m with x�
Am , such that the interior of AmOUxm in Uxm is nonempty, but then Am7O
Uxmc¯ and the contradiction shows that G n8 is a covering.

(2) If we prove that Uxn8 ’Uxn then, since X is regular and Uxn8 is open
(since G n8 is locally finite), we have that ]Uxn8 : n�N( is a neighborhood base of
x for all x�X .

So, let y�Uxn8 and suppose that y�Uxn. Then there exists a natural num-
ber m such that UymOUxn4¯ and since y�Uxn8 and Uxn8 is open (since G n8 is lo-
cally finite), we can get m such that Uym’Uxn8 . Hence Uym’ (Uxn8 0Uxn )O
Uyn .

Let us see that (Uxn8 0Uxn )OUyn’ 0
x�An , y�An

BdAn .

Let z� (Uxn8 0Uxn )OUyn . Since z�Uxn , then there exists An�G n such that
z�An but x�An , and since z�Uyn then y�Uzn

214 1
z�Bn

Bn , and hence y�An .

Since z�Uxn8 and x�Cl An74An8 then z�An8 . Therefore Uym’ (Uxn8 0Uxn )O
Uyn’ 0

x�An , y�An
(An 0An8 )’ 0

x�An , y�An
BdAn , and since G n is locally finite and the
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previous lemma gnote that since Uym’ 0
x�An , y�An

BdAn then

g 0
x�An , y�An

BdAnh 7c¯h, there exists An�G n with x�An and y�An such that

(BdAn ) 7c¯ , but this cannot be true, since the interior of the boundary of a
closed set is empty.

(3) G8 is a fractal structure.
Let x�Cl An74An8 . Suppose that x�Cl A7n114An118 for all An11�G n11

with x�An11’An . Then there exists a natural number m (greater than n)
such that UxmOA7n114¯ for all An11�G n11 with x�An11’An (note that this
is possible since G n11 is locally finite). Then, for all y�UxmOAn7 (note that
this intersection is nonempty since x�Cl An7) there exists An11 (y)�G n11

with x�An11 (y) (since x�Uy(n11)
21 ) such that y�An11 (y)’An .

Now, UxmOAn74 0
y�UxmOAn7

(An11 (y)O (UxmOAn7) ) and the union is finite

(since x�An11 (y) for all y�UxmOAn7 and G n11 is locally finite). Then UxmO
An7 is the finite union of closed (in UxmOAn7) sets, and then by the previous
lemma, there exists y0�UxmOAn7 , such that the interior of (An11 (y0 )O
(UxmOAn7) ) in UxmOAn7 is nonempty, but then, since UxmOAn7 is open in X ,
(An11 (y0 ) ) 7OUxmOAn7 is non empty, which is a contradiction with the fact
that UxmOA7n114¯ for all An11�G n11 with x�An11’An .

(4) If G is starbase, then G8 is.
This is clear, since St (x , G n8 )’St (x , G n ) (because G n8 is a refinement of

G n). r

The following definition is in a setting more general than the one we really
need, but we include it here, since it requires the same effort.

DEFINITION 3.8. – Let G4]A l : l�L( be a covering of a topological space
X . For each w�P(L) (the set of nonempty subsets of L) we define A w4

Cl g 1
l�w

A lh0g 0
l�w

A lh . We note by qdi (G)4]A w : w�P(L)(0]¯(, and called it

the quasi-disjointification of G .

Let Ux4Ux
G4X0 0

x�A l
A l , Ux

214]y�X : x�Uy( and Ux*4UxOUx
21 .

Then note that Ux
214 1

x�A l
A l (see Lemma 2.2).

The notation qdi (G) is due to the fact that qdi (G) is quasi-disjoint (see 4
below).

PROPOSITION 3.9. – Let G4]A l : l�L( be a closed covering of a topologi-
cal space X . Then:
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(1) For all w�P(L), there exists x�X such that A w4Cl (Ux*) or
A w4¯ , and for all x�X , there exists w�P(L) such that A w4Cl (Ux*).

(2) A l40]A w : l�w ; w�P(L)(.

(3) Ux
qdi (G)’Ux .

(4) qdi (G) is quasi-disjoint.

(5) qdi (G) is a closed covering and if G is locally finite, so is
qdi (G).

