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Bollettino U. M. 1.
(8) 4-B (2001), 711-729

Homogenization of Some Nonlinear Problems
with Specific Dependence Upon Coordinates.

P. COURILLEAU - S. FABRE - J. MOSSINO

Sunto. — Questo articolo considera una successione di equazioni differenziali a deriva-
te parzialt non lineari in forma di divergenza del tipo

—div(Q*G(x, NtVu)) =1,

m un dominio limitato Q dello spazio n-dimensionale; Q° = Q%(x) e N°=N*(x)
sono matrici con coefficenti limitati, N° ¢ invertibile e la sua matrice inversa R*
ha anche coefficenti limitati. La non linearita é dovuta alla funzione G = G(x, &);
la condizione di crescita, la monotonicita e le ipotesi di coercitivita sono modellate
sul p-Laplaciano, 1 <p < o, ed assicurano lesistenza di una soluzione u‘e
W& P(Q) di ciascuna equazione, per ogni fissata fée W 1P (Q). Si ipotizza una
dipendenza specifica della matrice dei coefficenti dalle coordinate: Q°(x) =
(gf j(x/)) e R*(x) = (rf ;(x;)), dove il punto arbitrario di Q & denominato x =
(2;, ;' ), con x; reale e x; nello spazio (n — 1)-dimensionale. Essenzialmente il ri-
sultato principale é il sequente. Supponiamo la sequente convergenza: per i coeffi-
centi, Q*—Q, R*—R, rispetto alla topologia debole™; per i termini di sorgente,
fE—f, rispetto alla topologia forte di Wy 1P (R); e per le soluzioni u®—u, rispetto
alla topologia debole di WP (R); allora u é soluzione dell’equazione limite

—div(QG(x, NVu)) =f.

St dimostra anche un risultato di tipo correttore e vengono date applicazioni del ri-
sultato ottenuto.

1. — Introduction.

We consider nonlinear monotone equations such as

{ —div(Q*G(x, N°Vu?)) =f¢,

C ()
ute Wy (),

where Q is a bounded domain in R", 1 < p < o, Wi P(£) is the usual Sobolev

space, ¢ belongs to its dual W 1 ?'(Q), where p’ is the conjugate of p. (Here

and in the following, we write Q¢ and N¢ instead of Q°(x) and N°*(x).)
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The function G : 2 X R*—R™ is a Carathéodory function, that is G(x, &) is
measurable with respect to 2 and continuous with respect to §. We assume the
existence of #>0 and ¢ in L” () such that

1.1 ae. reQ, VEeR", |G, & <plelP ! + glx).

(For convenience, we denote ||£| the euclidian norm of & in R™ or R™, indepen-
dently of the dimension.)

The matrices @° and N¢ have L *-coefficients, N* is invertible and R*® =
(N#)~! also has L *-coefficients. Moreover we assume that @ ¢ and R ¢ have the
following specific dependence upon coordinates:

Qg . Q%Rﬁxm
Q@) = (g )izt

c,m,

N¢: Q— R"*"
Ri(@) = (N* (@) = (@)=t on
where the generic point in Q is denoted by x = (x;, /), x;€ R, 2/ e R" 1. We
suppose that the matrices @ °, N ¢ and the function G are related by the two fol-
lowing conditions:

(12) ae. xe®, V&, neR", (Q:G(x, N¢&) —Q*G(x, Nén), E—n)=0

(here (.,.) denotes the scalar product in R" but we shall use the same notation
for the scalar product in R™),

Ja >0, JheL'(Q),ae. xeR, VE€R",

(1.3)
(QGx, N°&), &) = dl|g[P - (x).

(Examples will be given in Section 5.)

The above assumptions imply that for every ¢, the equation (£°) admits
one solution at least in W' ?(£2) denoted u¢. The aim of this paper is to prove,
under natural convergence assumptions on f°, @° and R°¢, that u® converges
weakly (up to extraction of a subsequence) to a solution of a similar equation
(). We also give a corrector type result which asserts that Vu® — T¢Vu con-
verges strongly to zero in L?(£) for a proper matrix 7¢. We indicate several
applications, among which we consider the case of @ being the cofactor matrix
of R*¢. Finally we study the example of the p-Laplacian.

This paper was announced in a short note [1]. It is also the natural follow
up of [6], which deals with the linear case, and of [2] and [4], which concern
some particular cases of nonlinearities.
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2. — Existence of solutions of (F°¢).

