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Optimization of the Shape and the Location
of the Actuators in an Internal Control Problem.

ANTOINE HENROT (*) - HERVÉ MAILLOT

Sunto. – Consideriamo un corpo V sottomesso ad una forza esterna data e del quale vo-
gliamo controllare lo spostamento. Cerchiamo un rinforzo per minimizzare un
funzionale che dipende dallo spostamento del corpo. L’insieme delle configurazioni
ammissibili è un insieme di funzioni caratteristiche di sottodomini (un rinforzo
ammissibile è un sottodominio con una rigidezza uguale ad uno) di volume pre-
scritto. In tal caso, si ha bisogno di una versione rilassata del problema di ottimiz-
zazione e si cerca una densità ottimale della rigidezza che non è, in generale, una
funzione caratteristica. Diamo una caratterizzazione completa di questo elemento
ottimale e dimostriamo alcuni risultati di regolarità. Quindi esibiamo condizioni
sufficienti sui campi di forze per cui la distribuzione ottimale della rigidezza è una
funzione caratteristica di un sottodominio. Studiamo il caso particolare di un cor-
po ed una forza radialmente simmetrici. Infine alcuni risultati numerici illustra-
no nel caso bidimensionale le proprietà enunciate.

1. – Introduction.

Let an open bounded and connected domain V in RN (N42, 3 ) be given.
In this paper, we study the following optimal design problem

Opt (v): inf
v�OC

J(v)4s
V

N˜uN21x v u 2 dx4s
V

fu dx ,(1)

with OC4]v%V , NvNGCENVN( and where u satisfies the following state
equation:

.
/
´

2Du(x)1x v u(x)

u(x)

4

4

f (x)

0

in V ,

on ¯V .
(2)

A physical interpretation could be the following: V is a two-dimensional mem-
brane and f the third component of a vertical force acting on V . We want to re-
inforce a part of the membrane, that is a subdomain v of given measure, with a
stiffness equal to one, in such a way that the displacement u given by (2) mini-

(*) This work has been realized when the two authors were in the Mathematics De-
partment of the Université de Franche-Comté (UMR CNRS 6623), Besançon France.
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mizes the cost functional J given in (1). This problem could also be considered
as a static model problem for classical control problems when we look for the
optimal location of the actuators in some stabilization equations.

Concerning our optimization criterion, the term x
v

u 2 can be seen as a cost
term since x v u solves the following optimal control problem (where v is a
fixed datum):

inf
v�L 2 (v)

J(v)4s
V

N˜u(v)N21x v v 2 dx ,

where u(v) is the solution of the Dirichlet problem

.
/
´

2Du1x v v

u

4

4

f

0

in V ,

on ¯V .

(See [Li] for details).
Notice that without constraint on the design set OC , Opt (v) is trivial. In-

deed, since fF0, if v 2%v 1 the associated solutions of the state equation satis-
fy u1Gu2 and we obtain J(v 1 )GJ(v 2 ). Thus J is non-increasing with respect
to the set inclusion and inf

v%V
J(v)4J(V). It is a classical problem to look for an

optimal domain, with a volume constraint, in the case of a non-increasing func-
tional. G. Buttazzo and G. Dal Maso in a famous paper [Bu-Dm 2], proved that
this problem has always a solution if we assume moreover that the functional
is lower semi-continuous for the g-convergence. Unfortunately, as we will see
in the Remark 2.1, the functional defined in (1) turns out to be not l.s.c. for
this convergence. So, we cannot apply their general result and we need to use
a relaxed formulation. Since the shape variable appears in the lower order part
of the elliptic state equation, the relaxation involves a simple convexification of
the design set. For more general relaxation in optimal design, and in particu-
lar, when the relaxation involves the differential operator itself, we refer for
example to [Bu-Dm 1], [Ch-Dm] or [Ko-St]. When one introduce a relaxation,
a very interesting challenge is to decide whether one are able to find condi-
tions on the data which insure that the relaxed solution is indeed a classical
one, i.e. a domain. It is one interesting topic of this paper to present such
results.

Let us now precise the notations used throughout this paper. Identifying
every (class of) domain v with its characteristic function x v , the design set OC

is naturally identified with the closed subset of L Q (V)

LC4ml�L Q (V), 0G lG1, l(l21)40 a.e., s
V

l(x) dx4Cn .

