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Bollettino U. M. I.
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Stationary States for a Two-dimensional
Singular Schrödinger Equation (*).

PAOLO CALDIROLI - ROBERTA MUSINA

Sunto. – In questo articolo studiamo problemi di Dirichlet singolari, lineari e semili-
neari, della forma 2NxN2 Du4 f (u) in V , u40 su ¯V , dove V è un dominio in R 2 e
f (u)4lu o f (u)4lu1NuNp22 u con pD2 (o nonlinearità più generali). In tali
problemi bidimensionali emergono alcune difficoltà a causa della non validità
della disuguaglianza di Hardy in R 2 e a causa delle invarianze dell’equazione
2NxN2 Du4 f (u). Pertanto opportune condizioni su l e V sono necessarie al fine di
garantire l’esistenza di una soluzione positiva. Per esempio, se G 0 è una curva non
costante passante per l’origine e G Q è una curva non limitata, allora la disugua-
glianza di Hardy vale su qualunque dominio V contenuto in R 2 0(G 0NG Q ) e si
possono ottenere alcuni risultati di esistenza.

Introduction.

In this paper we deal with the stationary singular Schrödinger equation in
the limit case of «strong force» (see [9])

2Du4l
u

NxN2
in V(0.1)

where V is a domain in R 2 and l�R . We will also consider the nonlinear
version

2Du4
lu1g(u)

NxN2
in V(0.2)

where g�C(R) is a superlinear function, e.g., g(u)4NuNp22 u with pD2 (see
Section 3 for the precise assumptions on g).

We focus our attention on two-dimensional domains since, as discussed in
[8], this case exhibits some special features that are not shared with any other

(*) Partially supported by M.U.R.S.T. Progetto «Equazioni differenziali e calcolo
delle variazioni». The first author was partially supported also by the Italian National
Research Council (C.N.R.).

1991 Mathematics Subject Classification: Primary 35 J 25; Secondary 35 J 20,
35 J 10.



PAOLO CALDIROLI - ROBERTA MUSINA610

dimension. Let us note that some results concerning equation (0.2) and the
corresponding Dirichlet problem were already proved in [8], while for varia-
tional, singular elliptic problems in dimensions different from two we refer,
e.g., to the papers [10], [2], [3], [12], [13], [5] and [7].

The most striking phenomena related to equations (0.1) and (0.2), that ap-
pear only in dimension two, are:

l Failure of the Hardy-Sobolev inequality in R 2 (see, e.g., [4]), in any
domain containing the origin and in any exterior domain, that is, a domain with
compact complement. This means that if V is a domain containing 0 or if V is
an exterior domain, then the value

Sp (V)4 inf{ s
V

N˜uN2 : u�C Q
c (V0]0(), s

V

NuNp

NxN2
41}(0.3)

turns out to be zero for every pF2.

l Invariance of the equation 2Du4
f (u)

NxN2
with respect to dilations

xO rx (rD0) and with respect to the Kelvin transform xO
x

NxN2
, whatever

f�C(R) is.

A consequence of these facts is that when V is a domain containing the ori-
gin or when V is an exterior domain, for lD0 equation (0.1) admits no positive
(super)solution, even in a very weak sense (precisely, in the sense of distribu-
tions in V0]0(, see Proposition 2.1).

These remarks lead us to start by examining the class of those two-dimen-
sional domains on which the Hardy inequality holds, i.e., such that S2 (V)D0,
(that we call Hardy-admissible domains), and then by studying the corre-
sponding linear problem.

For instance, as already noted in [8], any proper cone in R 2 turns out to be
a Hardy admissible domain. In fact, the property of Hardy-admissibility de-
pends just on the shape of the domain at the origin and at infinity. More preci-
sely, we can show that the Hardy inequality holds true in any domain V con-
tained in R 2 0(G 0NG Q ) where G 0 is a (non constant) curve such that 0�G 0

and G Q is an unbounded curve. Actually, more general situations can be consi-
dered, see condition (H) stated in Theorem 1.4.

Whenever the domain V is Hardy-admissible, as it happens in the above
described situations, then one can study the minimization problem correspon-
ding to the definition of S2 (V). However, the invariance properties noted at
the beginning reflect on phenomena of concentration at 0 or vanishing, and
then on a possible lack of compactness of the minimizing sequences for S2 (V).
This lack of compactness depends again on the shape of V near 0 and at
infinity.
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In Theorem 2.3 we state a sufficient condition for compactness and hence
for existence of a positive eigenfunction for the problem

.
/
´

2Du4l
u

NxN2

u40

in V

on ¯V

(0.4)

on a Hardy-admissible domain. This condition fits into the spirit of the concen-
tration-compactness principle [11].

As a particular case we can prove that the eigenvalue problem (0.4) admits
a positive solution when V4R 2 0G a , b and G a , b4]x�R 2 : 0Gx1Ga , x1Fb(,

provided that a

b
D0 is small enough.

In the second part of the paper we deal with the semilinear Dirichlet
problem

.
/
´

2Du4
lu1g(u)

NxN2

u40

in V

on ¯V .

(0.5)

As in the linear case, some non existence results are known when the do-
main V contains the origin or it is an exterior domain. For example, as proved
in [3] and [8], because of the quadratic behaviour of the singularity at the ori-
gin, for pD2 and 0�V equation

2Du4
NuNp22 u

NxN2
in V

has no positive solution, even in a very weak sense and also in higher dimen-
sions. In addition, by the Kelvin invariance, when V is an exterior domain in
R 2 the same non existence result holds (this occurs only in dimension two). In
these cases there is no variational setting suited to study the corresponding
Dirichlet’s problem, because there is an intrinsic lack of topology.

Therefore we restrict ourselves to study problem (0.5) assuming that the
domain V is Hardy-admissible. In this case, Sp (V)D0 for every pD2 and, for
a nonlinearity g�C 1 (R) of the form g(u)4NuNp22 u with pD2, we can intro-
duce a nice variational setting suited to study problem (0.5). Moreover, for lE
S2 (V) the variational functional associated to (0.5) turns out to have a moun-
tain pass structure.

As for the eigenvalue problem, a lack of compactness may occur, because
of the dilation and Kelvin invariances. Nevertheless, we can state a criterion
ensuring that problem (0.5) admits a positive solution (Theorem 3.1). Let
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us note that a similar argument to recover some compactness was already
used in [6] for a critical degenerate elliptic problem (see also [5]).

Finally, in Section 4 we illustrate some existence examples for problem
(0.5).

1. – On the Hardy-Sobolev inequality in two dimensions.

