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B.-Y. Chen’s Inequalities for Submanifolds
of Sasakian Space Forms.

FILIP DEFEVER (*) - ION MIHAI (**) - LEOPOLD VERSTRAELEN

Sunto. – Recentemente, B.-Y. Chen ha introdotto una nuova serie di invarianti
d(n1 , R , nk ) riemanniani per ogni varietà riemanniana. Ha anche ottenuto disu-
guaglianze strette per questi invarianti per sottovarietà di forme spaziali reali e
complesse in funzione della loro curvatura media. Nel presente lavoro proviamo
analoghe stime per gli invarianti d(n1 , R , nk ) per sottovarietà C-totalmente reali e
CR di contatto di una forma spaziale di Sasaki MA(c).

1. – Introduction.

In [2] B.-Y. Chen defined a Riemannian invariant d M4t2 inf K for any
Riemannian manifold M . Subsequently, sharp inequalities for this invariant
were obtained for submanifolds in real and complex space forms in terms of
their mean curvature; see also e.g. [3], [5], [6] for related results.

In [7] this question was studied for C-totally real submanifolds of a
Sasakian space form. A general inequality was obtained between the main in-
trinsic invariants of a C-totally real submanifold M on one side, namely its sec-
tional curvature function K and its scalar curvature function t , and its main
extrinsic invariant on the other side, namely its mean curvature function NHN .
More precisely, in the Sasakian case, B.-Y. Chen’s inequality, relating K , t
and H , reads:

inf KFt2
n 2 (n22)

2(n21)
NHN22

(n11)(n22)(c13)

8
.(1)

In [4] B.-Y. Chen generalized his invariant d M , and defined a string of new
Riemannian invariants d(n1 , R , nk ) including d M as a particular case. (For
precise definitions, see Section 3). He also obtained sharp inequalities for
these invariants for submanifolds in real and complex space forms.

The purpose of the present paper is to establish analogous inequalities for
the new invariants d(n1 , R , nk ) for C-totally real and contact CR-submani-
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folds in a Sasakian space form, thus also generalizing (1). More precisely, we
prove that the following estimates hold:

THEOREM 1. – For an n-dimensional (nD2) C-totally real submanifold M n

of a (2m11)-dimensional Sasakian space form MA2m11 (c), we have that

d(n1 ,R, nk)G
n 2(n1k212Snj)

2(n1k2Snj)
NHN21

1

8
kn(n21)2!

j41

k

nj(nj21)l (c13) .

THEOREM 2. – For an n-dimensional (nD2) contact CR-submanifold M n of
a (2m11)-dimensional Sasakian space form MA2m11 (c), we have that

d(n1 , R , nk )G
n 2 (n1k212Snj )

2(n1k2Snj )
NHN21

1

8
kn(n21)2 !

j41

k

nj (nj21)l (c13)2
1

4
(n2123h)(c21) .

We also give characterizations for the situation in which the equality
holds.

2. – Submanifolds of a Sasakian space form.

Let (MA, g) be a (2m11)-dimensional Riemannian manifold endowed with
an endomorphism f of its tangent bundle TMA, a vector field j and a 1-form h
such that

.
/
´

f 2 X42X1h(X ) j , fj40, h i f40, h(j)41,

g(fX , fY )4g(X , Y )2h(X ) h(Y ), h(X )4g(X , j),

for all vector fields X , Y�G(TMA).
If, in addition, dh(X , Y )4g(fX , Y ), then MA is said to have a contact Rie-

mannian structure (f , j , h , g). If, moreover, the structure is normal, i.e. if
[fX , fY ]1f 2 [X , Y ]2f[X , fY ]2f[fX , Y ]422dh(X , Y ) j , then the
contact Riemannian structure is called a Sasakian structure and MA is called a
Sasakian manifold. For more details and background, we refer to the standard
references [1], [10].