In this context, L Q (V) will be endowed with the weak-* topology. Since this
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topology does not provide compactness of the design set LC (this set is not
closed for the weak-* topology), we need to introduce some relaxation. This re-
laxation involves a simple convexification of the design set (see [He-Pi] or [Ma]
for more details). Therefore our shape optimization relaxed problem
reads:

Opt (l) : inf
l�LAC

J(l)4s
V

N˜uN21 lu 2 dx4s
V

fu dx ,(3)

with

LAC4ml�L Q (V), 0G lG1, s
V

l(x) dx4Cn ,

and where u solves P(l):

.
/
´

2Du1 lu(x)

u(x)

4

4

f (x)

0

in V ,

on ¯V .
P(l)

The sequel of the paper is organized as follows. The second section is devoted
to the resolution of Opt (l) and the characterization of any minimizer. In sec-
tion 3, we provide sufficient conditions on the leading term f for which the re-
laxed optimal design will in fact be a classical design. The special 22D case
where V and f are radially symmetric is considered in section 4. We prove exis-
tence of a radially symmetric minimizer which will be unique and classical if
the forcing function f is non increasing. At last, in the last section a numerical
method along with some examples are presented.

2. – The relaxed problem: existence and characterization of the solu-
tion.

The relaxed formulation previously stated leads to the following existence
result.

THEOREM 2.1. – J is convex and continuous on L Q (V) for the weak-*
topology. In particular, there exists l * in LAC which realizes the minimum of
J on LAC . Moreover:

inf
v�OC

J(v)4 min
l�LAC

J(l)4J(l *) . r(4)

PROOF. – The convexity of J comes from the variational formulation of P(l):

since ul realizes the minimum in H 1
0 (V) of

1

2
s

V

N˜vN21 lv 2 dx2s
V

fv dx which
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is an affine function with respect to l we have

2
1

2
J(l)42

1

2
s

V

N˜ul N21 lul
2 dx4 min

v�H 1
0 (V)
g 1

2
s

V

N˜vN21 lv 2 dx2s
V

fv dxh
which is concave as an infimum of affine functions. Hence J(l) is convex.

Now, let ln be a sequence in L Q (V) converging weak-* to a function l . Let
us denote by un the solution of P(ln ) and by u the solution of P(l). The function
vn4un2u satisfies

.
/
´

2Dvn1 ln vv

vn

4

4

(l2 ln ) u

0

in V ,

in ¯V ,
(5)

and the variational formulation of (5) gives:

s
V

N˜vn (l)N2 dx1s
V

ln vn
2 dx4s

V

(l2 ln ) uvn dx .(6)

Thanks to (6) and since ln is bounded in L Q (V), vn is bounded in H 1
0 (V). So, by

Rellich’s theorem, there exists a subsequence vnk
and a function v�H 1

0 (V)
such that vnk

converges strongly to v in L 2 (V). Therefore uvnk
converges

strongly to uv in L 1 (V) and since l2 ln � 0 weak * in L Q (V), the right hand
side of (6) converges to 0. Moreover s

V

ln vn
2 dxF0, then vnk

converges (strong-

ly) to 0 in H 1
0 (V). Now 0 being the single accumulation point of (vn ), the whole

sequence converges to 0 in H 1
0 (V). The continuity of J follows immediately.

The existence of a minimizer in LAC follows from the weak-* compactness of LAC .
(4) is an easy consequence of the fact that LAC is the closed convex hull of LC

and the fact that inf
LC

J4 inf
OC

J . r

REMARK 2.1. – We are now in position to prove that the functional J is not
lower-semi continuous for the g-convergence. Let V4]0 , p[3]0 , 4[ and v n be
the sub-domain defined as

v n4](x , y)�R2 ; 0ExEp , 0EyE21sin (nx)( .

The sequence v n converges in the Hausdorff sense to v4]0 , p[3]0 , 1[. Since
we are in two dimensions and v n is simply connected, the classical result of
Šverak (see [Sv]) applies and v n g-converges to v . Now, it is classical to verify
that the sequence of characteristic functions x v n

converges in L Q weak-* to
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the function l defined by

l(x , y)4

.
`
/
`
´

1

1

2

0

if (x , y)�v4]0 , p[3]0 , 1[

if (x , y)�]0 , p[3]1 , 3[

if (x , y)�]0 , p[3]0 , 3[ .

According to Theorem 2.1, it follows that uv n
solution of (2), converge strongly

in H 1
0 (V) to ul solution of P(l) with l defined above. So,

J(v n )4s
V

fuv n
dxKs

V

ful dx .

Now, since lDx v , the maximum principle shows that uvDul in V . There-
fore

J(v)4s
V

fuv dxDJ(l)4s
V

ful dx4 lim J(v n )

what proves that J is not l.s.c. for the g-convergence. r

We are now interested in giving some properties or characterization of the
optimal function l *. Of course these properties will be obtained through the
optimality conditions. First of all, let us express the first derivative of J .

