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The HyperKéihler Geometry Associated
to Wolf Spaces.

P1oTr KOBAK - ANDREW SWANN

Sunto. — Sia G un grupo di Lie compatto e semplice. Sia Oy, la pitt piccola orbita nil-
potente non-banale nell’algebra di Lie complessa q. Si presenta una costruzione
diretta di teoria di Lie delle metriche iperKahler su Oy, con potenziale Kahleriano
G-tnvariante e compatibili con la forma simplettica complessa di Kostant-Kiril-
lov-Souriau. In particolare si ottengono le metriche iperKahler det fibrati associati
sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).

1. — Introduction.

One of the glories of homogeneous geometry is Cartan’s classification of the
compact Riemannian symmetric spaces [5,6]. Many manifolds that play a central
role in geometry are symmetric and it is fascinating to look for patterns in the pre-
sentations G/H. One obvious family is provided by the sphere S"=SO0mn+1)/
SO(n), complex projective space CP(n) = U(n + 1)/(U(n) U(1)), quaternionic
projective space HP(n) = Sp(n + 1)/(Sp(n) Sp(1)) and the Cayley projective
plane F,/Spin (9). Another consists of the Hermitian symmetric spaces: these
are of the form G/(U(1) L) (see [4]). However, the most surprising is the fami-
ly of quaternionic symmetric spaces W(G) := G/(SP(1) K), which has the fea-
ture that there is precisely one example for each compact simple simply-con-
nected Lie group G. The manifolds in this last family have become known as
Wolf spaces following [14]. Alekseevsky [1] proved that they are the only ho-
mogeneous positive quaternionic Kéhler manifolds (cf. [2]).

Wolf showed that the quaternionic symmetric spaces may be constructed
by choosing a highest root o for g“. The corresponding root vector E,, is a nil-
potent element in g“. In [13] it was shown that there is a fibration of the nilpo-
tent adjoint orbit O, = G“-E, over the Wolf space W(G).

Nilpotent orbits © in g“ have a rich and interesting geometry. Firstly, they
are complex submanifolds of g“ with respect to the natural complex structure
I. Secondly, the construction of Kirillov, Kostant and Souriau endows them
with a G “-invariant complex symplectic form . It is natural to ask whether
one can find a metric making the orbit hyperKihler, i.e., can one find a Rie-
mannian metric g on O, such that the real and imaginary parts of w, are
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Kéihler forms with respect to complex structures J and K satisfying IJ = K. By
identifying © with a moduli space of solutions to Nahm’s equations, Kronhei-
mer [12] showed that there is indeed such a hyperKé#hler metric on O. This
hyperKihler structure is invariant under the compact group G, and has the
important additional property that it admits [13] a hyperKéhler potential o: a
function that is simultaneously a Kéhler potential with respect to I, J and K.
Using o, one can define an action of H* on O such that the quotient is a quater-
nionic Kéhler manifold. It is in this way that one may obtain the Wolf space
W(G) from O,;,. In contrast to the semi-simple case [3], currently one does not
know how many invariant hyperKéhler metrics a given nilpotent orbit admits.

The aim of this paper is to study the hyperKihler geometry of O, in an
elementary way. We look for all hyperKéhler metrics on O, with a G-inva-
riant Kéhler potential and which are compatible with the complex symplectic
structure. Note that we do not restrict our attention to metrics with hyper-
Kihler potentials. We derive a simple formula for the a priori unknown com-
plex structure J. The orbit O, is particularly straight-forward to study in this
way, since (¢ acts with orbits of codimension one. This means that the metrics
we obtain are already known, they are covered by the classification [7], but it is
interesting to see how these metrics can be constructed directly from their po-
tentials. In agreement with the classification, the hyperKihler structure is
found to be unique, unless g = 311 (2), in which case one obtains a one-dimen-
sional family of metrics, the Eguchi-Hanson metrics.

Acknowledgements. We are grateful for financial support from the EPsrc
of Great Britain and KBN in Poland.

2. — Definitions.