Aim of this Section is to introduce a variational setting suited to study pro-
blems (0.4) and (0.5). As already observed in the Introduction, some difficul-
ties arise because of the dimension two of the domain. Indeed, let us remark
that in the N-dimensional case with NF3 the Sobolev inequality holds true
and one can take advantage from that in order to define the standard Sobolev
space D 1

0 (V) as the completion of C Q
c (V) with respect to the Dirichlet norm. It

is known that D 1
0 (V) turns out to be a Hilbert space endowed with the norm

V˜uVL 2 . Moreover, for every a� [0 , 2 ] the space D 1
0 (V) is continuously embed-

ded into the weighted Lebesgue space L pagV , dx

NxNa h, where pa4
2(N2a)

N22
(see

[4]). In particular, for a40 one recovers the Sobolev embedding gp04
2N

N22
h,

while for a42 one gets the Hardy inequality (p242).
All the above statements cannot be taken for granted at all when V is an

arbitrary domain in R 2 . More precisely the lack of a Sobolev embedding in di-
mension two is an obstruction in order to define in a similar way the space
D 1

0 (V). Indeed, in general if V is an unbounded domain in R 2 , the completion
of C Q

c (V) with respect to the Dirichlet norm is not contained in any space
L p (V) for p� [1 , 1Q]. In addition, the Hardy inequality fails in dimension
two and the values Sp (V) defined in (0.3) turn out to be 0 for every pF2 if 0�
V or if V is an exterior domain.

Our goal is to introduce a class of domains in R 2 for which Sp (V)D0 for
every pF2. This will allow us to state a well-posed definition of the space
D 1

0 (V) as in the higher dimensional case.

DEFINITION 1.1. – We say that a domain V in R 2 is Hardy-admissible if the
Hardy inequality holds in V , that is, there exists CD0 such that for every
u�C Q

c (V)

s
V

u 2

NxN2
GCs

V

N˜uN2 .

In this case we set

l H
1 (V)4 inf{ s

V

N˜uN2 : u�C Q
c (V), s

V

u 2

NxN2
41} .
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REMARK 1.2. – Note that if 0�V then V is not Hardy-admissible. Moreo-
ver, by the invariance with respect to the Kelvin transform, also in case V is an
exterior domain, V cannot be Hardy-admissible.

LEMMA 1.3. – If a domain V in R 2 is Hardy-admissible, then the comple-
tion of C Q

c (V) with respect to the Dirichlet norm, denoted D 1
0 (V), is a Hilbert

space endowed with the norm VuVD 1
0
4V˜uVL 2 . Moreover D 1

0 (V) is continuou-

sly embedded into L pgV ; dx

NxN2 h for every p� [2 , 1Q).

PROOF. – The fact that D 1
0 (V) is a Hilbert space endowed with the Dirichlet

norm immediately follows by the assumption that the Hardy inequality holds
in V . In order to prove that D 1

0 (V) is continuously embedded into

L pgV ; dx

NxN2 h for every p� [2 , 1Q), first of all, we point out that V%R 2 0]0(

(Remark 1.2). Setting f(s , u)4 (e s cos u , e s sin u), we have that f is a diffeo-
morphism between R3S 1 and R 2 0]0(. Moreover, if u�D 1

0 (V) and v4
u i f4F(u), then v�H 1

loc (R3S 1 ), N˜uN24e 22s N˜vN2 a.e., and

s
V

N˜uN24s
S

N˜vN2 , s
V

u 2

NxN2
4s

S

v 2 ,(1.1)

where S4f21 (V)O (R3 [0 , 2p) ). Hence D 1
f (S)4: ](u i f)NS : u�D 1

0 (V)(
is a Hilbert space endowed with the Dirichlet norm and is isomorphic to
D 1

0 (V), through the mapping F . In addition, since V is Hardy-admissible and
(1.1) holds true, the Poincaré inequality holds in D 1

f (S) and then D 1
f (S) is a

subspace of H 1 (S). In particular, by the classical Sobolev embedding Theo-
rem, D 1

f (S) turns out to be continuously embedded into the spaces L p (S) for
all p� [2 , 1Q). Since for every u�C Q

c (V)

s
S

Nu i fNp4s
V

NuNp

NxN2

using the isomorphism F , we conclude that D 1
0 (V) is continuously embedded

into L pgV ; dx

NxN2 h for every p� [2 , 1Q). r

As already noted, in order that a domain in R 2 is Hardy-admissible, it can-
not contain the origin and it cannot be an exterior domain. In the next Theo-
rem we introduce a quite general condition on the domain ensuring that it is
Hardy-admissible.
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THEOREM 1.4. – If V is a domain in R 2 satisfying the condition:

(H) there exists a finite or countable family of connected sets G n%R 2 of po-
sitive capacity such that:

(i) R 2 0V&G , where G40
n

G n ,

(ii) G is unbounded and the origin is an accumulation point for G ,

(iii) sup
n

r(G n, G n11)E1Q where r(G n , G n11 )4 infmN log NxN

NyN N: x�

G n 0]0(, y�G n11 0]0(n,
then V is Hardy-admissible.

REMARK 1.5. – According to Theorem 1.4, the Hardy inequality, that fails in
R 2 , in fact holds in any domain V contained in R 2 0(G 0NG Q ) where G 0 is a
non constant curve passing through the origin and G Q is an unbounded curve.
Clearly this includes every proper cone in R 2 with vertex at the origin.

PROOF Let f be the diffeomorphism between R3S 1 and R 2 0]0( introdu-
ced in the proof of Lemma 1.3, and let S4f21 (V). By (1.1), V is Hardy-ad-
missible if and only if the Poincaré inequality is satified in S with respect to
the class of functions C Q

c (S)4]v�C Q (R3S 1 ) : supp v%S(. Under the dif-
feomorphism f , condition (H) is equivalent to:

(H)8 there exists a finite or countable family of connected sets Fn%R3S 1 of
positive capacity such that:

(i)8(R3S 1 )0S&F , where F4: 0
n

Fn ,

(ii)8 inf p1 (F)42Q , sup p1 (F)41Q , where p1 : R3S 1KR is the
projection with respect to the first component,

(iii)8 sup
n

d1 (Fn , Fn11 )E1Q , where d1 (Fn , Fn11 )4 inf ]Ns2s 8 N :

(s , u)�Fn , (s 8 , u 8 )�Fn11(.

Hence, if (H)8 is fulfilled, taking sD sup
n

d1 (Fn , Fn11 ) and S j4 ( ( js, ( j1

1) s)3S 1 )OS , then for every j�Z there exists nj such that Fnj
OS j is

a set of positive capacity. Therefore, we have that

s
S j

v 2GCs
S j

N˜vN2 for any v�C Q
c (S) ,

with CD0 independent of v and j (C depends just on the diameter of
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S j). Adding on j we find

s
S

v 2GCs
S

N˜vN2 for any v�C Q
c (S) ,

that is, the Poincaré inequality on S holds. r

2. – The linear Dirichlet problem.

In this Section we study the existence of positive solutions for the eigenva-
lue problem

.
/
´

2Du4l
u

NxN2

u40

in V

on ¯V

(2.1)

with lD0.
First of all, we state a non existence result, concerning the case of domains

containing the origin and exterior domains.