LEMMA 2.1. – The functional J is Frechet-differentiable at any point
l�L Q (V) and

aJ 8 (l), hb42s
V

hul
2 dx(7)

where ul is the solution of P(l). r

PROOF. – Let us fix h in L Q (V). Subtracting P(l1h) and P(l), we
obtain:

2D(ul1h2ul )1 l(ul1h2ul )42 hul1h .(8)

Multiplying (8) by (ul1h1ul ) and integrating upon V yield

s
V

N˜ul1h N22N˜ul N21 lul1h
2 2 lul

2 dx42s
V

hul1h (ul1h1ul ) dx ,

or

J(l1h)2J(l)1s
V

hul
2 dx42s

V

hul (ul1h2ul ) dx ,
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and therefore

NJ(l1h)2J(l)1s
V

hul
2 dxNGVhVQ Vul1h2ul V2 Vul V2 .(9)

Now, according to (8) and the Poincaré inequality

Vul1h2ul V2GCVhul1h V2G2CVhVQ Vul V2 ,

and the result follows from (9). r

In order to characterize the minimum, let us introduce the following
definition.

DEFINITION 2.1. – For any function l�LAC , we denote by

.
/
´

V 0

V*

V 1

4

4

4

]x�V , l(x)40(

]x�V , 0E l(x)E1(

]x�V , l(x)41( .

r

Of course, these sets are defined up to a set of zero measure and the equal-
ities or inequalities make sense almost everywhere. Since we want to write
the optimality condition, we have to characterize the tangent cone of LAC in
L Q (V).

LEMMA 2.2. – The tangent cone T 8 (l) to the set LAC at the point l is the set of
every function h in L Q (V) such that

(i) s
V

h(x) dx40,

(ii) Vx Qn
0 h2 VQK0 when nKQ ,

(iii) Vx Qn
1 h1 VQK0 when nKQ , where h2 (resp. h1) is the negative (resp.

positive) part of h and where Qn
04]x�V , l(x)G1/n( and Qn

14]x�V ,
l(x)F121/n(. r

PROOF. – See [B.P.R.S] or [C.P.]. r

REMARK 2.2. – The condition h(x)F0 in V 0 and h(x)G1 in V 1 is clearly
necessary but not sufficient for h to be in T 8 (l *). This can be shown by some
elementary examples. r

REMARK 2.3. – The first order optimality condition is

(h�T 8 (l), aJ 8 (l), hbF0 .(10)

Notice that, since J is convex and LAC is convex, this necessary condition
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is also a sufficient one. Hence (10) turns out to give a characterization
of the minimizers of J . r

More precisely, we can prove the following result.

THEOREM 2.2. – Let l * be in LAC and u * solve P(l *). Let V 0 , V 1 , V* be de-
fined as above. Then l * minimizes J if and only if:

(i) u * is constant in V* (as soon as NV* ND0)

(ii) ((x0 , x *, x1 )�V 03V*3V 1 , we have u *(x0 )Gu *(x *)G
u *(x1 ). r

PROOF. – Let l * be a minimizer of J and let us denote by V*n 4]x�
V , 1 /nG l *G121/n(. We are going to prove that u * is constant on V*n .
Since V*4 0

nD0
V*n (increasing union), this will prove the first point. Let us as-

sume, for a contradiction, that u * is not constant on V*n . Then it is possible to
find two measurable sets v 1 and v 2 in V*n such that

Nv 1 N4Nv 2 N and s
v 1

u *2 dxEs
v 2

u *2 dx .(11)

Now taking

h(x)4u21

11

0

in v 1

in v 2

elsewhere

which belongs to T 8 (l *) (see Lemma 2.2), yields

aJ 8 (l *), hb42s
V

hu *2 dx42s
v 2

u *2 dx1s
v 1

u *2 dxE0

by (11), what contradicts the optimality condition (10).
The second point is proved in a similar way by assuming that there exists a

set of positive measure v 0 in V 0 such that

u */v 0
Du */V*4cst .

Then we select v* in V*n , with Nv 0 N4Nv* N and we conclude by choosing the
function h defined by h41 in v 0 , h421 in v*. We prove in the same way
that u */v 1

Fu */V* .
Conversely, let us assume that (l *, u *) satisfy (i), (ii) and let us denote by

c * the (constant) value of u * on V*. Let h be in the tangent cone T 8 (l *). Ac-
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cording to remark 2.2, h is nonnegative on V 0 and non positive on V 1 ,
and

2s
V

hu *2 dx42s
V 0

hu *2 dx2s
V*

hu *2 dx2s
V 1

hu *2 dxF

2s
V 0

hc *2 dx2s
V*

hc *2 dx2s
V 1

hc *2 dx42 c *2s
V

h dx40 .

