PAVEL SHUMYATSKY

On locally finite groups and the centralizers of automorphisms

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2001_8_4B_3_731_0>
On Locally Finite Groups
and the Centralizers of Automorphisms (*).

PAVEL SHUMYATSKY

1. – Introduction.

Let G be a group admitting an action of a group A. We denote by $C_G(A)$ the set $C_G(A) = \{x \in G; x^a = x \text{ for any } a \in A\}$, the centralizer of A in G (the fixed-point group). This paper deals with the situation when A is an elementary abelian p-group, and G is a (locally) finite p'-group. Let $A^\#$ denote the set of non-identity elements of A. Assume that G is finite and that $C_G(a)$ is nilpotent for any $a \in A^\#$. J. N. Ward showed that if A has rank at least 2 then G is metanilpotent [9], and that if A has rank at least 3 then G is nilpotent [10]. Later the author found some extensions of these results to infinite groups [7, 8]. In this paper we obtain a sufficient condition for the group G to be nilpotent of bounded class.

Theorem A. – Let p be a prime, G a locally finite p'-group acted on by an elementary abelian group A of order p^2. Assume that there exists a positive integer m such that $[C_G(a), C_G(b), \ldots, C_G(b)] = 1$ for any $a, b \in A^\#$. Then G is nilpotent and the class of G is bounded by a function depending only on p and m.

As an immediate consequence of the above theorem we obtain

Corollary B. – Let p be a prime, G a locally finite p'-group acted on by an elementary abelian group A of order p^2. Assume that there exists a positi-
There exists an integer \(m \) such that \(\langle C_G(a), C_G(b) \rangle \), the subgroup of \(G \) generated by \(C_G(a) \) and \(C_G(b) \), is nilpotent of class at most \(m \) for any \(a, b \in A^\# \). Then \(G \) is nilpotent and the class of \(G \) is bounded by a function depending only on \(p \) and \(m \).

The proof of the above results uses the associated Lie rings. In particular we will need the following proposition which may have some independent interest.

Proposition C. Let \(L \) be a Lie ring such that \(L = pL \). Let \(A \) be an elementary abelian group of order \(p^2 \) acting on \(L \) by automorphisms. Assume that there exists a positive integer \(m \) such that \([C_L(a), C_L(b), \ldots, C_L(b)] = 0 \) for any \(a, b \in A^\# \). Then \(L \) is nilpotent and the class of \(L \) is bounded by a function depending only on \(p \) and \(m \).

2. Preliminaries.

The next lemma is well-known (see [2, 6.2.2, 6.2.4] for the proof).

Lemma 2.1. Let \(A \) be a finite \(p \)-group acting on a finite \(p^* \)-group \(G \).

1. If \(N \) is an \(A \)-invariant normal subgroup of \(G \) then \(C_{G/N}(A) = C_G(A)N/N \);

2. If \(A \) is an elementary abelian group of order \(p^2 \) then \(G = \langle C_G(a); a \in A^\# \rangle \).

Similar facts (with basically the same proof) hold for Lie rings.

Lemma 2.2. Let \(A \) be a finite \(p \)-group acting on a Lie ring \(L \).

1. If \(N \) is an \(A \)-invariant ideal of \(L \) such that \(pN = N \) then \(C_{L/N}(A) = (C_L(A) + N)/N \);

2. If \(A \) is an elementary abelian group of order \(p^2 \), and if \(pL = L \), then \(L = \sum_{a \in A^\#} C_G(a) \).

A well-known theorem of Kreknin [6] says that if a Lie ring \(L \) admits a fixed-point-free automorphism of finite order \(n \) then \(L \) is soluble and the derived length of \(L \) is bounded by a function of \(n \). We will require the following extension of this result [5].

Theorem 2.3. Let a Lie ring \(L \) admit an automorphism \(\phi \) of finite order \(n \) such that \([L, C_L(\phi), \ldots, C_L(\phi)] = 0 \). Assume that \(nL = L \). Then \(L \) is soluble with derived length at most \((m + 1)^{n-1} + \log_2 m \).
We will also require a Lie-theoretic analogue of the famous criterion of Ph. Hall for a group to be nilpotent [3]: if \(G \) is a group having a normal subgroup \(N \) such that both \(N \) and \(G/N' \) are nilpotent then \(G \) is nilpotent and the class of \(G \) is bounded in terms of the classes of \(N \) and \(G/N' \). The corresponding Lie-theoretic result was established in [1].