PROPOSITION 2.1. – If V is a domain in R 2 containing 0, or if V is an exte-
rior domain in R 2 , then for every lD0 the equation

2Du4l
u

NxN2

admits no non negative supersolution in the sense of distributions in V0]0(,
namely there is no function u�L 1

loc (V0]0(), uF0, uc0 such that

2s
V

uDWFls
V

uW

NxN2
for every W�C Q

c (V0]0(), WF0.

REMARK 2.2. – The non existence result stated in Proposition 2.1 holds only

in dimension two. Indeed, in the N-dimensional case for every lGg N

2
21h2

the equation 2NxN2 Du4lu admits (very weak) positive solutions on RN 0]0(
of the form u(x)4NxN2b for a suitable choice of b4b(N , l).

PROOF. – By the invariances of (0.1) with respect to dilations and to the
Kelvin transform, we may assume that B%V where B4]x�R 2 : NxNE1(.

Suppose that there exists a positive supersolution to 2Du4l
u

NxN2
in the sense

of distributions in V0]0(. Then, by standard regularization arguments,

2s
V

uDWFls
V

uW

NxN2
for every W�C 2

c (V0]0(), WF0. For every n�N let
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c n (r)4p g log r

log n
11h (rD0) and

W n (x)4
.
/
´

( sin c n (NxN) )3

0

as
1

n
ENxNE1

elsewhere .

Then W n�C 2
c (V0]0(), W nF0 and, after calculations,

ls
V

uW n

NxN2
G2s

V

uDW nG
3p

log n
s

V

uW n

NxN2
.

Since uF0 and uc0 on any neighborhood of 0 (otherwise uf0 on V),

s
V

uW n

NxN2
D0 for every n�N . Then lG 3p

log n
for every n�N , namely lG0. This

concludes the proof. r

The above non existence result leads us to study the eigenvalue problem
(2.1) when the domain V is Hardy-admissible. In this case the space D 1

0 (V) is
well defined (see Lemma 1.3) and we can look for positive solutions to (2.1) as
extremal functions corresponding to the continuous embedding of D 1

0 (V) into

L 2gV ; dx

NxN2 h , namely as minimizers for the problem

l H
1 (V)4 inf{ s

V

N˜uN2 : u�D 1
0 (V), s

V

u 2

NxN2
41} .(2.2)

Our first goal is to state a criterion ensuring that l H
1 (V) is attained in

D 1
0 (V). To this aim, let us introduce the values:

l H
1, 0 (V)4 sup

rD0
l H

1 (VOBr ) , l H
1, Q (V)4 sup

rD0
l H

1 (V0 Br ) ,

with the agreement that l H
1 (U)4Q if U4¯ . Note that, since V is Hardy-ad-

missible, also VOBr and V0 Br are (when they are non empty), and l H
1 (VO

Br )D0 and l H
1 (V0 Br )D0 for every rD0. Moreover the mappings

rO l H
1 (VOBr ) and rO l H

1 (V0 Br ) are respectively non increasing and non
decreasing, and l H

1 (V)Gmin ]l H
1, 0 (V), l H

1, Q (V)(. The following criterion
holds.

THEOREM 2.3. – Let V be a Hardy-admissible domain in R 2 . If

l H
1 (V)Emin ]l H

1, 0 (V), l H
1, Q (V)((2.3)

then l H
1 (V) is attained in D 1

0 (V).
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PROOF. – For every n�N let V n4mx�V : 1

n
ENxNEnn . For n�N large

enough V n is non empty and by standard arguments there exists un�H 1
0 (V n )

such that

s
V n

un
2

NxN2
41 , s

V n

N˜unN
24l 1

H (V n ) ,

and un is a positive solution to

.
/
´

2Du4l
u

NxN2

u40

in V n

on ¯V n

(2.4)

with l4l H
1 (V n ). Moreover one can easily verify that l H

1 (V n )Fl H
1 (V n11 ) for

all n�N and l H
1 (V n )Kl H

1 (V) as nKQ . Hence the sequence (un ) is bounded
in D 1

0 (V) and, for a subsequence, converges to some u�D 1
0 (V) weakly in

D 1
0 (V) and in L 2gV ; dx

NxN2 h , and pointwise a.e. in V . Then uF0 and, by wea-

kly lower semicontinuity, s
V

u 2

NxN2
G1 and s

V

N˜uN2Gl 1
H (V). Clearly, if s

V

u 2

NxN2
4

1, then by (2.2), one has s
V

N˜uN24l 1
H (V), namely l 1

H (V) is attained. If 0E

s
V

u 2

NxN2
E1, since

s
V

(un2u)2

NxN2
4s

V

un
2

NxN2
2s

V

u 2

NxN2
1o(1)412s

V

u 2

NxN2
1o(1)

s
V

N˜(un2u)N24s
V

N˜un N22s
V

N˜uN21o(1)4l 1
H (V)2s

V

N˜uN21o(1)

we infer that

l 1
H (V)G

s
V

N˜(un2u)N2

s
V

(un2u)2

NxN2

4

l 1
H (V)2s

V

N˜uN2

12s
V

u 2

NxN2

1o(1)

and then

l 1
H (V)D

s
V

N˜uN2

s
V

u 2

NxN2
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in contradiction with (2.2). Hence the case 0Es
V

u 2

NxN2
E1 cannot occur. Final-

ly, to exclude also the case s
V

u 2

NxN2
40, namely u40, we use the hypothesis

(2.3). For every eD0 there exists r0D0 such that l H
1 (VOBr0

)Fl H
1, 0 (V)2e ,

and rQDr0 such that l H
1 (V0BrQ )Fl H

1, Q (V)2e . We claim that

s
U

N˜un N2K0 , s
U

un
2

NxN2
K0 ,(2.5)

for every open, bounded set U%V such that 0�U. Assuming for a moment
that (2.5) is proved, we conclude that

l H
1 (V)4s

V

N˜un N21o(1)

4 s
VOBr0

N˜un N
21 s

V0BrQ

N˜un N
21o(1)

Fl H
1 (VOBr0

) s
VOBr0

un
2

NxN2
1l H

1 (V0BrQ ) s
V0BrQ

un
2

NxN2
1o(1)

F (l H
1, 0 (V)2e) s

VOBr0

un
2

NxN2
1 (l H

1, Q (V)2e) s
V0BrQ

un
2

NxN2
1o(1)

Fmin ]l H
1, 0 (V), l H

1, Q (V)(2e1o(1) .

