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Homogenization of Some Nonlinear Problems
with Specific Dependence Upon Coordinates.

P. COURILLEAU - S. FABRE - J. MOSSINO

Sunto. – Questo articolo considera una successione di equazioni differenziali a deriva-
te parziali non lineari in forma di divergenza del tipo

2div (Q e G(x , N e ˜u) )4 f e ,

in un dominio limitato V dello spazio n-dimensionale; Q e4Q e (x) e N e4N e (x)
sono matrici con coefficenti limitati, N e è invertibile e la sua matrice inversa R e

ha anche coefficenti limitati. La non linearità è dovuta alla funzione G4G(x , j);
la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate
sul p-Laplaciano, 1EpEQ , ed assicurano l’esistenza di una soluzione u e�
W 1, p

0 (V) di ciascuna equazione, per ogni fissata f e�W 21, p 8 (V). Si ipotizza una
dipendenza specifica della matrice dei coefficenti dalle coordinate: Q e (x)4
(q e

i , j (x 8i ) ) e R e (x)4 (r e
i , j (xi ) ) , dove il punto arbitrario di V è denominato x4

(xi , x 8i ), con xi reale e x 8i nello spazio (n21)-dimensionale. Essenzialmente il ri-
sultato principale è il seguente. Supponiamo la seguente convergenza: per i coeffi-
centi, Q e�Q , R e�R , rispetto alla topologia debole*; per i termini di sorgente,
f eK f , rispetto alla topologia forte di W 21, p 8

0 (V); e per le soluzioni u e�u , rispetto
alla topologia debole di W 1, p

0 (V); allora u è soluzione dell’equazione limite

2div (QG(x , N˜u) )4 f .

Si dimostra anche un risultato di tipo correttore e vengono date applicazioni del ri-
sultato ottenuto.

1. – Introduction.

We consider nonlinear monotone equations such as

.
/
´

2div (Q e G(x , N e ˜u e ) )4 f e ,

u e�W 1, p
0 (V) ,

(E e )

where V is a bounded domain in Rn , 1EpEQ , W 1, p
0 (V) is the usual Sobolev

space, f e belongs to its dual W 21, p 8 (V), where p 8 is the conjugate of p . (Here
and in the following, we write Q e and N e instead of Q e (x) and N e (x).)
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The function G : V3RnKRm is a Carathéodory function, that is G(x , j) is
measurable with respect to x and continuous with respect to j . We assume the
existence of bD0 and g in L p 8 (V) such that

a.e. x�V , (j�Rn , VG(x , j)VGbVjVp211g(x) .(1.1)

(For convenience, we denote VjV the euclidian norm of j in Rn or Rm , indepen-
dently of the dimension.)

The matrices Q e and N e have L Q-coefficients, N e is invertible and R e4
(N e )21 also has L Q-coefficients. Moreover we assume that Q e and R e have the
following specific dependence upon coordinates:

Q e :

N e :

VK

Q e (x)4

VK

R e (x)4 (N e (x) )214

Rn3m

(q e
ij (x 8i ) )mi41, R , n ,

j41, R , m ,

Rn3n

(r e
ij (xi ) )mi41, R , n ,

j41, R , n ,

where the generic point in V is denoted by x4 (xi , x 8i ), xi�R , x 8i �Rn21 . We
suppose that the matrices Q e , N e and the function G are related by the two fol-
lowing conditions:

a.e. x�V , (j , h�Rn , (Q e G(x , N e j)2Q e G(x , N e h), j2h)F0(1.2)

(here (.,.) denotes the scalar product in Rn but we shall use the same notation
for the scalar product in Rm ),

)aD0, )h�L 1 (V), a.e. x�V , (j�Rn ,

(Q e G(x , N e j), j)FaVjVp2h(x) .
(1.3)

(Examples will be given in Section 5.)
The above assumptions imply that for every e , the equation (E e ) admits

one solution at least in W 1, p
0 (V) denoted u e . The aim of this paper is to prove,

under natural convergence assumptions on f e , Q e and R e , that u e converges
weakly (up to extraction of a subsequence) to a solution of a similar equation
(E). We also give a corrector type result which asserts that ˜u e2T e ˜u con-
verges strongly to zero in L p (V) for a proper matrix T e . We indicate several
applications, among which we consider the case of Q e being the cofactor matrix
of R e . Finally we study the example of the p-Laplacian.