A plane section s in Tp MA of a Sasakian manifold MA is called a f-section if it
is spanned by X and fX , where X is a unit tangent vector field orthogonal to j .
The sectional curvature K(s) w.r.t. a f-section s is called a f-sectional curva-
ture. If a Sasakian manifold MA has constant f-sectional curvature c , then it is
called a Sasakian space form and is denoted by MA(c).
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The curvature tensor RA of a Sasakian space form MA(c) is given by
[1]:

(2) RA(X , Y ) Z4
c13

4
(g(Y , Z) X2g(X , Z) Y)1

c21

4
(h(X) h(Z) Y2h(Y ) h(Z) X1g(X , Z) h(Y ) j2g(Y , Z) h(X) j1

g(fY , Z) fX2g(fX , Z) fY22g(fX , Y ) fZ) ,

for any tangent vector fields X , Y , Z to MA(c).
An n-dimensional submanifold M of a Sasakian space form MA(c) is called a

C-totally real submanifold if j is a normal vector field on M . A direct conse-
quence of this definition is that f(TM)%T » M , i.e. that M is an anti-invariant
submanifold of MA(c), (hence their name of «contact»-totally real submani-
folds); see e.g. [8].

On the other hand, a submanifold M tangent to j of a Sasakian space form
MA(c) is said to be a contact CR-submanifold if its tangent bundle TM splits
into an invariant and an anti-invariant subbundle by f , respectively, i.e.

TM4 D5D»5 ]j( ,

f(D)4 D, f(D» )%T » M .

We want to mention that any contact CR-submanifold is foliated by C-totally
real submanifolds, i.e. the distribution D» is completely integrable.

Also, on a contact CR-submanifold M , the complex subbundle

B 4]X2 ifX ; X�G(D)(

is involutive. Thus M is endowed with a Cauchy-Riemann structure in the
sense of S. Greenfield [9].

3. – B.-Y. Chen’s inequalities.

Let M be an n-dimensional Riemannian manifold. Denote by K(p) the sec-
tional curvature of the plane section p%Tp M , p�M . For any orthonormal ba-
sis ]e1 , R , en( of the tangent space Tp M , the scalar curvature t at p is de-
fined by

t4 !
1G iE jGn

K(eiRej ) .

For each point p�M , we put

(inf K)(p)4 inf ]K(p); p%Tp M , dim p42( .
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Inf K is a well-defined function on M . Let d M denote the difference between
the scalar curvature and inf K , i.e.:

d M (p)4t (p)2 inf K(p) ;

d M is a well-defined Riemannian invariant. d M was introduced by B.-Y. Chen
in [2], where he gave a sharp inequality of d M for submanifolds in real and
complex space forms (see also [3]).

Afterwards, in [4], B.-Y. Chen generalized the previous concept, introdu-
cing a series of new Riemannian invariants, as follows. If L is a linear subspace
of Tp M , dim L4rF2, and ]u1 , R , ur( an orthonormal basis of L , the scalar
curvature t (L) of L is defined by

t (L)4 !
1G iE jGr

K(eiRej ) .

Clearly, t (Tp M)4t (p).
We denote by S(n , k) the set of all k-tuples (n1 , R , nk ) of integers F2 sa-

tisfying n11R1nkGn and n1En . Let (n1 , R , nk )�S(n , k) and

S(n1 , R , nk )(p)4 inf ]t (L1 )1R1t (Lk )( ,

where L1 , R , Lk are mutually orthogonal subspaces of Tp M with dim Lj4nj ,
j41, R , k . The Riemannian invariants d(n1 , R , nk ) are defined by [4]

d(n1 , R , nk )(p)4t (p)2S(n1 , R , nk )(p) .

First, we prove inequalities satisfied by the d(n1 , R , nk ) for C-totally real
submanifolds in a Sasakian space form:

THEOREM 1. – Let M be an n-dimensional (nD2) C-totally real submani-
fold of a (2m11)-dimensional Sasakian space form MA(c). Then, for any
(n1 , R , nk )�S(n , k), we have

(3) d(n1 , R , nk )G

n 2 (n1k212Snj )

2(n1k2Snj )
NHN21

1

8
kn(n21)2 !

j41

k

nj (nj21)l (c13) .