Theorem 2.4. – If a Lie ring \(L \) has an ideal \(N \) such that both \(N \) and \(L/N' \) are nilpotent then \(L \) is nilpotent and the class of \(L \) is bounded in terms of the classes of \(N \) and \(L/N' \).

3. – Main results.

Our first goal is to establish Proposition C. It will be convenient to start with the case where \(L \) is metabelian.

Lemma 3.1. – Let \(L \) be a metabelian Lie ring such that \(L = pL \). Let \(A \) be an elementary abelian group of order \(p^2 \) acting on \(L \) by automorphisms. Assume that there exists a positive integer \(m \) such that \([C_L(a), C_L(b), \ldots, C_L(b)] = 0\) for any \(a, b \in A \). Then \(L \) is nilpotent and the class of \(L \) is at most \((p + 1)(m + 1)\).

Proof. – Let \(A_1, \ldots, A_{p+1} \) be the cyclic subgroups of \(A \), and for \(i = 1, 2, \ldots, p + 1 \) we set \(C_i = C_L(A_i) \). Let \(M \) be the commutator subring of \(L \), \(M_i = C_i \cap M \), and \(N_i = M + C_i \). Lemma 2 tells us that \(M = \sum_j M_j \) and \(L = \sum_j C_j \). We observe that the \(N_i \) are ideals and, since \(L = \sum_j N_j \), it is sufficient to show that each \(N_i \) is nilpotent of class at most \(m + 1 \). Let \(\gamma_k(N_i) \) stand for the \(k \)-th term of the lower central series of \(N_i \). We have

\[
\gamma_{m+2}(N_i) = [N_i, \ldots, N_i] \leq [M, C_i, \ldots, C_i] = \left[\sum_j M_j, C_i, \ldots, C_i \right] = \sum_j [M_j, C_i, \ldots, C_i] = 0
\]

as \([M_j, C_i, \ldots, C_i] = 0\) for any \(i, j \). The lemma follows.

Proposition C. – Let \(L \) be a Lie ring such that \(L = pL \). Let \(A \) be an elementary abelian group of order \(p^2 \) acting on \(L \) by automorphisms. Assume that there exists a positive integer \(m \) such that \([C_L(a),
\[C_L(b), \ldots, C_L(b) \] = 0 for any \(a, b \in A^\# \). Then \(L \) is nilpotent and the class of \(L \) is bounded by a function depending only on \(p \) and \(m \).

Proof. – Let \(C_j \) have the same meaning as in the proof of Lemma 3.1. Since \(L = \sum_j C_j \), it follows that \([L, \underbrace{C_i, \ldots, C_j}_{m}] = 0 \) for any \(i \). Indeed,

\[
[L, \underbrace{C_i, \ldots, C_i}_{m}] = \left[\sum_j C_j, \underbrace{C_i, \ldots, C_i}_{m} \right] = \sum_j [C_j, \underbrace{C_i, \ldots, C_i}_{m}] = 0.
\]

Now Theorem 2.3 tells us that \(L \) is soluble and the derived length \(d \) of \(L \) is at most \((m + 1)^{p - 1} + \log_2 m\). We will use induction on \(d \) to show that \(L \) is nilpotent and that the nilpotency class of \(L \) is bounded by a function of \(d, m, p \).

If \(d = 2 \) then \(L \) is metabelian and the required result follows from Lemma 3.1. Assume \(d \geq 3 \) and let \(M \) be the metabelian term of the derived series of \(L \). The inductive hypothesis is that \(L/M' \) is nilpotent and has nilpotency class bounded in terms of \(d, m, p \). By Lemma 3.1 \(M \) is nilpotent of class at most \((p + 1)(m + 1)\). Thus, Theorem 2.4 implies that \(L \) is nilpotent of class bounded by a function of \(d, m, p \).

Lemma 3.2. – Assume the hypothesis of Theorem A and let \(G \) be finite. Then \(G \) is nilpotent.