This paper was announced in a short note [1]. It is also the natural follow
up of [6], which deals with the linear case, and of [2] and [4], which concern
some particular cases of nonlinearities.
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2. – Existence of solutions of (E e ).

THEOREM 2.1. – Under the previous assumptions, (E e ) has (at least) one
solution u e .

PROOF. – For convenience, we forget the subscript e , which is fixed here,
we do not write explicitly the dependence in x and we denote by C any con-
stant. Let A : W 1, p

0 (V)KW 21, p 8 (V) be defined by:

A u42 div (QG(N˜u) ) ,

or

aA u , vb4s
V

(QG(N˜u), ˜v) dx .

We shall prove that for all f in W 21, p 8 (V), there exists u in W 1, p
0 (V) such that

aA u , vb4 a f , vb, for all v in W 1, p
0 (V). This is a simple application of the theory

of monotone operators. We have to prove that:

1) A is bounded and continuous from W 1, p
0 (V) (with strong topology) to

weak-W 21, p 8 (V),

2) lim
VvVK1Q

aA v , vb

VvVW 1, p
0 (V)

41Q ,

3) For all u , v in W 1, p
0 (V), aA u2A v , u2vbF0.

Proof of 1)

We have

NaA u , vbN4Ns
V

(QG(N˜u), ˜v) dxN
Gs

V

VQG(N˜u)V V˜vV dx .

Using inequality (1.1), since the coefficients of Q and N are bounded,

NaA u , vbNGCs
V

(V˜uVp211g)V˜vV dx .

Applying Hölder inequality yields

NaA u , vbNGC(V˜uVp21
L p (V)n1VgVL p 8 (V) )V˜vVL p (V)n

GC(VuVp21
W 1, p

0 (V)1VgVL p 8 (V) )VvVW 1, p
0 (V) .
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Hence A u belongs to W 21, p 8 (V) and

VA uVW21, p 8 (V)GC(VuVp21
W 1, p

0 (V)1VgVL p 8 (V) ) ,

A is bounded.
Let us check that A is continuous from strong-W 1, p

0 (V) into weak-
W 21, p 8 (V). We have to prove that if uk tends to u strongly in W 1, p

0 (V), then
aA uk , vb tends to aA u , vb, for any v in W 1, p

0 (V). Actually

aA uk , vb4s
V

(QG(N˜uk ), ˜v) dx ,

N˜uk tends to N˜u strongly in L p (V)n , when k goes to infinity. Since (1.1) is
satisfied by the Carathéodory function G , the map UKG( . , U(.)) is continu-
ous from L p (V)n to L p 8 (V)m . (This is a classical consequence of Lebesgue’s
theorem.) Thus QG(N˜uk ) tends to QG(N˜u) strongly in L p 8 (V)m and

lim
kKQ

aA uk , vb4 aA u , vb .

Proof of 2)

Because of (1.3),

aA v , vb4s
V

(QG(N˜v), ˜v)dx

Fs
V

(aV˜vVp2h) dx

FaVvVp
W 1, p

0 (V)2s
V

hdx ,

which proves 2).

Proof of 3)

It is obvious by making j4˜u and h4˜v in (1.2).

3. – Limit problem of (E e ).

THEOREM 3.1. – We now make the following additional hypotheses:

f eK f strongly in W 21, p 8 (V) ,(3.1)

.
/
´

Q e �Q weaklyx in L Q (V)n3m ,

R e4 (N e )21 �R weaklyx in L Q (V)n3n ,
(3.2)
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R is invertible with N4R 21�L Q (V)n3n ,(3.3)

]N e(e is bounded in L Q (V)n3n ;(3.4)

then any sequence of solutions u e of (E e ) is bounded in W 1, p
0 (V). Moreover if

u e 8 tends to u weakly in W 1, p
0 (V) for some subsequence e 8 of e , then u is a sol-

ution of

.
/
´

2div (QG(x , N˜u) )4 f ,

u�W 1, p
0 (V) .

(E)

REMARK. – Because of the specific dependence on the coordinates that we
assume, it follows that (see [6]):

S e4t Q e R e �S4t QR weaklyx in L Q (V)m3n .