Moreover, the equality holds at a point p�M if and only if there exist a tan-
gent basis ]e1 , R , en(%Tp M and a normal basis ]en11 , R , e2m , e2m114j(%
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Tp
» M such that the shape operators Ar4Aer

take the following forms

An114

.
`
`
`
´

a1

0

0

QQ
Q

0

0

a2

0

QQ
Q

0

0

0

a3

QQ
Q

0

. . .

. . .

. . .

Q Q
Q

. . .

0

0

0

QQ
Q

an

ˆ
`
`
`
˜

,(4)

with a11R1an1
4R4an11R1nk21111R1an11R1nk

4an11R1nk114R4an, and

Ar4

.
`
`
`
`
`
´

A1
r

QQ
Q

0

0

QQ
Q

0

. . .

Q Q
Q

. . .

. . .

. . .

0

QQ
Q

Ak
r

0

QQ
Q

0

0

QQ
Q

0

0

QQ
Q

0

. . .

. . .

. . .

. . .

0

QQ
Q

0
. . .

QQ
Q

0

ˆ
`
`
`
`
`
˜

; r� ]n12, R , 2m( ,(5)

where tr Aj
r40, tAj

r4Aj
r ( j4 1, k); r� ]n12, R , 2m(, and Aj40.

PROOF. – The Gauss equation and formula (2) imply that for a C-totally real
submanifold of a Sasakian space form we have that

g(R(X , Y ) Z , W)4
1

4
(c13)(g(Y , Z) g(X , W )2g(X , Z) g(Y , W ) )1

g(h(X , W ), h(Y , Z) )2g(h(X , Z), h(Y , W ) ) ,

for all vector fields X , Y , Z , W tangent to M , where h denotes the second fun-
damental form and R the curvature tensor of M . It follows that

2t4n 2 NHN22VhV21
n(n21)(c13)

4
(6)

Let (n1 , R , nk )�S(n , k) and denote

g4n1k2 !
j41

k

nj , B4
n 2 (g21)

g
,

e42t2n(n21)
c13

4
2BNHN2 .(7)
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Eliminating t from the equations (6) and (7), one finds

n 2 NHN24g(e1VhV2 ) .(8)

Let L1 , R , Lk%Tp M be mutually orthogonal subspaces with dim Lj4nj ,
j4 1, k. We choose an orthonormal basis ]e1 , R , en , en11 , R , e2m , e2m114j(
at p�M such that

Lj4sp ]en11R1nj2111 , R , en11R1nj
( , j4 1, k ,

en114
H

NHN
.

If we denote ai4hii
n11 , the equation (7) becomes

g!
i41

n

aih2

4g ke1 !
i41

n

ai
21 !

ic j
(hij

n11 )21 !
r4n12

2m

!
i , j41

n

(hij
r )2l .(9)

We introduce the following notations

.
`
`
/
`
`
´

b14a1 ,

b24a21R1an1
,

b34an1111R1an11n2
,

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

bk114an11R1nk21111R1an11R1nk
,

bk124an11R1nk11 ,

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

bg114an .

Then, the equation (9) may be expressed by

g!
i41

g

bih2

4g ke1 !
i41

g

bi
21 !

ic j
(hij

n11 )21 !
r4n12

2m

!
i , j41

n

(hij
r )22

!
2Ga 1cb 1Gn1

aa 1
ab 1

2 !
a 2cb 2

aa 2
ab 2

2R2 !
a kcb k

aa k
ab k
l ,

where n111Ga 2 , b 2Gn11n2 , R , n11R1nk2111Ga k , b kGn11R1nk .
Now, we can invoke the following Lemma of [2]:
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Let b1 , R , bn , e be n11 real numbers such that

g!
i41

n

bih2

4 (n21) ge1 !
i41

n

bi
2h .

Then 2b1 b2Fe , with equality holding if and only if b11b24b34R4bn .