Thus, for the arbitrariness of e , we obtain l H
1 (V)Fmin ]l H

1, 0 (V), l H
1, Q (V)(,

contrary to the assumption (2.3). Hence it remains to prove the claim (2.5). Let

U be an open, bounded subset of V with 0�U. Firstly, we have that s
U

un
2

NxN2
K0

because (un )%H 1 (U), unK0 weakly in H 1 (U) and then strongly in L 2 (U). Se-
condly, let x�C Q

c (R 2 0]0(, [0 , 1 ] ) be such that x41 on U . By (2.4) we have
that

s
V

˜un Q˜(xun )4l 1
H (V n )s

V

x
un

NxN2
.

By the previous part s
V

x
un

NxN2
K0. Moreover the sequence (l 1

H (V n ) ) is boun-
ded and then

s
V

˜un Q˜(xun )K0 .
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Hence

s
U

N˜un N
2Gs

V

xN˜unN
2

4s
V

˜un Q˜(xun )2s
V

un ˜x Q˜un

Ggs
V

un
2 N˜xN2h1/2gs

V

N˜un N2h1/2

1o(1)

4o(1) ,

because (un ) is bounded and converges to 0 strongly in L 2 ( supp x). Therefore
(2.5) holds true and the proof is completed. r

In the second part of this Section we focus on the case V4R 2 0G a , b , where
G a , b4]x�R 2 : 0Gx1Ga , x1Fb(, being bFaD0. As noted in Remark 1.5, V
satisfies the condition (H) and then, by Theorem 1.4, it is Hardy-admissible.
Moreover, by the dilation invariance, the minimization problem (2.2) as well as
the eigenvalue problem (2.1) are equivalent to the corresponding problems for
the domain R 2 0G ta , tb for every tD0. Hence, without loss of generality, we
may reduce ourselves to consider the domains

V d4R 2 0G d ,

where G d4mx�R 2 : 0Gx1Gd , x1F
1

d
n , and d� (0 , 1 ]. Our goal is to show

the following result.

PROPOSITION 2.4. – There exists d 0� (0 , 1 ] such that for every d� (0 , d 0 )

the value l 1
H(V d) is attained in D 1

0 (V d). Moreover l 1
H(V d)K 1

4
as dKd 0 .

The proof of Proposition 2.4, is based on the following auxiliary results. The
first one concerns the limit case d41.

LEMMA 2.5. – l H
1 (V 1 )4 1

4
and it is not attained in D 1

0 (V 1 ). Moreover

l H
1 (V 1OBr )4l H

1 (V 1 0Br )4 1

4
for every rD0.

PROOF. – With the change of variable f(s , u)4 (e s cos u , e s sin u) we get
that

l H
1 (V 1 )4 infm s

S

N˜vN2 : u�H 1
0 (S), s

S

v 241n .(2.6)

It is known that the infimum in (2.6) is l 1 (I), with I4 (0 , 2p), and it is not at-
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tained in H 1
0 (S). In addition l 1 (I)4 1

4
. Let us prove that l H

1 (V 1OBr )4

l H
1 (V 1 ). Clearly l H

1 (V 1OBr )Fl H
1 (V 1 ). Given eD0 there exists u�C Q

c (V 1 )

such that s
V 1

u 2

NxN2
41 and s

V 1

N˜uN2Gl H
1 (V 1 )1e . Let ud (x)4u g x

d
h . Then for

dD0 small enough ud�C Q
c (V 1OBr ) and, by the dilation invariance s

V 1

ud
2

NxN2
4

s
V 1

u 2

NxN2
and s

V 1

N˜ud N24s
V 1

N˜uN2 . Hence l H
1 (V 1OBr )Gl H

1 (V 1 )1e . By the ar-

bitrariness of e we conclude that l H
1 (V 1OBr )Gl H

1 (V 1 ). Therefore we get the
thesis. In a similar way one can prove that l H

1 (V 1 )4l H
1 (V 1 0 Br ). r

The next result concerns some properties of the mapping dO l 1
H (V d ).

LEMMA 2.6. – The mapping dO l 1
H (V d ) is continuous and non decreasing

on (0 , 1 ]. Moreover l 1
H (V d )K0 as dK0.

PROOF. – For 0EdEd 8G1 we have V d%V d 8 . This immediately implies
that the mapping dO l 1

H (V d ) is non decreasing on (0 , 1 ]. To prove that
l 1

H (V d )K0 as dK0, one uses the fact that, setting V 04R 2 0]0(,

inf{ s
R 2

N˜uN2 : u�C Q
c (V 0 ), s

R 2

u 2

NxN2
41}40 .

Also to prove the continuity from the right it is enough to apply the definition
of l 1

H (V d ). Now let us show that the mapping dO l 1
H (V d ) is continuous from

the left at any d� (0 , 1 ]. By contradiction, let eD0 and 0Ed 0EdG1 be such
that

l 1
H (V d 8 )Gl 1

H (V d )2e for every d 8� (d 0 , d) .(2.7)

Let (d n )% (d 0 , d) be such that d nKd . By (2.7), l 1
H (V d n

)El 1
H (V 1 ) for every

n�N , and then, by Lemma 2.5 and by Theorem 2.3, l 1
H (V d n

) is attained in
D 1

0 (V d n
) by some un which satisfies

s
V d n

un
2

NxN2
41 , s

V d n

N˜un N
24l 1

H (V d n
) ,(2.8)

and is a positive solution to

.
/
´

2Du4l 1
H (V d n

)
u

NxN2

u40

in V d n

on ¯V d n
.

(2.9)

Since, by (2.8), the sequence (un ) is bounded in D 1
0 (V d 0

), there exists u�
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D 1
0 (V d 0

) and a subsequence of (un ), still denoted (un ), such that unKu weakly

in D 1
0 (V d 0

) and pointwise a.e. in V d 0
. Hence uF0, u�D 1

0 (V d ), s
V d

u 2

NxN2
G1 and

s
V d

N˜uN2Gl 1
H (V d )2e , because of (2.7). If s

V d

u 2

NxN2
41, we obtain a contradic-

tion with (2.2). Also the case 0Es
V d

u 2

NxN2
E1 can be excluded, arguing as in the

proof of Theorem 2.3. Let us consider the last case s
V d

u 2

NxN2
40, namely u40.

Arguing again as in the proof of Theorem 2.3, using (2.9), we can show
that

s
U

N˜un N2K0 , s
U

un
2

NxN2
K0 ,(2.10)

for every open, bounded set U%V such that 0�U. Then, taking r0D0 such

that l H
1 (V dOBr0

)Fl H
1, 0 (V d )2 e

2
, and rQDr0 such that l H

1 (V d 0 BrQ )F

l H
1, Q (V d )2 e

2
, we have that, by (2.10),

l H
1 (V d n

)4 s
V dOBr0

N˜un N
21 s

V d 0BrQ

N˜un N
21o(1)

Fmin ]l H
1, 0 (V d ), l H

1, Q (V d )(2
e

2
1o(1) .