As an immediate consequence of (1.2) and the above, one can take the limit
in

(W� D(V), WF0, s
V

(G(x , j)2G(x , h),t Q e (x) R e (x)(j2h) ) W(x) dxF0 ,

so that (1.2) is satisfied with Q e , N e replaced by Q , N .
Moreover (1.3) can be written as

)aD0, )h�L 1 (V), a.e. x�V , (h�Rn ,

(G(x , h), S e (x) h)FaVR e (x) hVp2h(x) ,

and we can take the limit in the same way as above. Thus Q and N satisfy
(1.3).

It follows that the limit equation (E) verifies the same conditions as the
equations (E e ) and (E) has at least one solution.

PROOF OF THEOREM 3.1. – We have (see the end of Section 2)

aVu e
V

p
W 1, p

0 (V)2s
V

hdx G aAe u e , u e b

4 a f e , u e b

G CVu e
VW 1, p

0 (V) ,

by (3.1), which implies that u e is bounded in W 1, p
0 (V).

It remains to prove that if u e 8 tends to u weakly in W 1, p
0 (V), then u is a sol-

ution of (E).
By compactness u e 8 tends to u strongly in L p (V). Let us write e instead of
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e 8 . Let v�W 1, p
0 (V). Making j4˜u e and h4R e N˜v in (1.2), we obtain

0 G F e (v)

4 s
V

(Q e G(N e ˜u e )2Q e G(N˜v) , ˜u e2R e N˜v) dx

4 A2B2C1D

where

A

B

C

D

4 s
V

(Q e G(N e ˜u e ), ˜u e ) dx ,

4 s
V

(Q e G(N e ˜u e ), R e N˜v) dx ,

4 s
V

(Q e G(N˜v), ˜u e ) dx ,

4 s
V

(Q e G(N˜v), R e N˜v) dx .

We shall take the limit in each term separately.

FIRST TERM A:

A4 aAe u e , u e b4 a f e , u e b K
eK0

a f , ub

by (3.1) and the weak convergence of u e in W 1, p
0 (V).

THIRD TERM C. – Let P e4t Q e , P4t Q . Since G(N˜v) belongs to L p 8 (V)m , it
suffices to show that P e ˜u e tends to P˜u weakly in L p (V)m or that P e ˜u e

tends to P˜u in D8 (V)m (since P e ˜u e is bounded in L p (V)m ) . Note that

(P e ˜u e )i 4!
j

p e
ij (x 8j )

¯u e

¯xj

4!
j

¯

¯xj

(p e
ij (x 8j ) u e ) .

We already know that u e tends to u strongly in L p (V) and p e
ij tends to pij

weaklyx in L Q (V), thus p e
ij u e tends to pij u in D8 (V). It follows that

C 4s
V

(G(N˜v), P e ˜u e ) dx

K
eK0

s
V

(G(N˜v), P˜u) dx4s
V

(QG(N˜v), ˜u) dx .
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FOURTH TERM D. – Recall that S e4P e R e �S4PR weaklyx in
L Q (V)m3n . Then P e R e N˜v tends to P˜v weakly in L p (V)m , so that

D 4s
V

(G(N˜v), P e R e N˜v) dx

K
eK0

s
V

(G(N˜v), P˜v) dx4s
V

(QG(N˜v), ˜v) dx .

SECOND TERM B. – Let s e4Q e G(N e ˜u e ). The sequence ]s e(e is bounded
in L p 8 (V)n , thus there exits s in L p 8 (V)n such that (up to a subsequence) s e

tends to s weakly in L p 8 (V)n . Furthermore 2div s e4 f e in D8 (V) passes to
the limit, so that 2div s4 f . Let M e4t R e , M4t R , we shall prove that

M e s eK
eK0

Ms in D8 (V)n .(3.5)

Admitting (3.5) for a while, as M e s e is bounded in L p 8 (V)n , we deduce that
M e s e tends to Ms weakly in L p 8 (V)n , so that

B4s
V

(s e , R e N˜v) dx4s
V

(M e s e , N˜v) dx

K
eK0

s
V

(Ms , N˜v) dx4s
V

(s , ˜v) dx4 a f , vb .