Applying this Lemma, and following the same way as in [4], we then
obtain

t (L1 )1R1t (Lk )F
e

2
1

1

8
!
j41

k

nj (nj21)(c13) ,(10)

which immediately leads to the inequality to prove.
If the equality holds at a point p�M and we choose e1 , R , en such that

hij
n1140, the shape operators indeed take the forms (4), (5). This finishes the

proof of Theorem 1. r

Next, we turn our attention to contact CR-submanifolds of a Sasakian
space form MA(c) and prove the following inequalities for d(n1 , R , nk ) in this
case.

THEOREM 2. – Let M be an n-dimensional (nD2) contact CR-submanifold
of a (2m11)-dimensional Sasakian space form MA(c). Then, for any
(n1 , R , nk )�S(n , k), we have

(11) d(n1 , R , nk )G
n 2 (n1k212Snj )

2(n1k2Snj )
NHN2

1
1

8
kn(n21)2 !

j41

k

nj (nj21)l (c13)2
1

4
(n2123h)(c21) .

Moreover, the equality holds at a point p�M if and only if there exist a tan-
gent basis ]e1 , R , en(%Tp M and a normal basis ]en11 , R , e2m , e2m114j(%
Tp

» M such that the shape operators Ar4Aer
take the following forms

An114

.
`
`
`
´

a1

0

0

QQ
Q

0

0

a2

0

QQ
Q

0

0

0

a3

QQ
Q

0

. . .

. . .

. . .

Q Q
Q

. . .

0

0

0

. . .

an

ˆ
`
`
`
˜

,
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with a11R1an1
4R4an11R1nk21111R1an11R1nk

4an11R1nk114R4an , and

Ar4

.
`
`
`
`
`
´

A1
r

QQ
Q

0

0

QQ
Q

0

. . .

Q Q
Q

. . .

. . .

. . .

0

QQ
Q

Ak
r

0

QQ
Q

0

0

QQ
Q

0

0

QQ
Q

0

. . .

. . .

. . .

. . .

0

QQ
Q

0
. . .

QQ
Q

0

ˆ
`
`
`
`
`
˜

; r� ]n12, . . ., 2m( ,

where tr Aj
r40, tAj

r4Aj
r ( j4 1, k); r� ]n12, R , 2m(, and Aj40.

PROOF. – The arguments for the present case follow quite closely the line of
the proof of Theorem 1. Therefore, we confine ourselves to indicate the points
where the most significant formulas take a different form.

The Gauss equation and formula (2) imply that for a contact CR-submani-
fold of a Sasakian space form we have that

g(R(X , Y ) Z , W)4
1

4
(c13)(g(Y , Z) g(X , W )2g(X , Z) g(Y , W ) )1

1

4
(c21)(h(X) h(Z) g(Y , W )2h(Y ) h(Z) g(X , W )1

h(Y ) h(W ) g(X , Z)2h(X) h(W ) g(Y , Z)1

g(fX , W ) g(fY , Z)2g(fX , Z) g(fY , W )22g(fX , Y ) g(fZ , W ) )1

g(h(X , W ), h(Y , Z) )2g(h(X , Z), h(Y , W ) ) ,

from which there follows that

2t4n 2 NHN22VhV21
1

4
n(n21)(c13)2

1

2
(n2123h)(c21) ,(12)

with 2h4 dim D. Let (n1 , R , nk )�S(n , k) and denote

g4n1k2!
j41

k

nj , B4
n 2 (g21)

g
,

e42t2
1

4
n(n21)(c13)2BNHN22

1

2
(n2123h)(c21) .(13)

Eliminating t from the equations (12) and (13), one finds

n 2 NHN24g(e1VhV2 ) .(14)
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From here on, the calculations run parallel to those in the proof of Theorem 1;
note however that e is defined differently. With the same notations, one also ar-
rives at the same formula (10), but with e now given by (13) instead. This imme-
diately leads to the inequalities (11). Also the conditions for the equality-case can
be read off in the same way, thus finishing the proof of Theorem 2. r
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