Therefore, the first order optimality condition is satisfied and according to re-
mark 2.3, l * minimizes J . r

REMARK 2.4. – The function u * solution of P(l *) is in the Sobolev space
H 2 (V), so u * is continuous (thanks to the Sobolev embedding H 2 %KC 0 in di-
mension N41, 2 or 3). In particular, because of the boundary condition, the
set V 0 is non empty and contains a neighbourhood of ¯V . Now let c * be de-
fined by

c *4 sup
x�V 0

u *(x) .(12)

If V* is non empty, according to the theorem 2.2, u */V4c *. Similarly, if V 1 is
non empty, we have c *4 inf

x�V 1
u *(x). Moreover, the open set ]x�V , u *(x)E

c *(, included in V 0 , (and which contains a neighbourhood of ¯V) is connected
when ¯V is connected. Indeed, if it was not, let v be a connected component of
this open set which does not meet the neighbourhood of ¯V . According to (12),
we have u *4c * on ¯v , but 2Du *4 fF0 in v (since l *40 in v) and then by
maximum principle, we should have u *Dc * in v , which is impossi-
ble. r

3. – Existence of an optimal domain.

In the context of shape optimization problems which involve relaxed for-
mulation, a natural question arises: can we give some conditions on the data
( f , C , R) in order to obtain a classical minimizer, i.e. a solution of the original
problem. With the notations introduced in definition 2.1, it is equivalent to ask
whether there exists a minimizer l * with V* empty. Let us mention that in
many optimal design problems, it is difficult to exhibit such sufficient condi-
tions (see for instance [Ch-Dm] or [Co-Uh]). So, the following theorem seems
to be rather original in this context.
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THEOREM 3.1. – Let u0 denotes the solution of the problem

.
/
´

2Du0

u0

4

4

f

0

in V ,

in ¯V ,

There exists a characteristic function x V 1
which is a minimum of the func-

tional J if one of the following conditions holds.

(i) u0G f in V ,

(ii) fG2Df in V .

(iii) CDN]x�V , u0 (x)Da(N , where a4 inf ] f (x), such that u0 (x)D
f (x)(. Moreover the minimum is unique. r

PROOF OF THE THEOREM 3.1. – We are going to prove that under the above
conditions, the set V* corresponding to a minimizer l * is necessarily empty: it
means that all the minimizers will correspond to characteristic functions. Now,
since J is convex, if l *1 and l *2 minimize J, tl *1 1 (12 t) l *2 will be minimizers of
J for all t in ]0, 1[. Since characteristic functions are extremal points of the con-
vex LAC, uniqueness of the minimum will follow.

Let l * be a minimizer and assume that V* is not empty. Then u *4c *4
constant on V*. Since u * is in H 2, it follows by a classical result (see e.g.
[A-L]) that u *xi

vanishes almost everywhere in the set ]u *4c *(. Using the
same argument yields u *xi xi

40 almost everywhere in the set ]u *xi
40( and

then in ]u *4c *(. It follows that 2Du *40 almost everywhere in V*. But
from the equation satisfied by u *, it follows that

l * u *4 l * c *4 f in V*.(13)

Now, by maximum principle, we know that u *Gu0 in V , so (13) yields

l *4
f

c *
F

f

u0

in V*.

Then if (i) holds, we have lF1 in V* which contradicts the definition of V*. If
(ii) holds, let us denote by v the function f2u0 . We have

2Dv42Df1Du042Df2 fF0 in V ,

v4 f on ¯V .

So f2u0F0 in V and we can apply (i).
Finally, (13) together with the definition of V* implies fEc *. Then, V* is

necessarily included in the set ]x�V , f (x)Eu0( (since u *Gu0 by maximum
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principle). Therefore, V*NV 1 which is included in the set ]x�V , u *Fc *(
satisfies

V*NV 1% ]x�V , u *Da(% ]x�V , u0Da((14)

Now, since the constraint C4s
V

l(x) dx4NV 1N1s
V*

l(x) dx implies CGNV*NV 1N ,

the assumption (iii) is incompatible with the inclusion (14). Hence V* is empty
as soon as (iii) holds. r

In the case where there exists a classical solution x V 1
, it would be interest-

ing to discuss the regularity of the optimal domain V 1 . It is a general chal-
lenge in shape optimization to get such regularity results, since we often only
know that the optimum is a measurable set or a quasi-open set (see e.g. [Bu-
Dm 2]). Even proving that the optimal domain is an open set would be inter-
esting. For such a result in the case of the first eigenvalue of an elliptic opera-
tor, we refer to [Ha]. In our case, we are able to prove, thanks to a supplemen-
tary simple assumption on the data f , that the optimal domain is an open set
which has a boundary with zero Lebesgue measure.

PROPOSITION 3.1. – Let f satisfy one of the points (i), (ii), (iii) of the theorem
3.1 and assume moreover (iv) f is not constant on a set of positive
measure.