It remains to prove (3.5). Let C 4 »
j41

n

] xj , xj [ be the smallest cube containing

V . Clearly M e and M are defined in C; moreover M e tends to M weaklyx in
L Q (C)n3n . Now let us consider

v e
ij (x)4s

x j

xj

m e
ij (t) dt , vij (x)4s

x j

xj

mij (t) dt .

In V , ¯v e
ij /¯xk4m e

ij if k4 j and ¯v e
ij /¯xk40 otherwise. The same result holds

for vij . Moreover it is clear that v e
ij tends to vij weakly in W 1, p (V). As s e tends

to s weakly in L p 8 (V)n and div s e42 f e tends to div s42 f strongly in
W 21, p 8 (V) by assumption, then by compensated compactness (see [7]),

m e
ij s e

j4 (˜v e
ij , s e )K

eK0
(˜vij , s)4mij s j in D8 (V) .

Summing over j , we obtain (3.5), component by component.

END OF PROOF. – By taking the limit in F e (v)F0, we get

F(v)4s
V

(QG(N˜v), ˜v2˜u) dx2 a f , v2ubF0 .
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A standard argument shows that

s
V

(QG(N˜u), ˜w) dx4 a f , wb ,

for all w in W 1, p
0 (V) so that u is a solution of (E).

4. – Correctors.

As already noticed, (1.2) can be written

a.e. x�V , (j , h�Rn , (Q e G(x , j)2Q e G(x , h), R e j2R e h)F0 .(4.1)

We are going to prove that the result of the previous section can be improved,
under a stronger assumption.

THEOREM 4.1. – We now replace (1.2) by the stronger condition

(4.2)

)CD0, a.e. x�V ,

(Q e (x) G(x , j)

(j , h�Rn ,

2Q e (x) G(x , h), R e (x) j2R e (x) h)

F
.
/
´

CVj2hVp

C
Vj2hV2

(VjV1VhV)22p

if pF2 ,

if 1EpE2 .

Then (E e ) and (E) have unique solutions u e and u respectively, u e tends to u
weakly in W 1, p

0 (V) ( for the whole sequence). Moreover v e4˜u e2R e N˜u
tends to zero strongly in L p (V)n .

PROOF. – Assumption (4.2) implies that aAe u2Ae v , u2vb is positive if ucv ,
thus (E e) has at most one solution. As already done for (1.2), one can take the
limit in (4.2) and obtain the uniqueness of solution of (E) in the same way.

It remains to prove that v e tends to zero in L p (V)n . This will be obtained
from the convergence F e (u)K

eK0
F(u)40 that has been proved in the previ-

ous section. We consider separately the two cases pF2 and 1EpE2.

Case pF2: Using (4.2), we have

F e (u)4s
V

(Q e G(N e ˜u e )2Q e G(N˜u), ˜u e2R e N˜u) dx

FCs
V

VN e ˜u e2N˜uVp dx

4Cs
V

VN e v e
V

p dx .
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Since (N e )214R e is bounded in L Q (V)n3n , we deduce that F e (u)F
CVv e

V

p
L p (V)n , which ends the proof in this case.

Case 1EpE2: As above, it is sufficient to show that N e ˜u e2N˜u tends
to zero when eK0, strongly in L p (V)n . Let w e4N e ˜u e . Note that

s
V

Vw e2N˜uV

p dx4s
V

A e B e dx ,

where

A e4
Vw e2N˜uVp

(Vw e
V1VN˜uV)(22p) p/2

,

B e4 (Vw e
V1VN˜uV)(22p) p/2 .

By Hölder inequality,

s
V

Vw e2N˜uVp dxGgs
V

(A e )2/p dxhp/2gs
V

(B e )2/(22p) dxh(22p) /2

.

We shall prove that

1) VA e
VL 2/p (V) tends to zero when eK0,

2) B e is bounded in L 2/(22p) (V).

1) Using inequality (4.2),

s
V

(A e )2/p dx4s
V

Vw e2N˜uV2

(Vw e
V1VN˜uV)22p

dxG
1

C
F e (u) ,

which tends to zero.