On the simple complex Lie algebra g, let (-, ) be the negative of the Kil-
ling form and let o be a real structure giving a compact real form g of g. An
element X of g* is said to be nilpotent if (ady)* = 0 for some integer k. Let © be
the orbit of a nilpotent element X under the adjoint action of G“. At X € O, the
vector field generated by A in g“ is £, = [A4, X]. Using the Jacobi identity it is
easy to see that these vector fields satisfy [£§4, §g] =& _[4, 5, for A, Be a‘.
The orbit © is a complex submanifold of the complex vector space g“ and so
has a complex structure I given by I€, =154 =&4.

On a hyperKéhler manifold M with complex structures 7, J and K and me-
tric g, we define Kéhler two-forms by w;(X, Y) = g(X, IY), etec., for tangent
vectors X and Y. The condition that a function ¢ : M — R be a Kihler potential
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for I is
e g 1 . 1
(2.1) 7= _Za[a[Q: - ”Ld319= _Ed(d_lld)Q: _EdIdQ .

On the orbit O, the complex symplectic form of Kirillov, Kostant and Souriau is
given by o (&4, §p)x=(X,[A, B]) = —(54B).

We will be looking for hyperKihler structures with Kéhler potential o and
such that w , = w ; + iw k. This will be done by computing the Riemann metric
¢ defined by o via (2.1) and then using this to determine an endomorphism J of
TxO via w ;= g(-, J-). The constraints on ¢ will come from the two conditions
that ¢ is positive definite and that J%= —1.

3. — Highest roots and minimal orbits.

Choose a Cartan subalgebra §) of g“. Fix a system of roots A with positive
roots 4 ,. We write gz for the root space of e 4. Choose a Cartan basis
{Es, Hg, Fg: fe 4, }, which we may assume is compatible with the real struc-
ture o, in the sense that o(Ey) = —Fg and 0(Hg) = — Hy. One important pro-
perty of the Cartan basis is that for each 5, Spanc, {Ejs, Hs, Fjs} is a subalge-
bra of g“ isomorphic to s((2, C).

The Lie algebra s[(2, C) has Cartan basis

v =0 ) w-(t ) -0 0).

The irreducible representations of 3[(2, C) are the symmetric powers S* =
S*C? of the fundamental representation S!=C2. The representation S*
has dimension £ +1 and £, H and F act as

i ] e

(32) Qg = ) PH=
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respectively. In particular, (¢ ) "1 =0 and (¢ ;)" has rank one, with image
the k-eigenspace of ¢ .

Let aed, be a highest root; this is characterised by the condition
[E,, Eg] =0 for all Bed .. We define O, to be the adjoint orbit of £, under
the action of G©. Define 3((2, C), := Spanc{E,, H,, F,}.

PROPOSITION 3.1. — (i) Under the action of 3[(2, C), the Lie algebra g° de-
composes as

g“=30(2,0),dt"® VRS,

where t“ is the centraliser of 3((2, C), V is a f“-module.

(i) The action of the compact group G on the nilpotent orbit Oy, has
cohomogeneity one.

PROOF. — (i) Consider the action of ad E, on g“. For feA ., we have
[E,, Fgleg,_p. If B # a, then we have two cases: (a) if a — 3 is not a root then
Gu-p=1{0} and [E,, F3] =0; (b) if a — f is a root, then the condition that a
is a highest root implies a —fe4 ,, since otherwise a — = —y for some
yed, and then [E,, E,] is non-zero, which for a highest root a is impossible.
We therefore have that (ad E,)? is zero on the complement of s[(2, C), and
the decomposition follows.

(ii) At E, the tangent space to Oy, is
adp, q“ = Span-{E,, H,} + Spanc{E, ;: fed  }.
The real Lie algebra g is the real span of {E; — Fjs, iHg, ((Ez + Fy)}. Thus the
tangent space adg g to the G-orbit is
Spang {iE,, H,, iH,} + Spang {E,_4, iE,_z: fed .}
and we see that it has codimension one in 75 O,;,, the complement being RE,,.

As G is compact, this implies that G acts with cohomogeneity one. m

As in [8], it is possible to use this result to show that O, is minimal with
respect to the partial order on nilpotent orbits given by inclusions of closures.
This explains the name O, but will not be needed in the subsequent
discussion.