(6) If G 2 is a refinement of G 1 such that A m
1 4 0

A l
2 ’A m

1

A l
2 for each A m

1 �G 1 ,

then qdi (G 2 ) is a refinement of qdi (G 1 ) such that A v
1 4 0

A w
2 ’A v

1

A w
2 for each

A v
1 �qdi (G 1 ).

PROOF. – (1) Let w�P(L), and suppose that there exists x�
1

l�w
A l 0g 0

l�w
A lh . Then it is clear that x�A l if and only if l�w . Hence

A w4Cl g 1
l�w

A l 0g 0
l�w

A lhh4Cl g 1
x�A l

A l 0g 0
x�A l

A lhh4Cl (Ux*) .

Conversely, let x�X , and let w4]l�L : x�A l(. Then it is clear that
x�A l if and only if l�w , and hence A w4Cl (Ux*), analogously to the preced-
ing paragraph.

(2) It is clear that 0 ]A w : l�w ; w�P(L)(’A l , since A w’A m for all
m�w .

Let x�A l . Then x�A w4Cl (Ux*) (by the first item and for some w�
P(L)) and since x�A l then l�w , and this proves the equality.

(3) Let see that (Ux
qdi (G) )214 1

x�A w
A w’Ux

214 1
x�A l

A l .

Let y� 1
x�A w

A w and let l�L such that x�A l . Let see that y�A l . By the

second item, there exists w�P(L), with l�w such that x�A w , but then
y�A w’A l . Therefore y� 1

x�A l
A l4Ux

21 .

Since (Ux
qdi (G) )21’Ux

21 for all x�X , then Ux
qdi (G)’Ux for all x�X .

(4) Aw4Cl g 1
l�w

Al0g 0
l�w

Alhh’X0g 0
l�w

Alh7 , and hence AwOg 0
l�w

Alh74¯ .

On the other hand, if there exists l�v0w , then A v’A l , and (A v ) 7’
(A l ) 7’ g 0

l�w
A lh 7 . Therefore A wO (A v ) 74¯ , and hence G is quasi-disjoint.

(5) qdi (G) is a covering since G is and the second item. Obviously each
A w is closed. Suppose that G is locally finite and let see that qdi (G) also is.

Let x�X , then there exists U an open neighborhood of x and there
exists a finite set ]l 1 , R , l n( such that UOA l i

c¯ for each i� ]1, R , n(,
but UOA m4¯ for all m� ]l 1 , R , l n(. Since A w’A l for all l�w , we
have that w�P(]l 1 , R , l n() for all w such that UOA w

c¯ . Therefore
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there are only a finite number of w for which UOA w
c¯ and then qdi (G)

is locally finite.

(6) It is easy to see that Ux2*’Ux1* for all x�X . Therefore qdi (G 2 ) is a re-
finement of qdi (G 1 ).

It is also clear that Ux1*4 0
y�Ux1*

Uy2*4 0
Uy2* ’Ux1*

Uy2* (since y�Ux1* if and only if

Uy2*’Ux1*) for all x�X , and this proves the item. r

REMARK 3.10. – Note that the requirement of the covering to be by closed
sets, is only needed for items 2, 3 and 4.

COROLLARY 3.11. – Let G be a locally finite fractal structure over X . Then
qdi (G)4]qdi (G n ) : n�N( is a locally finite quasi-disjoint fractal structure
over X .

PROOF. – By the fifth item of Proposition 3.9, qdi (G n ) is a locally finite
closed covering for all n and by the third item U qdi (G n )

xn ’Uxn . Therefore
]U qdi (G n )

xn : n�N( is an open neighborhood base of x for all x�X (note that
U qdi (G n )

xn is open since qdi (G n ) is locally finite).
By the sixth item of Proposition 3.9 and from we have already proved, we

have that qdi (G) is a locally finite fractal structure over X and by the fourth
item we have that qdi (G) is quasi-disjoint. r

Combining the regularization and the quasi-disjointification of a fractal
structure we obtain another one with the same properties that is also a
tiling.

DEFINITION 3.12. – Let G be a locally finite fractal structure over a regular
space X . We define til (G)4]til (G n ) : n�N(, where til (G n )4reg (qdi (G n ) )
for all n�N .

THEOREM 3.13. – Let G be a locally finite fractal structure over a regular
space X . Then til (G) is a locally finite tiling fractal structure over X . More-
over, if G is starbase, so is til (G).

PROOF. – Let G n8 4 til (G n )4]Cl ( (A w ) 7) : A w� qdi (G n )(. Let see that G8 is
a locally finite tiling fractal structure over X .