Thus, using (2.7) and Lemma 2.5, we obtain that l H
1 (V d )Fl H

1 (V 1 )1 e

2
, a con-

tradiction. Therefore also the case u40 cannot occur, and thus the continuity
from the left is proved. r

Hence Proposition 2.4 immediately follows by Lemmata 2.5 and 2.6 and by
Theorem 2.3. Moreover, as a consequence of the above statements, we plainly
obtain the following result.

COROLLARY 2.7. – For every l�g0, 1

4
h there exists d� (0 , 1 ) such that the

eigenvalue problem

.
/
´

2Du4l
u

NxN2

u40

in V d

on ¯V d

admits a positive solution in D 1
0 (V d ).
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REMARK 2.8. – One can easily check that d 0De 2p . Indeed, consider the
function u : R 2KR defined as follows:

u(x)4
.
/
´

cosg 1

2
logNxNh

0

as e 2pGNxNGe p

elsewhere .

One can see that u�D 1
0 (V d ) with d4e 2p , and s

R 2

N˜uN2Ns
R 2

u 2

NxN2
4 1

4
. Hence,

if it were l 1
H (V d )4 1

4
, then u should be a minimizer and consequently should

be a positive solution to (2.1) on V d . In particular, by the maximum principle,
u(x)D0 for every x�V d , contrary to the definition of u . Therefore we conclu-
de that d 0Dd.

3. – The semilinear Dirichlet problem.

In this section we study the Dirichlet’s problem (0.5) assuming that V is a
Hardy-admissible domain in R 2 , lEl 1

H (V) and g�C 1 (R) satisfies:

( g1) there exists pD2 such that Ng 8 (u)N4O(u p22 ) as uK1Q ,

( g2) g(u)4o(u) as uK0,

( g3) there exists qD2 such that 0EqG(u)Gg(u) u for any uD0,

( g4)]
g(u)

u
Eg 8 (u) for every uD0,

being G(u)4s
0

u

g(t) dt . Note that the function uONuNp22 u verifies ( g1)-( g4)

for pD2.
Since we look for positive solutions to (0.5), following a standard procedu-

re, we may modify g on (2Q , 0 ) setting g(u)40 for uE0.
In Theorem 3.1 we will state a criterion in order that problem (0.5) admits a

(weak) positive solution.
Since the domain V is Hardy-admissible, by Lemma 1.3 the space D 1

0 (V) is
well defined and l 1

H (V)D0. Furthermore, since lEl 1
H (V), we can take

VuV4g s
V

gN˜uN22l
u 2

NxN2 hh1/2

as a norm in D 1
0 (V).

Thanks to ( g1) and ( g2), by Lemma 1.3, the functional I : D 1
0 (V)KR defi-



STATIONARY STATES FOR A TWO-DIMENSIONAL ETC. 623

ned by

I(u)4
1

2
s

V

N˜uN22
l

2
s

V

u 2

NxN2
2s

V

G(u)

NxN2

is of class C 2 on D 1
0 (V) and its critical points are weak solutions to (0.5).

Moreover, by ( g2), one has that s
V

G(u)

NxN2
4o(VuV2 ), as VuVK0. By ( g3),

G(u)FG(1) u q for uF1 and then I(su)K2Q as sK1Q , for every u�
D 1

0 (V), uF0, uc0.
Hence the functional I has a mountain pass geometry. More precisely, set-

ting G 4]g�C( [0 , 1 ], D 1
0 (V) ) : g(0)40, I(g(1) )E0( the class of the moun-

tain pass paths, and

c(V)4 inf
g� G

max
s� [0 , 1 ]

I(g(s) )(3.1)

the corresponding minimax level of I , we have that c(V)D0.
To check the Palais Smale (briefly PS) condition for I at level c(V), we use

a comparison estimate with the «problems at infinity», that keeps into account
of possible concentration phenomena at 0, or vanishing at infinity. This is ac-
complished similarly to what done for the eigenvalue problem (2.1). Precisely,
using the agreement that c(¯)41Q , let us define

c0 (V)4 sup
rD0

c(VOBr ) , cQ (V)4 sup
rD0

c(V0 Br ) .(3.2)

Notice that c(VOBr ) and c(V0 Br ) are well defined for every rD0. Indeed if
VOBr (or V0 Br) is non empty, then it is Hardy-admissible, lEl 1

H (VOBr ),
because l 1

H (V)Gl 1
H (VOBr ), and then also the restriction of I to D 1

0 (VOBr )
has a mountain pass geometry at a level c(VOBr )Fc(V). Hence we have that
c(V)Gmin ]c0 (V), cQ (V)(. The following existence criterion holds.

THEOREM 3.1. – Let V be a Hardy-admissible domain in R 2 , lEl 1
H (V),

and g�C 1 (R) satisfy ( g1)-( g4). If

c(V)Emin ]c0 (V), cQ (V)( ,(3.3)

then problem (0.5) admits a weak positive solution.

According to what stated before, in order to prove Theorem 3.1, we have
just to check that if (un )%D 1

0 (V) satisfies I(un )Kc(V) and I 8 (un )K0, then
(un) is precompact in D 1

0 (V). This will be carried out in the next Lemmata.
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Let us first remark that, by ( g2), for every u�D 1
0 (V) we have

g 1

2
2

1

q
h VuV2GI(u)1

1

q
VI 8 (u)V VuV .(3.4)

In particular, (3.4) implies that any PS sequence for I is bounded and hence it
has a weakly convergent subsequence. Moreover, by (3.4) there is no PS se-
quence for I at a level bE0.

The next two Lemmata are standard and we omit the proof that can be
plainly obtained by following a procedure already used (see, e.g., [11]).

LEMMA 3.2. – Let (un )%D 1
0 (V) be a PS at level b such that unKu weakly

in D 1
0 (V) for some u�D 1

0 (V). Then I 8 (u)40 and (un2u) is a PS sequence
at level b2I(u).

By Lemma 3.2 we may restrict ourselves to study PS sequences weakly
converging to 0. We have the following result.

LEMMA 3.3. – Let (un )%D 1
0 (V) be a PS sequence weakly converging to 0.

Then:

(i) s
U

N˜un N2K0 for every open bounded set U%V with 0�U,

(ii) given a cut-off function x�C 1
c (R 2 , [0 , 1 ] ) with x41 in a neighbo-

rhood of 0, then (xun ) and ( (12x) un ) are PS sequences.

Now, let us state an auxiliary result concerning bounded sequences in
D 1

0 (V).

LEMMA 3.4. – Let (un )%D 1
0 (V) be a bounded sequence. Let Aj4]x�

R 2 : r jENxNEr j11( where j�Z and rD1 is fixed. For every pD2, if

sup
j�Z

s
VOAj

Nun N
p

NxN2
K0 as nKQ , then s

V

Nun N
p

NxN2
K0.

PROOF. – For every n�N there exists rnD0 such that

s
VOBrn

Nun Np

NxN2
4 s

V0Brn

Nun Np

NxN2
4

1

2
s

V

Nun Np

NxN2
.