4. — Kéahler potentials in cohomogeneity one.

Let 0:Oum—R be a smooth function invariant under the action of
the compact group G. The group G acts with cohomogeneity one, and
the function #(X) = ||X|? = (X, 0X) is G-invariant and distinguishes orbits
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of G. We may therefore assume that o is just a function of », ie,

o = o(n).
We wish to consider ¢ as a Kéhler potential for the complex manifold
(Omins I). The corresponding Kihler form is given by (2.1):

1 1 1
4.1) wr= — Ed(g’[dn) = —EQ’dldiy— EQ"dﬂ/\Id??,

where o' = do/dy, ete.

LeEmMA 4.1. — The Kdihler form defined by o(n) is
(42) wl(§A5 gB) =2 Im (Q’<§A’ O§B> + Q”<§A’ OX><a§B’ X>) .

PROOF. — The exterior derivative of 7 is
(4.3) dn(Ea)x = ([4, X], oX) + (X, o[A, X]) =2 Re(&.4, 0X)
so Idn(§4)x =2 Im(&,, 0X) and hence

(dp AN1dn)(E 4, Eg) = —4 Im (&4, 0X)(0&, X)).

Using the Jacobi identity we find that the exterior derivative of Idy is given
by

dldn(& 4, Ep)x = Ealdn(&p)) — EpTdn(E 4)) — Idn([& 4, §51)
=2 Im (&g, 0&4) +2 Im([B,[A, X]], 0X)
—2 Im (&4, 0&) — 2 Im([A,[B, X]], 0X)
+2 Im([[A4, B], X], 0X)
= —4 Im(&4, 0&p).

Putting these expressions into (4.1) gives the result. =

Using the relation g(&,4, &) = w (I 4, ), We can now obtain the indu-
ced metric on O,. In general, this metric will be indefinite; the signature may
be determined by considering Spani {X, oX} and its orthogonal complement
with respect to the Killing form.

ProposITION 4.1. — The pseudo-Kéhler metric defined by o(n) is
(44) g(§A7 gB) =2 Re (Q’<§A7 O§B> + Q”<§A’ 0X><0§B7 X>) .

This is positive definite if and only if o’ > max{0, —no"}. ™
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5. — HyperKéahler metrics.

Given a function o(7) on O, we have obtained a metric g. Let us assume
that g is non-degenerate. Using the definition of w . and its splitting into real
and imaginary parts, we get endomorphisms J and K of TxO,;, via

9(&a, Ep) =w (JEa, Ep) = —Re(JE4, B),
ete. This implies that

(6.1) JxEa=—20'[X, 041 —-20"(0& 4, X)[X, 0X].

and K =1J. Note that (5.1) implies JI = — K.

Suppose that J%= —1 and g is positive definite. Then we have I, J and K
satisfying the quaternion identities, and with w;, w ; and w g closed two-forms.
By a result of Hitchin [10], this implies that 7, J and K are integrable and that
¢ is a hyperKéhler metric.

PROPOSITION 5.1. — The nilpotent orbit of 3[(2, C) has a one-parameter fa-
mily of hyperKdhler metrics with SU(2)-invariant Kdihler potential and
compatible with the Kostant-Kirillov-Souriaw complex symplectic form o ..

ProoF. — The algebra 3[(2, C) has only one nilpotent orbit O = Oy,
and this has real dimension 4. Using the action of SU(2) we may assume that
X =tE,where t >0 and E is given by (3.1). Then TxO is spanned by H and E.
We have JyH = —40'tE and JyE =2t(o' + no") H, which implies J%= —1d
if and only if 8¢2(0"? + 7o' 0") = 1. Now 5(E) = 4, so we get the following or-
dinary differential equation for o:

2(’7972+7]207977):1.