Then, the class of optimal domains V 1 such that l *4x V 1
contains an

open set V
A

1 with N¯V
A

1 N40. r

PROOF. – Let us recall that the associated optimal state solves:

.
/
´

2Du *1x V 1
u *

u *

4

4

f

0

in V ,

on ¯V .

Moreover the level line u *4c * is such that c *4 sup
x�V 0

u *(x)4 inf
x�V 1

u *(x).

Now notice that V 14]x�V , u *(x)Dc(N (]x�V , u *(x)4c *(OV 1 ). But
]x�V , u *(x)4c *(OV 1% ]x�V , f4c *(. Indeed, if N]x�V , u *(x)4
c *(OV 1 ND0 we have 2Du *40 and f4 l * c *4c * in this set. Then N]x�V ,
u *(x)4c *(OV 1 N40 if (iv) holds. Moreover, u * being continuous, ]x�V ,
u *(x)Dc *( is an open set and l *4x ]x�V, u *(x)Dc *( . At last, since ¯V 1% ]x�V ,
u *(x)4c *( which has zero measure if (iv) holds, the boundary of V 1 has zero
measure. r
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REMARK 3.1. – Notice that the maximization (under volume constraint) of J
always leads to a classical solution. Indeed, the continuous functional

E(l)4 min
v�H 1

0 (V)
g 1

2
s

V

N˜vN21 lv 2 dx2s
V

fv dxh42
1

2
J(l) ,

as a concave function, reaches its minimum at the extremal points of the con-
vex set LAC (i.e. the elements of LC ). r

4. – The radial case.

In this section V is the unit ball B(0 , 1 ) of R2 and f is radially symmetric
i.e. f4 f (r) where r4NxN .

The natural question is: «Are the minima necessarily radially symmetric?»
We are able to give a complete answer only in the case where f is non in-

creasing (see below). But without hypothesis on f we can give the

PROPOSITION 4.1. – The functional J admits at least one radially symmet-
ric minimizer.

PROOF. – Let l * be a minimizer of J . For u in [0 , 2P], let us denote by l *u
the function obtained from l * by the rotation of angle u . Obviously l *u mini-

mizes J for every u . Let us now consider the function l(x)4
1

2P
s
0

2P

l *u (x) du .

It is a radially symmetric admissible function and we have (Jensen inequality)

J(l)G
1

2P
s
0

2P

J(l *u ) du4min
LC
A

J(l) ,

since J is convex. Then l is a minimizer of J . r

REMARK 4.1. – To prove existence of a radial minimizer, we can also use the
classical tool of spherical rearrangement. The main point would be to use the
optimality conditions, and more precisely the fact that the level set ]uDc *( is
transformed into the corresponding level set of the rearranged function which
allow us to compare the integrals.

Let us come back to the above question. Clearly, looking for the radially
symmetric minimizers is a problem much easier. Indeed, it consists in looking
for the solution of a linear O.D.E. which satisfies the optimality condition
given in the theorem 2.2.

More precisely, let us consider first the case where fD0 in V . Since
2Du4 f in V 0 , u cannot be constant in a set of positive measure (see the proof
of the theorem 3.1). Then, according to the remark 2.4, the set V 0 is a connect-



ANTOINE HENROT - HERVÉ MAILLOT748

ed ring of exterior boundary ¯V :

V 04]x�V , R0ENxNE1( .

It remains to find the location of V 1 and V* (each of them could be empty)
which would also be rings or union of rings centered at 0. Working in polar co-
ordinates, the problem becomes:

Find a subdivision of ]0 , 1[ : ]0 , 1[4V 1NV*NV 0 with V 04]R0 , 1[ such
that the (unique) solution of

.
`
/
`
´

2u 92
1

r
u 81u4 f (r)

u4constant4c *

2u 92
1

r
u 84 f (r)

u 8 (0)40, u(1)40.

in V 1 ,

in V*,

in V 04]R0 , 1[ ,

(15)

satisfies the optimality condition

sup
V 0

u4c *4 inf
V 1

u .

When f is given by a simple expression, (15) can be solved almost explicitely
and then the above program can be performed, using for instance a sotfware
like Maple.

When f vanishes, the situation is slightly more complicated since V 0 can
have connected components inside the set ] f40(. Nevertheless, the situation
is similar: we have to check with a larger number of cases. As an illustration of
this point, let us give the following example.

We take f4ax [R , 1 ] , 0ERE1, aD0. Using the maximum principle to-
gether with the optimality conditions (see the proof of the theorem 4.1 below)
it is easy to verify that for such a f , the minimizer l * is a characteristic func-
tion. It remains to find its location. We have to check with four cases that
are

– l *4x [0 , R1 ] or l *4x [R1 , R0 ] , with

– R1ER0ER or RER1ER0 , or finally R1ERER0 .