2) Since ˜u e is bounded in L p (V)n and since N e is bounded in L Q (V)n3n ,
w e is bounded in L p (V)n and

s
V

(B e )2/(p22) dx4s
V

(Vw e
V1VN˜uV)p dx

is bounded, which ends the proof.

5. – Applications.

5.1. – The linear case.

Taking n4m , G(x , j)fj , p42 and f e
f f , equation (E e ) becomes

.
/
´

2div (Q e N e ˜u e )4 f e ,

u e�H 1
0 (V)
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and Theorem 3.1 implies that Q e N e H-converges to QN . It follows from the
general theory of H-convergence (see [7]) that t (Q e N e )4t (N e )t (Q e ) H-con-
verges to t N t Q : we recover the linear case studied (under slightly different
assumptions) by S. Fabre and J. Mossino in [6].

5.2. – The case of diagonal matrices.

Let us assume that Q e and N e are diagonal, then

n4m , N e4diag (n e
i (xi ) ) , Q e4diag (q e

i (x 8i ) ) ,

and let us assume that n e
i and q e

i satisfy

nGn e
i (xi )Gn , qGq e

i (x 8i )G q ,

for some positive numbers n, n, q, q.
Let G(x , j)4 (Gi (j i ) )1G iGn be continuous monotone nondecreasing func-

tions. We assume that there exist positive constants a and b such that for any
real t ,

NGi (t)NGbNtNp21 , Gi (t) tFaNtNp .

Condition (1.2) is satisfied since

(Q e G(x , j)2Q e G(x , h), R e j2R e h)4!
i41

n q e
i

n e
i

(Gi (j i )2Gi (h i ) )(j i2h i )F0 .

Condition (1.3) also holds since

(Q e G(x , N e j), j)4!
i41

n q e
i (x 8i )

n e
i (xi )

Gi (n e
i (xi ) j i ) n e

i (xi ) j i

Faqnp21!
i41

n

Nj iNp .

We recover the result of R. Dufour in [2]: the limit equation of

.
/
´

2 !
i41

n ¯

¯xi

(q e
i (x 8i ) Gi (n e

i (xi ) ˜u e ))4 f e ,

u e�W 1, p
0 (V)

(E e )

is the equation (E) obtained by deleting e , as soon as f eK f strongly in

W 21, p 8 (V) and for any i ,
1

n e
i

�
1

ni

, q e
i � qi in weak*-L Q (V). Moreover

¯u e

¯xi

2
ni

n e
i

¯u

¯xi

tends to zero strongly in L p (V) for any i , as soon as, for any i ,
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Gi satisfies the strong monotonicity condition

(Gi (t)2Gi (t 8 ) )(t2t 8 )F
.
/
´

CNt2t 8Np

C
Nt2t 8N2

(NtN1Nt 8N)22p

if pF2 ,

if 1EpE2 .

5.3. – The cofactor matrix case.

Consider a sequence of matrices R e4 (r e
ij (xi ) ) bounded in L Q (V)n3n such

that Det R e (x)Fd , for some positive number d which does not depend on e
and x . Then let Q e be the cofactor matrix of R e :

m4n , Q e4Cof R e4
1

Det N e
t (N e )4 ( Det R e )t (N e ) .

It is easy to check that q e
ij (x)4q e

ij (x 8i ) and that Q e and N e are bounded in
L Q (V)n3n .

We assume that G satisfies (1.1) as before and that it is monotone and coer-
cive in the following sense

a.e. x�V , (j , h�Rn , (G(x , j)2G(x , h), j2h)F0 ,(5.1)

a.e. x�V , (j�Rn , (G(x , j), j)FgVjVp .(5.2)

Then clearly (1.2) and (1.3) hold.
Hence we can apply Theorem 3.1 and get the following result.

THEOREM 5.1. – Assume that R e4 (r e
ij (xi ) ) and that Det (R e (x) )Fd for

some positive d . Assume (1.1), (5.1), (5.2) and that when e tends to zero,

f eK f strongly in W 21, p 8 (V) , R e �R weakly-x in L Q (V)n3n .

Then Q e4Cof R e �Q4Cof R weakly-x in L Q (V)n3n . Moreover, up to a
subsequence, any sequence of solutions u e of

.
/
´

2div (Cof R e (x) G(x , (R e (x) )21 ˜u e ))4 f e ,

u e�W 1, p
0 (V)

(E e )

converges to a solution of

.
/
´

2div (Cof R(x) G(x , (R(x) )21 ˜u))4 f ,

u�W 1, p
0 (V) .