THEOREM 2.1. — Under the previous assumptions, (E¢) has (at least) one
solution u°®.

ProoF. — For convenience, we forget the subseript &, which is fixed here,
we do not write explicitly the dependence in & and we denote by C any con-
stant. Let A: W} ?(Q2)—>W 17 (Q) be defined by:

Au = — div(QG(N Vu)) ,

or
(Au, v) = f(QG(NVu), Vo) dx .
Q

We shall prove that for all fin W 17" (Q), there exists « in W' ?(£2) such that
(Qu, v) = (f, v), for all v in W} P (). This is a simple application of the theory
of monotone operators. We have to prove that:

1) @ is bounded and continuous from W' ? () (with strong topology) to
weak-W ~1 2" (Q),

(Av,v) _

== Jollwg. rce)
3) For all u, v in Wi (), (Au — Qv, u —v) =0.

2)

+ ©,

Proof of 1)
We have

[(Qu, v)| = f(QG(NVu), Vo) dx
Q

< J leevvu | |74 da:
Q
Using inequality (1.1), since the coefficients of @ and N are bounded,
@Qu, v)| < CJvulp = + )|V dx .
e

Applying Hoélder inequality yields

(@, v) | < OVl gy + gy @) [Volroy

= C(H“”gvgvlp(m + ”g”LP'(Q))HQ)HWOI")(Q)-
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Hence @u belongs to W17 (Q) and
||au||W’1”"(.Q) = C(”u”%}lp(g) + ||9||LP'(9)) )

@ 1is bounded.

Let us check that @ is continuous from strong-W{ ?(Q) into weak-
W L7 (Q). We have to prove that if u, tends to u strongly in W ?(£2), then

{(Quy, v) tends to (Qu, v), for any v in W7 (Q). Actually

(Qug, v) = [ (QGNVu), Vo) da,
Q

NVu,, tends to NVu strongly in L?(£)", when k goes to infinity. Since (1.1) is
satisfied by the Carathéodory function G, the map U— G(., U(.)) is continu-
ous from L?(2)" to L?'(2)™. (This is a classical consequence of Lebesgue’s

theorem.) Thus QG(NVu,,) tends to QG(NVu) strongly in L?'(2)" and
klim (Quy, v) = (Qu, v).
Proof of 2)

Because of (1.3),

(A, v) = f(QG(NVv), Vo)dx
Q
> [(avolp - 1) dx
Q

> allfyy o f b,
Q
which proves 2).

Proof of 3)

It is obvious by making &= Vu and n = Vv in (1.2).

3. — Limit problem of (£°¢).

THEOREM 3.1. — We now make the following additional hypotheses:

3.1 fe—f strongly in W™ 1P'(Q),

(3.2) { Q°—Q weaklyx in L~ (Q)"*",

Ré=(N®)"'—=R weakly* in L~ (Q)""",



HOMOGENIZATION OF SOME NONLINEAR PROBLEMS ETC. 715
3.3) R is invertible with N=R 'eL*(Q)"*",

(8.4) {N*}, is bounded in L= (L2)"*",

then any sequence of solutions u® of (E¢) is bounded in WP (Q). Moreover if
u® tends to u weakly in Wi P(R) for some subsequence €' of €, then u is a sol-
ution of

—di G(x, NV =f,
{ iv(QG(x w)=f &)

ueWhr(Q).

REMARK. — Because of the specific dependence on the coordinates that we
assume, it follows that (see [6]):

Se='Q*R*—S ="QR weakly* in L “(Q)"*".
As an immediate consequence of (1.2) and the above, one can take the limit
in

Vpe (), ¢ =20, f(G(x, &) =G, ! Q(x) R*(x)(&E—n)) px) de =0,
Q

so that (1.2) is satisfied with Q¢, N¢ replaced by Q, N.
Moreover (1.3) can be written as

Aa>0,Ihe L (2),ae. xeQ, VyeR",
(G, n), St(x) ) = al|R* () nlP — h(x),

and we can take the limit in the same way as above. Thus @ and N satisfy
1.3).

It follows that the limit equation () verifies the same conditions as the
equations (K¢) and (E) has at least one solution.