The left-hand side of this equation is (y%0'%)’, so o' =V + ¢/y, for some
real constant ¢. For this to be defined for all positive 7, we need ¢ = 0. Now
0" =—(n+2¢)/(2n*\/n +c¢), so the metric is

(52) g4, Ep) = Re (2n(n+c)XEa, 0Ep)— (n+2c)E 4, 0X)(0Ep, X)),

1
PV
which is positive definite. =

This hyperKé#hler metric is of course well-known. We put it in standard
form as follows. Using (4.3), we find (9/0n) = E/(8t) at X =tE. An SU(2)-inva-
riant basis of Tx© is now given by {9/0y, &, &,,, &,,}, where

S:l(o 1) Szl(o z) Szl(i 0)
“o\l-1 0)’ 279 \i o) 579\ —i)”
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This basis is orthogonal with respect to (5.2) and in terms of the dual basis of
one-forms is {dn, 01, 02, 03}, g is

2

1
dn®+no’ (0} + 03) + — 0.
4no <
Substituting 5 = (#/2)* — ¢, we get

2
g=W ldr®+ %(0%+0§+W0§),

with W=1 —16¢/r*, which are the Eguchi-Hanson metrics [9].

THEOREM 5.1. — For g“#3((2, C), the minimal wilpotent orbit O
admits a unique hyperKdihler metric with G-itnvariant Kdhler potential
compatible with the complex symplectic form w.,.

ProOF. — Let a be a highest root. Using the action of G, we may assume
that X = tE,, for some t>0. On &£, e3[(2, C),, the condition J?= —1Id gives
8t%(0"”*+no'0") =1, as in Proposition 5.1. Putting 1%=n(E,), we have
t2=n(X)/A% and hence o' =A%y + ¢/25. Now for &, Killing-orthogonal to
3[(2, C), we have

JEa= —20'[X, 0641 = —2t0 ' [E,, 084]

and hence
c
JZSA: — (4770I2/}.2) adEa adFa SA: — (1 + W) adEa adFa EA'

As 7 is not constant, the condition J%= —1Id implies ¢ = 0 and we have a uni-
que hyperKihler metric. =

The proof enables us to write down J explicitly for O, in g“#
sl(2, C):

A
IxEa= — -5 2nlX, 0§41 = (084, X)X, 0X]).
2n
The number A2 is a constant depending only on the Lie algebra q“, with values
27’L (5‘5[ (ny C)) gp (n_l} C)’ 5‘30 (n+2, C))’ 8 (GZ)) 18 (F4)) 24 (EG)} 36 (E’Y)a 70
(Ey).

REMARK 5.1. — Theorem 5.1 only assumes that o is a Kdhler potential.
However, the uniqueness result implies that this potential is in foct
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hyperKdhler (cf [138]). This corresponds to Proposition 5.1, where o is a
hyperKdhler potential only when ¢ =0.

Finally, let us observe that the form of the potential determines the nilpo-
tent orbit.

ProposITION 5.2. — If a nilpotent orbit O has a Kdhler potential o that is
only a function of n=|X|? and which defines a hyperKdihler structure com-
patible with w ,, then O is a minimal nilpotent orbit.

PrOOF. — Choose X € O, such that Span-{X, oX,[X, 0X]} is a subalgebra
isomorphic to 3[(2, C); this is always possible by a result of Borel (cf. [11]).
Let X =tE, for t>0, and write g“ = 3[(2, C)@® m. The proofs of Proposi-
tion 5.1 and Theorem 5.1 imply that o' = Ay ~'2/2 and J2&, = — adgady&4 on
m. Let S*, k> 0, be an irreducible 3[ (2, C)-summand of n1. Then ad; and ady
act via the matrices ¢y and ¢ of (3.2), so adgady acts as a diagonal matrix
with entries k, 2(k — 1), 3(k — 2), ...,(k—1)2, k and 0. As & 4 is in the image of
adg, in order to have J2&,= — &4, we need all the non-zero eigenvalues of
adgady to be 1. This forces k=1.

Let g(i) be the i-eigenspace of ady on g“. Then p = i@og(i) is a parabolic

subalgebra, so we may choose a Cartan subalgebra of g lying in p and a root
system such that the positive root spaces are also in p. The discussion above
shows that ady is zero on all these positive root spaces, and so £ is a highest
root vector. Therefore O = Op;,. ™
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