(E)

PROOF. – The second assertion being a direct corollary of Theorem 3.1, let
us check the first one. It is sufficient to note that each coefficient q e

ij of Q e is a
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sum of terms which are products of functions of separate variables and that, by
assumption, each term of such products converges weakly* in L Q (V). Then
Q e4Cof R e �Q4Cof R is a consequence of Lemma 1 in [6]. By the same ar-
gument, Det R e �Det R weakly* in L Q (V), so that Det (R(x) )Fd , R is in-
vertible and R 21 has L Q-coefficients.

REMARKS.

l Instead of (5.1), let us assume that

(5.3)

)CD0 , a.e. x�V ,

(G(x , j)2G(x , h) ,

(j , h�Rn ,

(j2h) )

F
.
/
´

CVj2hVp

C
Vj2hV2

(VjV1VhV)22p

if pF2

if 1EpE2 .

Then clearly (4.2) is satisfied with Cd in place of C . As already noted, the limit
form (when e tends to zero) of (4.2) also holds. In this case the equations (E e )
and (E) have unique solutions u e and u respectively. Moreover the whole se-
quence u e tends to u and ˜u e2R e R 21 ˜u tends to zero, for the same topolo-
gies as before.

l Now assume that G satisfies (1.1), (5.1) and (5.2) and assume moreover
that ¯Gi /¯j j4¯Gj /¯j i for any i , j . Then defining

G(x , j)4s
0

1

G(x , tj) j dt ,

one has ¯G /¯j i4Gi and the following minimization problem

Inf ms
V

Det (R e (x) ) G (x , N e (x) ˜v) dx2 a f e , vbn (P e )

is well-posed. Its Euler equation is (E e ) and it characterizes the solutions of
(P e ).

l In the linear case our results apply to

2div (( Det R e )t (N e ) N e ˜u e )4 f e ,

which is the Euler equation of

Inf { 1

2
s

V

(Det R e (x) )VN e (x) ˜vV2 dx2 a f e , vb} . (P e )



HOMOGENIZATION OF SOME NONLINEAR PROBLEMS ETC. 723

5.4. – The case of G in matrix form and Q e in vector form.

In this subsection we show that we can apply the general result to the
equation

.
/
´

2div (H(x , N e ˜u e ) V e (x) )4 f e ,

u e�W 1, p
0 (V) ,

(EAe )

where

l N e and f e are the same as before,

l H : V3RnKRn3n is a square matrix, with zero coefficients on its
diagonal:

Hiif0 ,(5.4)

Hij is a Carathéodory function such that

NHij (x , j)NGbVjVp211g(x) ,(5.5)

with b and g as in Section 1,

l V e : VKRn is a vector valued function with L Q components such
that

vi
e (x)4vi

e (xi ) ,(5.6)

l H , N e , V e are related by

(H(x , N e j) V e2H(x , N e h) V e , j2h)F0 ,(5.7)

(H(x , N e j) V e , j)FaVjVp2h(x) ,(5.8)

with a and h as before.
We are going to show that (EAe ) is a particular form of (E e ) in which m4n 2 .

Let us suppose that j is a double index in the coefficients q e
ij of the matrix Q e as

well as in the components Gj of the nonlinear function G :

j4kl , k� ]1, R , n( , l� ]1, R , n( ,

q e
ij4q e

ikl (x 8i ) , Gj4Gkl (x , j) .

We also assume that Gkl vanishes for k4 l , that for any kc i , q e
ikl40 and that

for any ic l , q e
iil is independent of i and, as a function of x , depends only on the

coordinate xl . In this case, we can set

Hkl (x , j)fGkl (x , j)fGj (x , j) ,

v e
l (x)fv e

l (xl )fq e
iil (xl ) for any ic l
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and it is easy to show that

Q e G(x , j)fH(x , j) V e

and that (5.5), (5.7), (5.8) are nothing but rewriting (1.1), (1.2), (1.3).
As a consequence of Theorem 3.1, the following result holds.