Proor oF THEOREM 3.1. — We have (see the end of Section 2)

o Wy e — J b < (@, )
Q

= <fs’ us>
< Clt g rceys
by (3.1), which implies that ¢ is bounded in Wi ?(R).
It remains to prove that if u ¢ tends to u weakly in W' ?(£), then u is a sol-

ution of (&).
By compactness ¢ tends to u strongly in L?(£). Let us write ¢ instead of
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e'. Let ve W P(Q). Making &= Vu® and 5 = R*NVv in (1.2), we obtain
0< Fe(v)
= [(@ G Vi) - @ GNVY), Vut — R*NVb) du
Q
=A-B-C+D
where
A= f(QSG(NSVu*'), Vut)de,
Q
B = f(Q“"G(NSVu*‘), R:NVv)dzx,
Q
C= f(Q*"’G(NVv), Vut)de,
Q
D = f(QsG(NVv), RENVv)dx .
Q

We shall take the limit in each term separately.
FIRST TERM A:
A= (@ ut,ut) = (f ut) = (f 0)
by (3.1) and the weak convergence of ¢ in W 7 ().
THIRD TERM C. — Let P¢='Q°¢, P ='Q. Since G(NVv) belongs to L? ()™, it

suffices to show that P*Vu? tends to PVu weakly in L?(2)™ or that P*Vu°®
tends to PVu in @' (2)™ (since P¢Vu¢ is bounded in L?(2)™). Note that

ou’t
(PeVus), = X pia)) ——
j ou;

0
= 2 (i) ut).
J 390]

We already know that u* tends to u strongly in L”(£2) and p;; tends to p;
weakly* in L * (), thus pju° tends to p;u in (' (2). It follows that

C = f(G(NVv), Pevus)dx
Q

— [ Vo), PYwdz = [ QG Vu)d.
%0 Q
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FourtH TERM D. - Recall that S*=P*R*—~S=PR weaklyx in
L=()"*". Then P° R® NVv tends to PVv weakly in L?(2)", so that

D= f(G(NVv), P® R® NVv) dx
Q

— f(G(NVv), PVv)dx = f(QG(NVv), Vo) de .
eV 0 Q

SECOND TERM B. — Let 6° = Q°G(N*®Vu®). The sequence {0, }, is bounded
in L?'(Q)", thus there exits ¢ in L” (2)" such that (up to a subsequence) o*
tends to o weakly in L? (2)". Furthermore —divo®=f¢in @' (L) passes to
the limit, so that —divo=f. Let M*='R¢, M ='R, we shall prove that

(3.5) M’SOE—O>M0 in @' (LQ)".

Admitting (3.5) for a while, as M¢o°¢ is bounded in L? ()", we deduce that
M¢o¢ tends to Mo weakly in L? (Q)", so that

B= f(oe, RENVY) dx = f(M""'of, NVv) dx
Q

Q

_0>f(Ma, NVv) da = f(o, V) dac = (f, v).
e~V 0

Q

It remains to prove (3.5). Let C = l_[] , T;[ be the smallest cube containing

Q. Clearly M* and M are defined i 1n G moreover M ° tends to M weakly* in
L*(@"*"™ Now let us consider

vi(x) = fmij?(t) dt, e = fmij(t) dt .

In Q, ov/;/dx), =mf; if k=j and dv;/dx); =0 otherwise. The same result holds
for v;;. Moreover it is clear that v tends to v; weakly in W 7(£2). As o° tends
to o weakly in L? ()" and divo®= — f¢ tends to dive= — f strongly in
W L2 (Q2) by assumption, then by compensated compactness (see [7]),

m;o‘;’ = (V'U;?, (78) ?_}0 (V'Uu, 0) = 7’}’1/170‘7 in @,(9).
Summing over j, we obtain (3.5), component by component.

END oF PROOF. — By taking the limit in F°(v) =0, we get

Fv) = f(QG(NVv), Vo—Vu)de— (f,v—u)=0.
Q
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A standard argument shows that
J @), vuyde = (£, w),
Q

for all w in W ?(Q) so that u is a solution of (E).

4. — Correctors.

As already noticed, (1.2) can be written
4.1) ae. xeQ, VE, neR", (Q°Glx, &) — Q°Glx, n), REE—R*n) =0.
We are going to prove that the result of the previous section can be improved,
under a stronger assumption.