Since qdi (G) is a locally finite quasi-disjoint fractal structure over X , by
Corollary 3.11, then it is clear from Theorem 3.7 that G8 is a locally finite tiling
fractal structure over X .

Suppose that G is starbase. Then St(x , qdi (G n ) )’St(x , G n ) since qdi (G n )
is a refinement of G n by the second item of proposition 3.9. Then by Theo-
rem 3.7 we have that G8 is starbase. r
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For a locally finite tiling fractal structure, we have the following relation
between the star and the neighborhood base.

PROPOSITION 3.14. – Let G be a locally finite tiling fractal structure over X .
Then St (x , G n )4Uxn. Moreover, if G is starbase, then St (x , G n )4
Un

21 (Un (x) )4Uxn.

PROOF. – Let G be a locally finite tiling fractal structure over X . It is obvi-
ous that Uxn ’St(x , G n ), since St (x , G n ) is closed because G n is locally
finite.

Let y�St (x , G n ). Suppose y�Uxn, then there exists a natural number m ,
such that UymOUxn4¯ . Let An be such that x , y�An , then there exists (since
G is a fractal structure) Am�G n such that y�Am’An . Since Am7’Uym (if z�Am7

then, since G m is tiling, y�Am4Uzm
21 , that is, z�Uym), then Am7OUxn4¯ , and

hence ¯cAm7’ (St(x , G n )0Uxn ) 7 (note that Am7c¯ , since G is a tiling).
Let see that (St (x , G n )0Uxn ) 7 is empty, which is a contradiction. Let z�

( St (x , G n )0Uxn ) 7 . Then there exist An and Bn in G n such that z�AnOBn , x�
An and x�Bn . Then z�AnOBn’BdAn (since G n is a tiling). Then
(St (x , G n )0Uxn ) 7’ g0Bd Anh 7 , where the union of the right is finite, since G n

is locally finite and x belongs to all of that An . Then by Lemma 3.6 there exists
An such that (Bd An ) 7 is nonempty, which is a contradiction (because the inte-
rior of the boundary of a closed set is empty). Therefore, the first statements
is proved.

Let us prove the second one. That is, let see that St (x , G n )4Un
21 (Un (x) ).

First, if y�St (x , G n ), then there exists An�G n such that x , y�An . Let z�
An7 , then, since G n is a tiling, Uzn

214An , so x , y�Uzn
21 , that is, y�

Un
21

i Un (x).
On the other hand, if y�Un

21 (Un (x) ), there exists z�X such that y , x�
Uzn

21 , but then there exists An�G n such that y , x�An , that is y�
St (x , G n ). r

Hence, in regular spaces, starbaseness is obtained as a consequence.

COROLLARY 3.15. – Let G be a locally finite tiling fractal structure over a
regular space. Then G is starbase.

One can think that if G is a locally finite fractal structure, then the family
]Uxn : x�X( should be locally finite. The following example shows that this is
not so.
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EXAMPLE 3.16. – Let X4 [0 , 1[, and let

G n4mk k

2n
,

k11

2n l : 0GkG2n22nNmk12 1

2k
, 1k : kFnn .

It is clear that G is a locally finite starbase fractal structure over X , but

]Uxn : x�X( is not locally finite for any n�N at x0412 1

2n
, since any

neighborhood of x0 meets the infinite family mUxk n : xk412 1

2k n (note that
Uxk n4]x0 , xk11 [).

The following definition will be needed in order to state our main
result.

DEFINITION 3.17. – Let G be a poset. We say that G is locally finite if
Card (]h�G : gGh() is finite for all g�G .

And now, we have our main result: a metrization theorem in terms of frac-
tal structures and inverse sequence of posets. A weaker version of this result
(the equivalence between 1 and 6) is [3], Th. 3.7.

THEOREM 3.18. – Let X be a topological space. The following statements are
equivalent:

(1) X is metrizable.

(2) There exists a locally finite tiling starbase fractal structure over X.

(3) X is regular and can be embedded into the inverse limit of a se-
quence of locally finite posets.

(4) X is regular and can be embedded into the countable product of lo-
cally finite posets.

(5) X is regular and there exists a locally finite pre-fractal structure
over X .

(6) There exists a starbase pre-fractal structure over X .