We can easily prove that the three first cases cannot occur. The last one
leads to solve a non linear equation (u(R1 )4u(R0 ) ) which has a unique sol-
ution (R1 , R0 ) satisfying the optimality conditions and the constraint P(R0

22
R1

2 )4C . So, in this case V 0 has two connected components separated by the
ring V 14x [R1 , R0 ] . Now if we take f4ex [0 , R]1ax [R , 1 ] , e small, the minimizer
l *e , closed to l *, is relaxed. Indeed, when e40, the internal part of V 0

( [0 , R1 ] ), (on which u is constant) becomes, as soon as ec0, a relaxed part
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V*. By continuity arguments with respect to the perturbation e , we can prove
that l * is relaxed in a ball B(0 , R *), equal to 1 in a ring [R *, R1 ], R1ER and
null on the rest of the unit ball.

Let us now come back to the case f non increasing, where we can give a
complete answer:

THEOREM 4.1. – Assume that V is the unit ball and f4 f (r) is a radially
symmetric non increasing function in L 2 (V). Then the solution is unique
and it is the characteristic function of a radially symmetric do-
main. r

PROOF. – We are going to prove the following steps:

(i) There exists a classical solution l *4x V 1
, with V 14B(0 , R1 ).

(ii) There does not exist any other radially symmetric solution.

(iii) Conclusion.

According to the above discussion, the point (i) will be proved if the unique
solution of

.
`
/
`
´

2u 92
1

r
u 81u4 f (r)

2u 92
1

r
u 84 f (r)

u , u 8 continuous for r4R1 ,

u 8 (0)40, u(1)40 .

in ]0 , R1 [,

in ]R1 , 1[,(16)

satisfies sup
V 0

u4 inf
V 1

u . More precisely, we are proving that u is non increasing

as soon as f is non increasing. First of all let us prove that u 8 (R1 )G0 (u is in
H 2 (0 , 1 ), so u 8 is continuous). Multiplying the equation by r and integrating
on (0 , R1 ) yield

s
0

R1

r (u2 f ) dr4s
0

R1

(ru 91u 8 ) dr4R1 u 8 (R1 ) .

Now, by maximum principle, we know that uGu0 in V where u0 is the solution
of 2Du04 f in V , u040 on ¯V . So

R1 u 8 (R1 )Gs
0

R1

r (u02 f ) dx .(17)

Now, since f is radially symmetric we can write an explicit expression for u0

that is u0 (r)42 ln rs
0

r

tf (t) dt2s
r

1

t ln tf (t) dt . Therefore a straightforward
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computation gives

(18) s
0

R1

t(u0 (t)2 f (t) ) dt4 (R1
2 /42 (R1

2 /2 ) ln R121)s
0

R1

tf (t) dt2

(1 /4)s
0

R1

t 3 f (t) dt2 (R1
2 /2 )s

R1

1

t ln tf (t) dt .

Since f is non increasing, the last term in (18) is estimated from above by

2R1
2 /2 s

R1

1

t ln tf (t) dtG (R1
2 /2 ) f (R1 )s

R1

1

(2t ln t) dtG (R1
2 /2e) f (R1 ) .

Moreover, in ]0 , 1[

R1
2 /42 (R1

2 /2 ) ln R121G23/4 and s
0

R1

tf (t) dtG (R1
2 /2 ) f (R1 ) ,

and the first term in the right hand side of (18) is less than 2(3 /8) R1
2 f (R1 ).

So, finally

4R1 u 8 (R1 )G2(e 2123/4) R1
2 f (R1 )2s

0

R1

t 3 f (t) dtG0 .

To conclude to the non increasingness of u , we use one more time the maxi-
mum principle. Let us assume that f is regular (e.g. C 1 ) and for a general f we
argue thanks to a density argument. Differentiating the equation on ]0 , r1 [
yields:

2
d 2

dr 2
u 82

1

r

d

dr
u 81 (11

1

r 2
) u 84 f 8 (r)G0 in ]0 , R1 [ .

So u 8 must have its maximum on the boundary. Now u 8 (0)40 and u 8 (R1 )G0
hence u 8 remains non positive on ]0 , R1 [. We use the same argument on
]R1 , 1[ since u 8 (1)G0.

Proof of (ii). Let us assume, for a contradiction, that there exists a radially
symmetric solution with V* non empty. We claim that, in this case, V* is nec-
essarily a ring with an outer boundary common with V 0 . Indeed, if it was not
the case we would have a component of V* with an outer boundary common
with V 1 . But the fact that u necessarily decreases in each component of V 1

would contradict the optimality conditions given in the theorem 2.2. So if V* is
not empty, there exists R * such that the sphere of radius R * is a common
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boundary to V* and V 0 . Therefore, on ]R *, 1[, u is solution of

2u 92
1

r
u 84 f (r) in ]R *, 1[, u 8 (R *)40, u(1)40 ,

and is given by u(r)42ln rs
R *

r

tf (t) dt2s
r

1

t ln tf (t) dt , with

c *4u(R *)42s
R *

1

t ln tf (t) dt .(19)

Now, since f is non increasing, we would have from (19) c *G f (R *) e 21G
f (t) e 21 for all tER *. But in V* we must have ( fOc *)E1 a.e. and this is a
contradiction with the above inequality.