THEOREM 4.1. — We now replace (1.2) by the stronger condition

AC>0, ae. xe, V& nelkR”,
Q°(x) G(x, &) —Q°(x) G(x, ), R*(x) E—R*(x) n)

4.2) Cllg—nlp ifp=2,
> & —nl? .
_ T r1<p<2.
(&I + [l ]2 -7

Then (E¢) and (E) have unique solutions u® and u respectively, u® tends to u
weakly in WL P(Q) (for the whole sequence). Moreover v =Vu®— R NVu
tends to zero strongly in LP(Q)".

PROOF. — Assumption (4.2) implies that (A°u—AQ°v, u—v) is positive if u=v,
thus (£¢) has at most one solution. As already done for (1.2), one can take the
limit in (4.2) and obtain the uniqueness of solution of (¥) in the same way.

It remains to prove that v* tends to zero in L?(2)". This will be obtained
from the convergence F'*(u) — F(u) = 0 that has been proved in the previ-

ous section. We consider separately the two cases p=2 and 1 <p <2.

Case p = 2: Using (4.2), we have

Fe(u) = f(QeG(NEVu") - Q°G(NVu), Vu® — R*NVu) dx
Q
>c [N Vu - NVulp dx
Q

—cfINcvlpde .
Q
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Since (N®)"'=R? is bounded in L*(R2)"*", we deduce that Fé(u) =
Cllv|l sy, which ends the proof in this case.

Case 1 < p < 2: As above, it is sufficient to show that N*Vu® — NVu tends
to zero when ¢—0, strongly in L?(Q)". Let w®= N?Vu*®. Note that

Jlwe = Nvulpde = [AcBedz,
Q Q

where
B lw® — NVulP
(lw? | + [NVl P22

&

B = (o] + [ NVay- .
By Holder inequality,

f”ws — NVl de < (J(As)z/palae)p/2 (ﬂf(BE)Z/(zp) dx)@*m/z.
Q

We shall prove that

1) [|A¢]l, 20 g, tends to zero when £—0,
2) B* is bounded in L%Z-P(Q).

1) Using inequality (4.2),

e _ V 2 1
f(Af)Z/de:f =N “”2_ de< =Fe(u),
3 s (wel+INvulp=r— €

which tends to zero.

2) Since Vu* is bounded in L? ()" and since N ¢ is bounded in L ()" *",
w* is bounded in LP(L)" and

[Bepe-2de = [(w + [NVl de
0 Q

is bounded, which ends the proof.

5. — Applications.

5.1. — The linear case.
Taking n=m, G(x, &) =&, p=2 and f*=f, equation (E°¢) becomes
—div(Q*N*Vu®) =f¢,
{ ute H} (Q)
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and Theorem 3.1 implies that °N?® H-converges to QN. It follows from the
general theory of H-convergence (see [7]) that ‘(Q*N°¢) =/(N®)"(Q¢) H-con-
verges to 'N'Q: we recover the linear case studied (under slightly different
assumptions) by S. Fabre and J. Mossino in [6].

5.2. — The case of diagonal matrices.
Let us assume that Q¢ and N°¢ are diagonal, then
n=m, N¢=diagn(x;)), @Q°=diag(q¢/(x/)),
and let us assume that » and ¢/ satisfy
n<nf()sn, g¢<q(®)=<qg,

for some positive numbers », %, ¢ q.

Let G(x, &) = (G;(&;))1 <i<n» be continuous monotone nondecreasing func-
tions. We assume that there exist positive constants a and g such that for any
real ¢,

G| <BItPY, Gt t=alt]”.

Condition (1.2) is satisfied since

(Q°G(x, ) - Q*G(x, ), R°§—R*n) = %(Gi(éi) —Gn))Ei—n) =0

=1
Condition (1.3) also holds since

@G, N8, 9= 2 ZL(% )

G;(nf(x;) E)nf () &,

1
n
>aqn’~1Y, [&:]7.
= i=1

We recover the result of R. Dufour in [2]: the limit equation of

n a
— —(gf (2’ (mE(xe) Vut)) =f¢
2 axi(% (@) G;(nf (a;) Vur)) =f£°, &)

wte Whr(Q)

is the equation (&) obtained by deleting &, as soon as f*—f strongly in
1 1
“LP(Q) and for any i, —eé—, gf —q; in weak*-L *(£). Moreover
au n; Ou i

&

89@ n;

8907;
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G; satisfies the strong monotonicity condition

[C|t—t’|?’ ifp=2,

G.(t) = Gi(t))(t—t")= Al

GO=GENIZ o IV g s
(ef+erp=r

5.3. — The cofactor matrix case.