For i41, 2 let f i�C 1 ( [0 , 1Q), [0 , 1 ] ) satisfying: f 1 (r)41 for 0GrG 1

r

and f 1 (r)40 for rF1, f 2 (r)40 for 0GrG1 and f 2 (r)41 for rFr . Now,

for i41, 2 and n�N set x i , n (x)4W ig NxN

rn
h , for every x�RN . Then, define
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ui , n4x i , n un . Firstly, let us prove that for i41, 2

1

2
s

V

Nun Np

NxN2
2s

V

Nui , n N
p

NxN2
K0(3.5)

as nKQ . Indeed, for every n�N there exists jn�Z such that rn� (r jn, r jn11].

Then rn

r
� (r jn21, r jn ] and thus

0G
1

2
s

V

Nun Np

NxN2
2s

V

Nu1, n N
p

NxN2
4 s

VOBrn

(12x 1, n
p )

Nun Np

NxN2

G s
VOAjn21

Nun Np

NxN2
1 s

VOAjn

Nun Np

NxN2
G2 sup

j�Z
s

VOAj

Nun Np

NxN2

and then, by the assumption, (3.5) holds true for i41. A similar argument
holds for i42. Secondly, we claim that for i41, 2

s
V

N˜x i , n N2 un
2K0(3.6)

as nKQ . Indeed

s
V

N˜x 1, n N
2 un

2G
C

rn
2

s
VO ]rn /rENxNErn(

un
2

G
C

rn
2 g s

VO ]rn /rENxNErn(

NxN4/(p22)h(p22) /pu s
VO ]rn /rENxNErn(

Nun N
p

NxN2
v2/p

GCusup
j�Z

s
VOAj

Nun N
p

NxN2
v2/p

.

Hence, using again the assumption, (3.6) is proved for i41. Similarly it holds
also for i42. Now we show that

s
V

N˜un N2F2Sp (V)g 1

2
s

V

Nun Np

NxN2
h2/p

1o(1)(3.7)

as nKQ , where Sp (V) is defined by (0.3). Indeed, setting x n4x 1, n1x 2, n ,
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we have

s
V

N˜(x n un )N2Gs
V

N˜x n N2 un
21s

V

x n
2 N˜un N2

12u s
V

N˜x n N
2 un

2v1/2u s
V

x n
2 N˜un N

2v1/2

Go(1)1s
V

N˜un N
2

(3.8)

because (un ) is bounded in D 1
0 (V) and by (3.6). Then, using (0.3), we infer

that

s
V

N˜un N
2Fs

V

N˜u1, n N
21s

V

N˜u2, n N
21o(1)

FSp (V)g s
V

Nu1, n Np

NxN2
h2/p

1Sp (V)g s
V

Nu2, n Np

NxN2
h2/p

1o(1)

F2Sp (V)g 1

2
s

V

Nun N
p

NxN2 h2/p

1o(1)

because of (3.5). Now we observe that for i41, 2 the sequence (ui , n ) satisfies
the same assumptions of (un ), namely (ui , n ) is bounded, by (3.8), and clearly

sup
j�Z

s
VOAj

Nui , n N
p

NxN2
K0 as nKQ . Hence we also have

s
V

N˜ui , n N2F2Sp (V)g 1

2
s

V

Nui , n N
p

NxN2
h2/p

1o(1)

as nKQ . Then, using (3.5) and (3.8), we deduce that

s
V

N˜un N2F22 Sp (V)g 1

22
s

V

Nun Np

NxN2
h2/p

1o(1) .

By recurrence, for every k�N we have that

s
V

N˜un N2F2k Sp (V)g 1

2k
s

V

Nun Np

NxN2
h2/p

1o(1)

as nKQ . Since pD2 and (un ) is bounded in D 1
0 (V), and since, by Lemma 1.3,

Sp (V)D0, we conclude that s
V

Nun N
p

NxN2
K0. r

As a consequence of Lemma 3.4 we have the following result.
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LEMMA 3.5. – Let (un )%D 1
0 (V) be a PS sequence weakly converging to 0.

Then the following alternative holds: either

(i) lim inf Vvn V40, or

(ii) there exists a sequence ( jn )%Z such that Njn NKQ and

lim inf s
VOAjn

Nun N
p

NxN2
D0, where Aj is defined as in Lemma 3.4.

PROOF. – Suppose that (i) does not hold. By ( g1)-( g3), for every eD0 there
exists CeD0 such that 0Gg(t) tGet 21Ce NtNp for any t�R . Then, taking
eEl 1

H (V)2l we have

Vun V
24I 8 (un ) un1s

V

g(un ) un

NxN2
GI 8 (un ) un1eVun V

21Ces
V

Nun Np

NxN2
.(3.9)

Since lim inf Vun VD0 and I 8 (un )K0, fixing e� (0 , l 1
H (V)2l) small enough,

we obtain that lim inf s
V

Nun N
p

NxN2
D0, and then, by Lemma 3.4,

lim inf
nKQ

sup
j�Z

s
VOAj

Nun Np

NxN2
D0 .

In particular there exists a sequence ( jn )%Z such that

lim inf s
VOAjn

Nun Np

NxN2
D0 .

Since s
U

Nun N
p

NxN2
K0 for every bounded open set U%V with 0�U, we have that

Njn NKQ . Therefore (ii) follows. Conversely, suppose that (ii) does not hold.

Let ( jn )%Z be such that sup
j�Z

s
VOAj

Nun Np

NxN2
4 s

VOAjn

Nun Np

NxN2
. If ( jn ) is bounded,

since unK0 weakly in D 1
0 (V), we have that s

VOAjn

Nun N
p

NxN2
K0 and then, using

Lemma 3.4, lim inf s
V

Nun N
p

NxN2
40. The same holds if ( jn ) is unbounded, because

we are assuming that (ii) does not hold. Hence, by (3.9), lim inf Vun V40, name-
ly (i). r

In the next Lemma we show that, by the assumption ( g4), there is no PS
sequence at levels b� (0 , c(V) ).