(iii) Conclusion. Any relaxed solution provides a radially symmetric relaxed
solution and that is incompatible with the point (ii). This implies uniqueness of
the minimizer according to the convexity of J . r

REMARK 4.2. – In the case where f is not decreasing, we give an example of
minimizer with V 14¯ . Let 0ECE1/2 fix the volume constraint and a be a
positive number. Take R4k2C , f4ax [0 , R[1x [R , 1[ . The couple (u , l) defined
by:

u(t)4a in [0 , R[

2u 92
1

r
u 84 f in [R , 1[, u 8 (0)40, u(1)40

u(R)4a

l(t)4 tx [0 , R] (t)

satisfies the theorem 2.2 with l totally relaxed. r

5. – Some numerical results.

Let us observe that the functional J being convex, we could use any classi-
cal minimization algorithm to solve the above minimization problem. Never-
theless, we propose another algorithm based on an intensive use of the opti-
mality conditions given in the theorem 2.2. This algorithm turns out to be very
efficient and derives from the following observation.

PROPOSITION 5.1. – Let E(l , a)4 (E1 (l , a), E2 (l , a) ) be the functional de-
fined on LAC3R1 by:

E1 (l , a)4 s
]uEa(

l 2 dx1 s
]u4a(O]0EfEa(

gl2 f

a
h2

dx1 s
]uDa(N]u4f4a(

(l21)2 dx
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and

E2 (l , a)4NC2 s
]uFa(

l(x) dxN .

Then, l * is a minimizer of J if and only if E(l *, c *)4 (0 , 0 ) (where c * is de-
fined by (12)).

PROOF. – Clearly the couple (l *, c *) where l * minimizes J and c * is de-
fined as in the theorem 2.2 is a solution of E(l , a)4 (0 , 0 ). Conversely, it is
easy to check that a point (l , a) where E vanishes satisfies the optimality con-
ditions (i) and (ii) of the theorem 2.2 and the volume constraint. r

Since the functionals Ei (l , a) are nonnegative, their roots are also their
minimizers and (3) is equivalent to:

Opt (l , a) : inf
(l , a)�LAC3R1

Ei (l , a), i41, 2 .(20)

Let us now describe how we approximate (3) and (20). We take V4]0 , 1[3
]0 , 1[ and we denote by Ph (L) the approximation of P(l) by a Finite Element
Method or a Finite Difference Method. In any case, we will denote by ui the
approximate value of u at i th node (i41 RN , we will denote by I the discrete
set I4]1, R , N(). Then, using a trapezoidal quadrature rule, the functional
J can be approximated as follows:

Jh (L)4h 2!
i�I

fi ui ,(21)

where U4]u1 RuN(, F4] f1 R fN( and L4]l1 R lN(�LACh4]L�RN , 0G
liG1 (i�I , h 2!

i�I
li4C( are the approximations of u , f and l respec-

tively.
As in the continuous case, the functional Jh is convex and has a minimizer

on the compact convex set LACh .
We are in a simple case where the gradient of the discretized problem cor-

responds to an approximation of the continuous gradient, so the approximation
of the optimality condition associated to Jh reads:

If L *�LACh minimizes Jh and if U *4]u1* . uN*( solves Ph (L *), then

aJ 8h (L *), Hb42 h 2!
i�I

hi ui*2F0(22)

for every H4]h1RhN( in Th8(L *) the tangent cone to LACh at the point L *.
The constraints being linear, it is easy to describe the tangent cone in this

case. Introducing the discrete version of the definition 2.1:

I04]i�I , li40( I *4]i�I , 0E liE1( I14]i�I , li41(
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yields immediately

Th8 (L *)4mH4(h1 , R , hN ), hiF0 for i�I0 , hiG0 for i�I1 , and !
i�I

hi40n .

As an easy consequence (mimic the proof of Theorem 2.2), we can give

THEOREM 5.1. – Let L *4 (l1* , R , lN*)�LACh and U *4 (u1* , R , uN*) be the
solution of Ph(L *). Let I0 , I *, I1 be the partition of V associated with L*.

Then L * minimizes Jh if and only if :

(i) u *i 4c *, (i�I * (as soon as I *c¯)

(ii) ((i , j , k)�I03I *3I1 , we have u *i Gu *j Gu *k .