THEOREM 5.2. – Besides the hypotheses (5.4) to (5.8), let us assume that

f e

V e

R e4 (N e )21

K

�

�

f strongly in W 21, p 8 (V) ,

V weaklyx in L Q (V)n ,

R weaklyx in L Q (V)n3n .

If moreover R is invertible with inverse N4R 21 in L Q (V)n3n and if the se-
quence N e is bounded in L Q (V)n3n , then any sequence of solutions u e to (EAe )
is bounded in W 1, p

0 (V). Moreover if u e 8�u weakly in W 1, p
0 (V) for some sub-

sequence e 8 of e , then u is a solution of

.
/
´

2div (H(x , N˜u) V)4 f ,

u�W 1, p
0 (V) .

(EA)

REMARKS.

l The corrector result applies if

)CD0,a.e. x�V ,

(H(x , j) V e (x)2H(x , h) V e (x) ,

(j , h�Rn ,

R e (x) j2R e (x) h)

F
.
/
´

CVj2hVp

C
Vj2hV2

(VjV1VhV)22p

if pF2 ,

if 1EpE2 .

l A particular example is obtained with N e4diag (n e
i (xi ) ) , nG

n e
i (xi )Gn, vGv e

i (xi )G v, Hij (x , j)fHij (x , j i ), Hij monotone nondecreasing
in R ,

NHij (x , t)NGbNtNp211g(x) ,

Hij (x , t) tFaNtNp2h(x)
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and the corrector result applies if

(Hij (t)2Hij (t 8 ) )(t2 t 8 )F
.
/
´

CNt2 t 8 Np

C
Nt2 t 8 N2

(NtN1Nt 8N)22p

if pF2 ,

if 1EpE2 .

l The case N e4 identity but H replaced by H e was studied by O.
Khoumri in [4].

5.5. – The case of the p-laplacian.

In [6] and in Section 5.1, we have considered the linear case, which corre-
sponds to p42 and G(x , j)fj . In this section we study the case G(x , j)f
VjVp22 j , for 1GpGQ . Then (1.1) is trivial. Let us look for natural conditions
on S e4t Q e R e which imply that assumptions (1.2) and (1.3) are satisfied.

Since the coefficients of Q e and R e are bounded,

)d eD0, a.e x�V , (j�Rn , VS e (x) jVGd e
VjV .(5.9)

(Actually as Q e and R e are uniformly bounded, (5.9) holds with a larger d inde-
pendent of e .) Now let us assume that S e is coercive, uniformly in x ,

)g eD0, a.e x�V , (j�Rn , (S e (x) j , j)Fg e
VjV2 .(5.10)

Then it is clear that g eGd e and the following result holds

PROPOSITION. – 5.3. – Assume (5.9) and (5.10), with

g e

d e
F

Np22N

p
.(5.11)

Then G(x , j)fVjVp22 j satisfies condition (1.2) and furthermore,

a.e x�V , (jch�Rn , (G(j)2G(h), S e (x)(j2h) )D0 .(5.12)

PROOF. – This proof, as well as the proof of Proposition 5.5 is inspired by
[3]. Of course one can assume pc2. Let jch be two vectors of Rn . There
exist z , w in Rn and lcm in R such that

j4z1lw , h4z1mw , VwV41 , (z , w)40 .

(Remark that w is a unit vector on the line defined by j , h and z is the orthogo-
nal projection of 0 on this line.) Then we can write

(G(j)2G(h), S e (j2h) )4 (l2m)[k(l)2k(m) ] ,
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where

k(t)4 (VzV21 t 2 )(p22) /2 [t(S e w , w)1 (S e w , z) ] .

We have to check that k is strictly increasing. If z40 this is obvious, so we
may assume zc0. Setting a4VzVD0, b4 (S e w , w)D0 (by (5.10))) and c4
(S e w , z), we obtain

k(t)4 (a 21 t 2 )(p22) /2 (bt1c)

and an easy computation shows that k is strictly increasing if and only if

D4c 2 (p22)224a 2 b 2 (p21)G0 .