LEMMA 3.6. – Let (un )%D 1
0 (V) be a PS sequence at level b , such that

unKu weakly in D 1
0 (V) for some u�D 1

0 (V). If bEc(V) then u40, and
unK0 strongly in D 1

0 (V). In particular b40.
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PROOF. – By ( g4), for every u�D 1
0 (V), uc0, there exists a unique tuD0

such that d

dt
I(tu)Nt4 tu

40. Moreover I(tu u)4max
tF0

I(tu)Fc(V). In particular,

if I 8 (u)40 then I(u)Fc(V). Let (un ) be a PS sequence at level bEc(V) such
that unKu weakly in D 1

0 (V). By Lemma 3.2, I 8 (u)40 and (un2u) is a PS se-
quence at level b 84b2I(u). If uc0, then b 8E0, which is impossible, becau-
se of (3.4). Hence unK0 weakly in D 1

0 (V). Suppose, by contradiction, that for a
subsequence, still denoted (un ), lim Vun VD0 holds. For any n�N let tnD0 be
such that max

tF0
I(tun )4I(tn un ). We claim that I(tn un )2I(un )K0, and then

I(tn un )Kb , contradicting the fact that I(tn un )Fc(V)Db . Therefore unK0
strongly in D 1

0 (V). Hence, to complete the proof, we have to show that
I(tn un )2I(un )K0. To this aim, let us introduce for every n�N the function

jn (t)4I(tun ). Note that jn�C 2 (R1 ), with j 8n (t)4 tVun V
22s

V

g(tun ) un

NxN2
and

j 9n (t)4Vun V
22s

V

g 8 (tun ) un
2

NxN2
. By ( g4) we have that for any n�N

j 9n (t)G
1

t
j 8n (t) for every tD0 .(3.10)

Moreover j 8n (t)D0 for t� (0 , tn ), j 8n (tn )40, and j 8n (t)E0 for tD tn . Hence, by
(3.10), we obtain that

Njn8 (t)NG tNjn8 (1)N for every t� [min ]tn , 1(, max ]tn , 1(] .(3.11)

Let us prove that the sequence (tn ) is bounded. By ( g2) and ( g3), fixing eD0
there exists CeD0 such that g(u)uF2eu 21Ce NuNq for every u�R . Therefo-

re s
V

g(tun ) un

NxN2
F2etns

V

un
2

NxN2
1Ce tn

q21s
V

Nun N
q

NxN2
and then

(11e)Vun V
2FCe tn

q22s
V

Nun Nq

NxN2
.(3.12)

By Lemma 3.5, there exists a sequence ( jn )%Z such that lim inf s
VOAjn

Nun N
p

NxN2
D

0, where Aj4]x�R 2 : r jENxNEr j11(. Then, lim inf s
V

Nun N
q

NxN2
D0, that, toge-

ther with (3.12), implies that sup tnE1Q . Finally, we can show that jn (tn )2
jn (1)K0, that is the initial claim. Indeed, by (3.11) we have that

0G jn (tn )2 jn (1)GNs
tn

1

Nj 8n (t)NdtNGNj 8n (1)NNs
tn

1

t dtN4o(1)

because sup tnE1Q and j 8n (1)4I 8 (un ) unK0. This concludes the
proof. r
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REMARK 3.7. – If V is a proper cone in R 2 , then, under the assumptions
( g1)-( g4), for lEl 1

H (V), the mountain pass level c(V) is always a critical
value for I . Indeed, given a PS sequence (un )%D 1

0 (V) at level c(V), thanks to
the invariance of the problem (0.5) with respect to dilation, we may suppose

that, up to dilations, lim inf s
VOA0

Nun N
p

NxN2
D0, where A04Br 0 B1 . Hence there

exists u�D 1
0 (V), uc0, such that, for a subsequence, unKu weakly. By Lem-

mata 3.2 and 3.5, I 8 (u)40 and I(u)4c(V) (in fact unKu strongly in D 1
0 (V),

see below). Note that in this case c(V)4c0 (V)4cQ (V) (see Lemma 4.1).

LEMMA 3.8. – Let (un )%D 1
0 (V) be a PS sequence weakly converging to 0.

Let ( jn )%Z be such that Njn NKQ and lim inf s
VOAjn

Nun N
p

NxN2
D0, where Aj is de-

fined as in Lemma 3.4. Then lim inf I(un )Fmin ]c0 (V), cQ (V)(.

PROOF. – Let us suppose that, for a subsequence, jnK2Q . Let rD0 and
x�C Q

c (R 2 , [0 , 1 ] ) be such that x41 on Br/2 and x40 outside Br . By Lemma
3.3, (xun ) is a PS sequence for IND 1

0 (VOBr ) Then, by Lemma 3.6, lim inf I(xun )F
c(VOBr ), because lim inf Vxun VD0. One can also see that lim inf I(un )F
lim inf I(xun ). Thus, by the arbitrariness of rD0, we infer that lim inf I(un )F
c0 (V), by (3.2). Instead, if inf jnD2Q , then jnK1Q , and, arguing as before,
we conclude that lim inf I(un )FcQ (V). Hence, the Lemma is proved. r

Conclusion of the proof of Theorem 3.1. Let (un )%D 1
0 (V) be a PS se-

quence at level c(V). Up to a subsequence, unKu weakly in D 1
0 (V). If uc0

we have finished, because, by Lemma 3.2, (un2u) is again a PS sequence at a
level bGc(V)2I(u)Ec(V) and thus, unKu strongly in D 1

0 (V), by Lemma
3.6. Hence, by contradiction, suppose that unK0 weakly in D 1

0 (V). Since
lim inf Vun VD0 (otherwise I(un )K0, while c(V)D0), by Lemma 3.5, there

exists a sequence ( jn )%Z such that Njn NKQ and lim inf s
VOAjn

Nun N
p

NxN2
D0,

being Aj4]x�R 2 : r jENxNEr j11(. Then, by Lemma 3.8, lim inf I(un )F
min ]c0 (V), cQ (V)(, contrary to the assumption (3.3). This concludes the
proof. r

REMARK 3.9. – In Theorem 3.1 the assumption ( g1) on g can be slightly
weakened, by requiring just

( g1)8 log (Ng 8 (u)N)4o(u 2 ) as uK1Q .

Indeed, since the Trudinger-Moser inequality holds in H 1 (S), where S4
R3 (0 , 2p) (see [1]), the condition ( g1)8 is sufficient to guarantee that the

functional W(u)4s
V

G(u)

NxN2
is well defined and of class C 2 on D 1

0 (V), and W 8
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maps weakly convergent sequences into weakly convergent ones. Moreover, if
U is an open bounded subset of V such that 0�U, denoting by W U the restric-
tion of W to D 1

0 (U), then W U and W U8 are relatively compact mappings.
We conclude this Section by discussing the role of the assumption of Har-

dy-admissibility of the domain. Consider the case of a domain V containing 0 .
Then it is not Hardy-admissible and, if lF0, it is known that equation (0.2)
admits no positive solution, even in a very weak sense, as proved in [3] and in
[8]. More precisely, the following non existence result holds (see [8]).

THEOREM 3.10. – Let f�C(R) be such that lim inf
uK1Q

f (u)

u p
D0 for some pD1,

and f (u)D0 for every uD0. If V is a domain in R 2 containing 0, or if V is
an exterior domain in R 2 , then the equation

2Du4
f (u)

NxN2
in V

admits no non negative supersolution in the sense of distributions in V0]0(,
namely there is no function u�L 1

loc (V0]0() such that f (u)�L 1
loc (V0]0(), uF

0, uc0 and 2s
V

u DWFs
V

f (u)

NxN2
W for every W�C Q

c (V0]0(), WF0.