Proof. – Assume that \(G \) is a counterexample whose order is as small as possible. Let \(A_1, \ldots, A_{p + 1} \) be the cyclic subgroups of \(A \). For any \(A \)-invariant subgroup \(H \) of \(G \) we let \(H_i \) denote \(C_{H_i}(A_i) \). Since each \(G_i \) is nilpotent, it follows that \(G \) is soluble [11]. Let \(F = F(G) \) be the Fitting subgroup of \(G \). If \(F \) is not abelian \(G/F' \) is nilpotent by the inductive hypothesis and so the Ph. Hall Criterion cited in the paragraph preceding Theorem 2.4 shows that \(G \) is nilpotent, a contradiction. Hence \(F \) is abelian and so, by Lemma 2.1, \(F = \prod_j F_j \).

Since the order of \(G \) is as small as possible, the quotient \(G/F \) is nilpotent. It follows that any subgroup of \(G \) containing \(F \) is subnormal. Since \(F \) is generated by all subnormal nilpotent subgroups, it follows that no subgroup properly containing \(F \) is nilpotent. Hence any such \(A \)-invariant subgroup provides a counterexample to the lemma and, using the minimality of \(|G| \), we conclude
that G/F is abelian and A acts irreducibly on G/F. By Lemma 2.1 G/F is generated by the centralizers of A_i. These are all A-invariant and so some A_k acts on G/F trivially. Lemma 2.1 now shows that $G = FG_k$. Then we have

$$[G, \ldots, G] \leq [F, G_k, \ldots, G_k] = \prod_{j} [F_j, G_k, \ldots, G_k] = \prod_{j} [F_j, G_k, \ldots, G_k] = 1.$$

Thus, G is nilpotent. □

Now we are ready to conclude the proof of Theorem A.

Theorem A. – Let p be a prime, G a locally finite p'-group acted on by an elementary abelian group A of order p^2. Assume that there exists a positive integer m such that $[C_G(a), C_G(b), \ldots, C_G(b)] = 1$ for any $a, b \in A^\#$. Then G is nilpotent and the class of G is bounded by a function depending only on p and m.

Proof. – The usual inverse limit argument along the lines of [4] reduces the theorem to the case where G is finite. So we assume that G is finite and hence, by the previous lemma, nilpotent. The construction associating a Lie ring $L(G)$ with any nilpotent group G is well-known. Let γ_k denote the kth term of the lower central series of G. Set $L_k = \gamma_k/\gamma_{k+1}$ and view L_k as an additive abelian group. Then $L(G) = \bigoplus_k L_k$. If $x \in \gamma_i$, $y \in \gamma_j$ then, for corresponding elements $x\gamma_i+1$, $y\gamma_j+1$ of $L(G)$, we set $[x\gamma_i+1, y\gamma_j+1] = [x, y]_{i+j+1}$. Thus, we obtain a product operation on the set $\cup_k L_k$. This can be uniquely extended by linearity on the additive abelian group $L(G)$ and, equipped with the product, $L(G)$ becomes a Lie ring. The Lie ring has the same nilpotency class as the group from which it was constructed. In our situation the group A acts naturally on each quotient γ_k/γ_{k+1} and this action extends uniquely to an action by automorphisms on the Lie ring $L(G)$. Lemma 2.1 shows that if $a \in A$ then $C_L(a)$ is the direct sum of the quotients $C_{\gamma_k}(a)\gamma_{k+1}/\gamma_{k+1}$ and, since $[C_G(a), C_G(b), \ldots, C_G(b)] = 1$ for any $a, b \in A^\#$, it follows that $[C_L(a), C_L(b), \ldots, C_L(b)] = 0$. Finally, we note that $L(G)$ is finite and has the same order as G. Therefore $pL(G) = L(G)$ and, by Proposition C, the nilpotency class of $L(G)$ (the same as of G) is bounded by a function depending only on p and m.

REFERENCES

Pavel Shumyatsky: Department of Mathematics, University of Brasilia
Brasilia-DF, 70910-900 Brazil; e-mail: pavel@ipe.mat.unb.br

Pervenuta in Redazione
il 7 dicembre 1999