In order to approximate (20) we have to introduce:

I0 (a)4]i�I , uiGa( ,(23)

I *(a)4]i�I , ui4a , fiEa( ,(24)

I1 (a)4]i�I , uiFa(N ]i�I , ui4a4 fi( ,(25)

and we consider:

E1h (L , a)4h 2g!
I0 (a)

li
21 !

I *(a)
gli2

fi

a
h2

1!
I1 (a)

(li21)2h ,(26)

E2h (L , a)4NC2h 2 !
I *(a)NI1 (a)

liN .(27)

Notice that (L *, c *) such that Ei (L *, c *)40 satisfies the theorem 5.1 with
I0 (c *)4I0 , I *(c *)4I * and I1 (c *)4I1 . Therefore we have

PROPOSITION 5.2. – Let Eh (L , a)4 (E1h (L , a), E2h (L , a) ) be the function-
al defined on LACh3R1 by (26)(27).

T h e n (L , a) m i n i m i z e s Eh i f a n d o n l y i f L mi n i m i z e s Jh w i t h
a4c *. r

Before describing the steps of our algorithm, let us remark that the sets
I0 (a), I *(a) and I1 (a) are not really adapted to a numerical treatment and
have to be replaced by the following ones (with eD0 fixed):

I0 (a , e)4]i�I , uiEa(12e)((28)

I *(a , e)4mi�I , N ui

a
21 NEe , fiEa(12e)n(29)

I1 (a , e)4]i�I , uiDa(11e)(Nmi�I , N ui

a
21 NEe , N fi

a
21 NEen .(30)
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Then, the level line c * associated to the optimal L * is defined by

Nc *2 max
I0 (c *, e)

u *i NEe , Nc *2 min
I1 (c *, e)

u *i NEe .(31)

So, for rD0 well chosen, the algorithm is:

Step 0: (initialization) L0�LACh . K40.
(Loop on K : while KGQ)
Step 1: resolution of Ph (L K ).
Step 2: computation of a K which minimizes aOE2h (L K , a).
Step 3: computation of the sets I0

K (a K , e), I *K (a K , e) and I1
K (a K , e).

Step 4: computation of ˜E1h(L K, aK) and LK114L K1r˜E1h(L K, aK).
(End of loop).

If Card (I * Q (a Q , e) )D0, l Q11
i 40 for i�I0

Q (a Q , e) and l Q11
i 4 fi O(a Q11 )

for i�I * Q (a Q , e), and l Q11
i 41 for i�I1

Q (a Q , e),

a Q114

h 2 !
I * Q (aQ , e)

fi

C2h 2 Card (I1
Q (a Q , e) )

.

If Card (I * Q (a Q , e) )40 l Q11
i 40 for i�I0

Q (a Q , e) and l Q11
i 41 for i�

I1
Q (a Q , e).

REMARK 5.1. – The number Q is generally small. Moreover this number, to-
gether with the sets I0

Q (a Q , e) and I1
Q (a Q , e), does not depend on L0 . Finally,

the solution of Ph (L Q11 ) satisfies the optimality conditions of the theorem 5.1
(where the point (i) is replaced by the condition Nui2a Q11 NEe). r

REMARK 5.2. – Our method is very well adapted to computation of a classi-
cal solution. This solution may coexist with a relaxed one. Indeed, let us con-
sider the one dimensional case and give the following example. Take C47/4 ,
V4]0 , 6[ and f given by:

f (x)4

.
/
´

1/2

1

x23/2

2x19/2

in

in

in

in

]0 , 2[N]4 , 6[

[5 /2 , 7 /2]

[2 , 5 /2]

[7 /2 , 4 ]
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The function l defined by

l(x)4
.
/
´

0

f (x)

in

in

]0 , 2[N]4 , 6[

[2 , 4 ]

belongs to LAC and P(l) is satisfied by

u(x)4
.
/
´

2x 2 /41x

1

21/4(x26)22 (x26)

in

in

in

]0 , 2[

[2 , 4 ]

[4 , 6 ] .

This solution satisfies the optimality conditions, i.e. l minimizes J . Neverthe-
less, l is not a classical solution since l�]0 , 1[ in the intervals [2 , 5 /2[N
]7 /2 , 4 ].

Now looking for a classical solution leads to solve

min ]J(v), v4]a , a17/4[, a�]0 , 627/4[(

Using the software Maple we obtain a417/8 and J(]17 /8 , 31 /8[)4J(l)4
37/12 , i.e. the subset ]17/8, 31/8[ provides an optimal domain. In such a case,
our algorithm may converge to the classical solution and ignore the relaxed
ones (what could be considered as a good thing!).

The following figures show some examples of minimizers obtained thanks
to this procedure. For each second member f we give the solution of P(l *)
(«etat0», «etat1») associated to the optimal domain l * («Omega0»,
«Omega1»).
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