PROOF. – 1) implies 2) is by Theorem 3.5 and Theorem 3.13.
2) implies 3) By Theorem 3.3, X is metrizable, so it is regular. Let see that if

G is locally finite then Gn4G(G n ) is locally finite for all n�N (where Gn is as
in the Introduction).

Let n�N , and let r n (x)�Gn . Since G n is locally finite, there exists a finite
number of An�G n such that x�An . Let y�X such that r n (x)Gr n (y) then
x�Uyn

214 1
y�An

An , and this means that y�An only for a subcollection of ]An :
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x�An(. So the number of different r n (y) with r n (x)Gr n (y) is at most the
number of possible combinations of the elements of the family ]An : x�An(,
which is finite. Therefore Gn is a locally finite poset and X can be embedded
into lim

J
Gn (see [2]).

3) implies 4) Obvious.
4) implies 5) The fractal structure associated with the countable product of

posets (see [2]) is locally finite, since the posets are.
5) implies 6) By Proposition 2.5 and Theorem 3.13, there exists a locally fi-

nite tiling fractal structure over X , and by Corollary 3.15, it is starbase.
6) implies 1) by Theorem 3.3. r

REMARK 3.19. – Note that in [8], Morita proves that a topological space is
metrizable if and only if there exists a locally finite starbase pre-fractal
structure over it, so our theorem is a direct generalization of this result (of
course, Morita does not use our notation).

As a corollary of Morita’s metrization theorem we have the following.

COROLLARY 3.20. – (Hanai-Morita-Stone Theorem) For every closed map-
ping f : XKY of a metrizable space X onto a space Y the following conditions
are equivalent:

(1) The space Y is metrizable.

(2) The space Y is first countable.

(3) For every y�Y , the set Bd( f 21 (y) ) is compact.

PROOF. – See [5], Ex. 5.4.D.b (see also [7], and [10]). r

Our metrizaton theorem allow us to prove the Nagata-Smirnov metrization
one in a way different from the standard one as well as the following Theorem,
due to Burke, Engelking and Lutzer in [4] (see [3]).

COROLLARY 3.21. – Let X be a T3 space with a s-hereditarily closure pre-
serving base. Then X is metrizable.

We can also obtain from Theorem 3.18 one that is equivalent to it (see [3]).

COROLLARY 3.22. – Let X be a topological space. Then X is metrizable if
and only if there exists a locally symmetric non archimedeanly quasimetric
d on X .
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4. – Urysohn’s metrization theorem and GF-spaces.

Urysohn’s metrization theorem can also be obtained using our techniques
as follows. First, we deal with second countable spaces.

THEOREM 4.1. – Let X be a finite GF-space. Then X is second count-
able.

PROOF. – If X is a finite GF-space, then the set ]Uxn : x�X( is clearly finite
for all n�N . Therefore ]Uxn : x�X ; n�N( is a countable base for
X . r

Now, we find a converse of the above result.

THEOREM 4.2. – Let X be a totally bounded non-archimedeanly
quasimetrizable space. Then there exists a finite fractal structure over X.

PROOF. – Let Gd be the fractal structure associated to d .
Since d is totally bounded, for each n there exists a finite cover An of X such

that A3A’Un for all A�An . Then if A�A and x , y�A we have r n (x)4
r n (y) (if (x , y)�A3A’Un , then y�Uxn and similarly x�Uyn , hence Uxn4

Uyn or what is the same r n (x)4r n (y)). Then ]Uxn : x�X( is finite for all n�
N (since An is a finite covering). Therefore G n

d 4]Uxn
21 : x�X( is finite for all

n�N and G is a finite fractal structure over X . r

So we can characterize second countable spaces in terms of fractal
structures.

THEOREM 4.3. – Let X be a topological space. The following statements are
equivalent:

(1) X is second countable.

(2) There exists a totally bounded non-archimedean quasimetric over X.

(3) There exists a finite fractal structure over X .

(4) X can be embedded into the inverse limit of a sequence of finite
posets.

(5) X can be embedded into a countable product of finite posets.

PROOF. – The equivalence among 1), 2) and 3), follows from [6], Prop. 7.2,
Theorem 4.2 and Theorem 4.1.

The equivalence among 3), 4) and 5) follows from the relation between frac-
tal structures and the embedding of the space into the inverse limit of a se-
quence of posets (see [2]). r
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Theorem 3.18 and Theorem 4.3 allow us to prove Urysohn’s metrization
Theorem:

THEOREM 4.4. – Let X be a second countable T3 space. Then X is separable
metrizable.
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