Considering again a domain V containing 0 , one could ask if there exists a

positive solution u to problem (0.5) for lE0, with s
V

gN˜uN21 u 2

NxN2 hEQ . In

general also in this case we have non existence. Precisely, let us recall the fol-
lowing result, proved in [8].

THEOREM 3.11. – Let g�C(R) satisfy ( g1)-( g2), l�R , and let V be a
smooth, bounded, star-shaped domain in R 2 containing 0. If u is a solution

to (0.5) such that s
V

gN˜uN21 u 2

NxN2 hEQ , then u40.

In this case the reason of non existence is the invariance under dilation and
a concentration phenomenon to the problem on the whole space R 2 , which ad-
mits a positive solution radial solution for lE0 and g�C(R) satisfying ( g1)-
( g3) (see [8, Theorem 2.5]).

4. – Examples.

As an application of Theorem 3.1, in this section we consider the case of do-

mains contained in R 2 0G d , where G d4mx�R 2 : 0Gx1Gd , x1F
1

d
n , and d�
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(0 , 1 ]. Let us introduce the cones

V u4](r cos t , r sin t) : rD0, 0EtEu(

where 0EuG2p . Note that, setting Iu4 (0 , u) and S u4R3Iu , we have

l 1
H (V u )4l 1 (S u )4l 1 (Iu )4

p 2

u 2
.(4.1)

We first discuss the case of a domain of the form V4V uNU , where U is a
bounded open set such that 0�U.

To evaluate c0 (V) and cQ (V), the following result is useful.

LEMMA 4.1. – c(V u )4c0 (V u )4cQ (V u ).

PROOF. – On one hand, the inequalities c(V u )Gc0 (V u ) and c(V u )G
cQ (V u ) are always true. To prove the opposite inequalities, let us consider the
solution u to (0.5) on V u obtained as critical point of I in D 1

0 (V u ) at the moun-
tain pass level c(V u ) (see Remark 3.7). The sequence (un ) defined by un (x)4
u(nx) satisfies the assumption of Lemma 3.8. Hence c0 (V u )G lim inf I(un )4
c(V u ). A similar argument holds to prove that cQ (V u )Gc(V u ). r

THEOREM 4.2. – Let g�C 1 (R) satisfy ( g1)-( g4), and let V be a domain in
R 2 of the form V4V uNU , where V u is a cone of angle u� (0 , 2p] and U is a
bounded open set such that 0�U. Then, for every lEl 1

H (V), problem (0.5)
admits a weak positive solution.

Let us note that Theorem 4.2 applies in particular for V4R 2 0G d ,
d� (0 , 1 ].

PROOF. – If V4V u then the result has been already discussed in Remark
3.7. Suppose that U0V uc¯ . By the assumptions on the domain, there exist
r0 , rQD0 such that VOBr4V uOBr for every r� (0 , r0 ), and V0Br4V u 0Br

for every rDrQ . Hence, by Lemma 4.1 and by (3.2), we obtain c0 (V)4
cQ (V)4c(V u ). We claim that c(V)Ec(V u ), and therefore, by the previous
equalities, the result follows as an application of Theorem 3.1. Suppose by con-
tradiction, that c(V)4c(V u ). Let uu�D 1

0 (V u ) be the solution to (0.5) on V u

obtained as critical point of I in H 1
0 (V u ) at the mountain pass level c(V u ).

Then, setting M4]u�D 1
0 (V) : I 8 (u) u40, uc0( and Mu4]u�

D 1
0 (V u ) : I 8 (u)u40, uc0(, we have that I(uu )4c(V u )4 inf

Mu

I4 inf
M

I . The-

refore, by ( g4), uu solves problem (0.5) on V . In particular u40 in U0V u , con-
tradicting the maximum principle. r
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Let us consider now the case of a domain V such that 0�¯V is a cusp point,
that is, there exists a unit versor n�R 2 such that for every uD0 there exists

rD0 for which VOBr%V u , n , where V u , n4mx�R 2 : x QnDNxNcos u

2
n . The

estimate of c0 (V) will be obtained by using the following result.

LEMMA 4.3. – c(V u )K1Q as uK01 .

PROOF. – Firstly we note that, by (4.1) and by Remark 3.7, given l�R , the-
re exists u 0� (0 , 2p] such that for u� (0 , u 0 ], the functional I on D 1

0 (V u ) ad-
mits a mountain pass geometry and a critical point uu at the mountain pass le-

vel c(V u ). By the dilation invariance, we may suppose that sup
j�Z

s
V uOAj

Nuu N
p

NxN2
4

s
V uOA0

Nuu N
p

NxN2
, where Aj4]x�R 2 : r jENxNEr j11(. Using (3.1), we have that

for 0Eu 8Eu , c(V u )Gc(V u 8 ) and then lim
uK0

c(V u )4 sup
uD0

c(V u ). Suppose by

contradiction that sup
uD0

c(V u )EQ . Then, by (3.4), we infer that

sup
uD0

Vuu VD 1
0 (V u )EQ , and thus, up to a subsequence, uuKu0 weakly in

D 1
0 (V u 0

). Since supp uu4Vu , and uK0, we have that u040. If uuK0 stron-
gly in D 1

0 (V u 0
), then c(V u )K0, a contradiction. Hence, lim inf Vuu VD 1

0 (V u )D0,

and then, arguing as in the proof of Lemma 3.5, lim inf
uK0

s
V uOA0

Nuu N
p

NxN2
D0. This

contradicts the fact that, since uuK0 weakly, s
V uOA0

Nuu N
p

NxN2
K0. This concludes

the proof. r

Hence we have the following result.

PROPOSITION 4.4. – If V is a domain in R 2 with 0�¯V and such that 0 is a
cusp point, then c0 (V)41Q .

PROOF. – By definition of cusp point, there exists a unit versor n�R 2 such
that for every uD0 one can find rD0 for which VOBr%V u , n . Then c(VO
Br )Fc(V u , n )4c(V u ). Hence, by (3.2) and (4.1), c0 (V)41Q . r

A result similar to Proposition 4.4 holds in the case of an unbounded do-
main V such that V0Br is contained in a strip, for some rD0.

PROPOSITION 4.5. – Let V be a domain in R2 satisfying the following proper-
ty: there exist rD0, unit versors n 0 , n 1�R2 with n 0 Qn 140, and a bounded in-
terval I such that V0Br%]an 01bn 1 : a�R , b�I(. Then cQ(V)41Q .
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The proof goes on as for Proposition 4.4. Hence, if V is a domain in R 2 sati-
sfying the assumptions of Propositions 4.4 and 4.5, for lEl 1

H (V) and g�
C 1 (R) satisfying ( g1)-( g4), the existence of a weak positive solution to (0.5) is
guaranteed by Theorem 3.1.
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