But one can write

S e w4 (S e w , w) w1uz 8 ,

with (z 8 , w)40 and Vz 8 V41. Using (5.9) and (5.10), we deduce

(d e )2FVS e wV

24b 21u 2 , (g e )2Gb 2

and hence

c 24 (S e w , z)24u 2 (z , z 8 )2Gu 2 a 2Ga 2 ((d e )22b 2 ) ,

DGa 2 ((d e )2 (p22)22b 2 p 2 )Ga 2 ((d e )2 (p22)22 (g e )2 p 2 )

and (5.12) is satisfied if (d e )2 (p22)22 (g e )2 p 2G0, that is (5.11).

PROPOSITION 5.4. – Under condition (5.10) and if the sequence ]R e(e is
bounded, then (1.3) holds for G(x , j)4VjVp22 j , if the sequence ]1/g e(e is
bounded.

PROOF. – We can rewrite (1.3)

)aD0, )h�L 1 (V), a.e x�V , (j�Rn ,

(G(x , j), S e (x) j)FaVR e (x) jVp2h(x)

and in the present case, using (5.10) and the boundedness of R e and
1/g e ,

(G(x , j), S e (x) j)4VjVp22 (S e j , j)F

g e
VjVpF

g e

VR e (x)Vp
VR e (x) jVpFaVR e (x) jVp ,

which ends the proof.
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PROPOSITION 5.5. – Let dF0 be such that

a.e x�V , (j�Rn , (eD0, VS e (x) jVGdVjV .

Assume that (5.10) holds uniformly in e , or equivalently that there exists g ,
0EgGd , such that

a.e x�V , (j�Rn , (eD0, (S e (x)j , j)FgVjV2 .

Then the reinforced condition (4.2) holds for G(x , j)4VjVp22 j , if

g

d
D

Np22N

p
.

PROOF. – We refine the proof of Proposition 5.3, to which the reader is ref-
ered. We have

(G(j)2G(h), S e (j2h) )4 (l2m)[k(l)2k(m) ] ,

k 8 (t)4 (a 21 t 2 )(p24) /2 p (t) ,

p (t)4b(p21) t 21c(p22) t1ba 2 .

First we prove that for any t , if dNp22NEgp ,

p (t)Fr (a 21 t 2 ) ,(5.13)

with r depending on d , g and p only. Actually,

p (t)2r (a 21 t 2 )4 [b(p21)2r] t 21c(p22) t1 (b2r) a 2

F [g(p21)2r] t 21c(p22) t1 (g2r) a 24pA(t) .

We are going to find r such that pA(t)F0, for any t . We assume that rEg(p21),
so that the first coefficient of pA is positive. The discriminant of pA is

D
A4c 2 (p22)224a 2 (g2r)[g(p21)2r]

and since c 2Ga 2 (d 22b 2 ),

D
AGa 2 [24r 214gpr1r] ,

where r4 (d 22g 2 )(p22)224g 2 (p21)E0 for dNp22NEgp . It follows
that for r small enough, r depending on d , g and p only, D

AG0 and pA(t)F0 for
any t .
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We deduce from (5.13) that

k 8 (t)Fr (a 21 t 2 )(p22) /2 .

After perhaps exchanging j and h and replacing w by 2w , we may assume
that NmNGl . We consider the two cases 1EpE2 et pF2 separately.

l Case 1EpE2: For all t in [m , l],

(a 21 t 2 )1/2G (a 21m 2 )1/21 (a 21l 2 )1/2 .

Since pE2 and lFm , it follows that

(k(l)2k(m) )(l2m)4 (l2m)s
m

l

k 8 (t) dt

Fr (l2m)2((a 21m 2)1/21(a 21l 2)1/2)p22 ,

which can be rewritten

(G(j)2G(h), S e (j2h) )Fr
Vj2hV2

(VjV1VhV)22p
.

l Case pF2: Note that

k(l)2k(m)Frs
m

l

NtNp22 dt .

If mF0,

k(l)2k(m)Frs
m

l

(t2m)p22 dt4
r

p21
(l2m)p21 .

If mG0, then lF2m and 2lFl2m , so that

k(l)2k(m)Frs
0

l

t p22 dt4
r

p21
l p21F

r

2p21 (p21)
(l2m)p21 .

In any case, if pF2, we obtain

(G(j)2G(h), S e (j2h) )F
r

2p21 (p21)
Vj2hVp21 .
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