Consider a sequence of matrices R® = (rj(x;)) bounded in L *(£)"*" such
that Det R*(x) = 6, for some positive number 6 which does not depend on ¢
and x. Then let Q¢ be the cofactor matrix of R*:

1
m=n, t=Cof Rf= ————'(N?) = (Det R*)X(N?).
Q DetNg( ) =( Y(N?)

It is easy to check that ¢;j(w) = ¢;(x;/) and that Q° and N* are bounded in
L oo (.Q)n Xn .

We assume that G satisfies (1.1) as before and that it is monotone and coer-
cive in the following sense

(5.1) ae. xeQ, V&, neR", (G, & -G, n),E-n) =0,
(5.2) ae. reQ, VEeR", (Gx, &), &) = y|&JP.

Then clearly (1.2) and (1.3) hold.
Hence we can apply Theorem 3.1 and get the following result.

THEOREM 5.1. — Assume that R = (rf(x;)) and that Det (R*(x)) =0 for
some positive 6. Assume (1.1), (5.1), (5.2) and that when & tends to zero,

fe—f strongly in W12 (Q), R*—R weakly-* in L*(Q)"*".

Then Q¢ = Cof R*—Q = Cof R weakly-* in L*(Q)"*". Moreover, up to a
subsequence, any sequence of solutions u°® of

—div (Cof R*(x) G(x, (R*(x)) ™' Vu*)) =£°, (%)
ute WHr(Q)
converges to a solution of
[ —div(Cof R(x) G(z, (R(x)) "' Vu)) =f, ()

weWh?(Q).

Proor. — The second assertion being a direct corollary of Theorem 3.1, let
us check the first one. It is sufficient to note that each coefficient ¢; of Q° is a
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sum of terms which are products of functions of separate variables and that, by
assumption, each term of such products converges weakly* in L * (). Then

= Cof R*—@Q = Cof R is a consequence of Lemma 1 in [6]. By the same ar-
gument, Det R*— Det R weakly* in L “(£), so that Det (R(x)) =0, R is in-
vertible and R ~! has L “-coefficients.

REMARKS.
® Instead of (5.1), let us assume that

AC>0,ae. xef, Vi nekR”,
(G(x, &) —G(x,m), (E—mn)

(5.3) Cll&—nlP if p=2
> _ 2
(1l + NIl -7

Then clearly (4.2) is satisfied with C6 in place of C. As already noted, the limit
form (when ¢ tends to zero) of (4.2) also holds. In this case the equations (£°)
and (%) have unique solutions % * and u respectively. Moreover the whole se-
quence % ° tends to  and Vu® — R¢R ~! Vu tends to zero, for the same topolo-
gies as before.

® Now assume that G satisfies (1.1), (5.1) and (5.2) and assume moreover
that 8G;/9&; = 9G;/3&; for any i, j. Then defining

1
S, & = [ G, o) £dt,
0
one has 0G/9&; = G; and the following minimization problem
Int {fDet(Rf(ac)) e, N* () Vo) da — (f*, v)} )
Q

is well-posed. Its Euler equation is (% ¢) and it characterizes the solutions of
(&°).

® In the linear case our results apply to
—div((Det R*)'(N¢) N Vu*®) =f*,

which is the Euler equation of

Inf [% f(Det R*(®))|IN(x) VolP dae — (f°, v)} . (@)

Q
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5.4. — The case of G in matrix form and Q° in vector form.

In this subsection we show that we can apply the general result to the
equation

—div(H(x, N*Vu®) Vi(x)) =f*, &)
ue W P(Q),
where
® N¢ and f* are the same as before,

® H: QxR'—=R"*" is a square matrix, with zero coefficients on its
diagonal:

(5.4) H;=0,
Hj; is a Carathéodory function such that
(5.5) |Hy(x, &) <BlEP~" + g,

with S and ¢ as in Section 1,

® V:: Q—R" is a vector valued function with L * components such

that
(5.6) vi(x) = v (%),
® H,N°* V¢ are related by
(5.7 (H(x, N°&)VE—H(x,Nng)V:, E—=n)=0,
(5.8) (H(x, N &) V*, & = ol &P — hiw),

with a and & as before.

We are going to show that (E°) is a particular form of (E¢) in which m = n 2.
Let us suppose that j is a double index in the coefficients ¢;j of the matrix @ as
well as in the components G; of the nonlinear function G:

j=kl, ke{l,...,n}, le{l,..,n},
g =), Gj=Gux, ).

We also assume that Gy, vanishes for k = [, that for any k # 1, ¢j; = 0 and that
for any ¢ # [, ¢f; is independent of ¢ and, as a function of x, depends only on the
coordinate x;. In this case, we can set

Hk[(%, g) = le(x’ g) = G](x’ 5)7

vf (@) =vf(x) =qfy(x) for any i =1
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and it is easy to show that
Q°G(x, &) =H(x, & V*

and that (5.5), (5.7), (6.8) are nothing but rewriting (1.1), (1.2), (1.3).
As a consequence of Theorem 3.1, the following result holds.

THEOREM 5.2. — Besides the hypotheses (5.4) to (5.8), let us assume that

fé—f strongly in W17 (),
Ve —=V weaklyx in L~ ()",
Ré=(N®)"!' —~ R weakly* in L*(Q)"*".
If moreover R is invertible with inverse N =R ' in L~ (2)"*" and if the se-
quence N © is bounded in L * ()" *", then any sequence of solutions u* to (E*)

is bounded in WP (). Moreover if u¢ —u weakly in W P () for some sub-
sequence €' of €, then u is a solution of

—div (H(x, NVu) V) =f,
{ iv (H(x, NVu) V) = f &

ueWhr(Q).

REMARKS.

® The corrector result applies if

AC>0,ae. xeQ, V& neR",
(H(x, &) Ve(x) —H(x, n) Vi(x), R*(x) E—R*(x)n)

Cllg—nlp if p=2,
> _ 2
&l + Il >

® A particular example is obtained with N*®=diag(nf(x;)), n <
ni(x;) < m, v<v(x;) <v Hy(x, §) =H;(x, &;), H; monotone nondecreasing
in R,
|Hji(x, )| <B|t|P 1 +g),
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and the corrector result applies if

[C|t—t'|p itp=2,

Hi't_Hi't’ t—t') = _ 4|2

( .;() ;7( X ) C”—tlz if 1<p<2.
L2 2 D

® The case N°®= identity but H replaced by H°® was studied by O.
Khoumri in [4].

5.5. — The case of the p-laplacian.

In [6] and in Section 5.1, we have considered the linear case, which corre-
sponds to p =2 and G(x, &) =&. In this section we study the case G(x, &) =
|E|P~2&, for 1 < p < o. Then (1.1) is trivial. Let us look for natural conditions
on S¢='Q¢R¢ which imply that assumptions (1.2) and (1.3) are satisfied.

Since the coefficients of Q¢ and R*¢ are bounded,

(5.9) 35¢>0,a.e veR, VEeR", [Se(x) &||<o¢|&] .

(Actually as Q¢ and R* are uniformly bounded, (5.9) holds with a larger 6 inde-
pendent of £.) Now let us assume that S° is coercive, uniformly in x,

(5.10) Jy>0,ae xeQ, VEeR", (S(x) &, &) = y*[|&[P.

Then it is clear that y*< ¢ and the following result holds
PROPOSITION. — 5.3. — Assume (5.9) and (5.10), with

€ -2
(.11) v lr=2]
o°¢ P
Then G(x, &) = ||E|P ~2& satisfies condition (1.2) and furthermore,

(5.12) ae xeQ,VE=neR", (GE)—Gx), S¢(x)E—1n))>0.

ProoF. — This proof, as well as the proof of Proposition 5.5 is inspired by
[3]. Of course one can assume p # 2. Let £# 7 be two vectors of R”. There
exist z, w in R” and A # u in R such that

E=z+Aw, n=z+uw, |w|=1, &, w)=0.

(Remark that w is a unit vector on the line defined by &, # and z is the orthogo-
nal projection of 0 on this line.) Then we can write

(G(&) — GO, S*(E— ) = (A — wWlk(A) — kW],
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where
kt) = (eI +t>)® ~22[4(S*w, w) + (Stw, 2)].

We have to check that k is strictly increasing. If z =0 this is obvious, so we
may assume z # 0. Setting a = [z| >0, b = (S*w, w) >0 (by (5.10))) and ¢ =
(Stw, z), we obtain

k(t) = (a®+t2)P~22(bt + ¢)

and an easy computation shows that k is strictly increasing if and only if

A=c%(p—2Y¥—4a*b%*(p—1)<0.
But one can write

Stw=(S*w, w)w+ 0z,

with (z', w) =0 and |z'||=1. Using (5.9) and (5.10), we deduce

O =[S uwlP=0%+06% (y$)><b?
and hence

c?=(Stw, 2’ =0%(z, 2" ¥<0%a®<a?((6%)*—b?),
A<a* (0P (p—2 = bp?) <a* (0 P(p -2 — (v p?)

and (5.12) is satisfied if (0¢)*(p —2)* — (y*)?p? <0, that is (5.11).

PROPOSITION 5.4. — Under condition (5.10) and if the sequence {R*}, is
bounded, then (1.3) holds for G(x, &) = &I ~2&, if the sequence {1/y*}, is
bounded.

PrOOF. — We can rewrite (1.3)
Ja>0,Ihel(Q), ae xe R, VEeR",
(G, &), 8*(x) ) = a||R* (x) & — h(w)
and in the present case, using (5.10) and the boundedness of R¢ and
1/y*,
(G, &), S*(x) ) =[|E|P~2(8°¢, &) =

yé‘,

WHR%@ &P =alrR(x) &,

veliglr =

which ends the proof.
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PROPOSITION 5.5. — Let 6 =0 be such that
ae xeR,VEeR", Ve >0, |IS¢(x) &| <& .

Assume that (5.10) holds uniformly in e, or equivalently that there exists v,
0 <y=<9, such that

ae xeQ,VEeR", Ve >0, (S¢(x)&, &) = y||E|P.
Then the reinforced condition (4.2) holds for G(x, &) = ||&|P~2&, if

v, lp-2]
0 p

ProOF. — We refine the proof of Proposition 5.3, to which the reader is ref-
ered. We have

(G(&) — G(p), ST —m) = (A — wlk(A) — k(w)],
k'(t) = (a®+t2)P~D2q(¢),
a(t) =b(p—1)t>+c(p —2) t + ba®.

First we prove that for any t, if d|p —2| < yp,
(5.13) n(t) = r(a®+1t?),
with r depending on o, y and p only. Actually,

a(t)—r(a®+t2) =[bp—1)—r1t2+c(p—2)t+ (b —7) a?
Z[yp—1)—7rlt*+clp-2)t+ (y —7) a®= ().

We are going to find r such that 7(¢) =0, for any ¢. We assume that »<y(p—1),
so that the first coefficient of 7 is positive. The discriminant of 7 is

Ad=c*(p-27-4a*(y —nly(p—-1)—r]
and since c?<a?(0%— b?),
A <a?[ 472+ 4ypr + o],
where o= (62— y%)(p—2P%—4y%(p—1) <0 for S|p—2| <yp. It follows

that for » small enough, » depending on 8, y and p only, 4 <0 and 7(t) = 0 for
any t.
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We deduce from (5.13) that
k'(t) =r(a?+t2) P22,

After perhaps exchanging & and # and replacing w by —w, we may assume
that |u| <. We consider the two cases 1 <p <2 et p =2 separately.

® Case 1 <p<2: For all tin [u, ],
(&2+t2)1/zs (a2+M2)1/2+ (CL2+12)1/2.

Since p <2 and A1 = u, it follows that

A
k() = k(@)= ) = G =) [ k(1) dit
u

=r(—wX (@ +u®"+ (@®+A)P)P2,
which can be rewritten

& — ]

(G(&) — Gy, S*(E—m) Zr——F——e.
(&l + T2 =7

® (Case p=2: Note that

A
k) — k) = [ (1] 2dt
u

If u=0,

A
k2 — k) 2 [ (¢ =y 2t = —— =y,
u p—1

If u<0, then A= —u and 24 =1 — u, so that

A

r r
k() — k Brftp‘2dt=—/lp‘12—/1— Pl
(4) = k() 0 p— 2?’*1(p—1)( I

In any case, if p =2, we obtain

- e — = " e—plp-?
(G(&) - Gy), S*(E n))>2p,1(p_l)H& nlr=.
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