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Decay Estimates for Solutions of a
Class of Parabolic Problems Arising

in Filtration Through Porous Media (*)

G. A. PHILIPPIN - S. VERNIER-PIRO

Sunto. – In questo lavoro si studia un problema di valori al contorno parabolico non
lineare che si incontra nello studio dell’ infiltrazione di un gas in un mezzo poroso.
Si stabiliscono condizioni sui dati che determinano un comportamento di tipo
esponenziale decrescente nel tempo per la soluzione e il suo gradiente. Si costrui-
scono inoltre stime esplicite.

1. – Introduction.

This paper deals with the following initial-boundary value problem

[G(u) ]xx1 f (u)4ut , x� (2L , L) , tD0 ,(1.1)

u(6L , t)40 , tD0 ,(1.2)

u(x , 0 )4h(x) , x� (2L , L) .(1.3)

The differential equation (1.1) arises e.g. in filtration of ground water. With
G(u) »4u m , m = const. D1, we have a filtration model for the density of a gas
in a porous medium [12].

The following assumptions on the data will be made throughout the paper:
f and h are nonnegative C 1-functions and G is a positive nondecreasing C 3-
function. Moreover we assume throughout that

s( fg)82 fgF0 (sD0 , f (0)40 ,(1.4)

where g»4G 8 is a bounded positive function such that

0EgmGgGgM .(1.5)

It is well known that under certain conditions the unique solution (F0) of
(1.1)-(1.3) may blow-up at some point in space-time. Our goal is to determine data
restrictions sufficient to insure that the solution u(x , t) of (1.1)-(1.3) will remain

(*) 1991 Mathematics Subject Classification: 35 B 50, 35 K 55.



G. A. PHILIPPIN - S. VERNIER-PIRO474

bounded for all time. Moreover we show then that u(x , t) decays exponentially in
time. To this end we introduce the following combination of u and ux :

C a (x , t) »4 [ g 2 (u) ux
21au 212F(u) ] e 2abt .(1.6)

In (1.6) a is a nonnegative parameter to be specified later, b is a parameter to
be selected such that

0GbG
1

gM

,(1.7)

and F(u) is defined as

F(u) »4s
0

u

f (s) g(s) ds .(1.8)

In Section 2 we establish a maximum principle for the auxiliary function C a .
This maximum principle is then applied in Section 3 and 4 to derive explicit
decay bounds for the solution u and its first order derivative NuxN . Similar
arguments have already been used by the authors in [9, 10], and by L. E. Payne
and G. A. Philippin in [7, 8]. We refer to [1, 2, 13, 14] for further informations
on parabolic problems.

2. – A maximum principle.

The main result of this Section is formulated in the next theorem:

THEOREM 1. – Under the assumptions of the first section,the auxiliary
function C a defined in (1.6) takes its maximum value either at an interior
critical point (x, t) of u or initially at t40. This may be formulated as
follows

C a (x , t)Gmax
.
/
´

(i) C a (x, t) with ux (x, t)40 ,

(ii) max
x� (2L , L)

C a (x , 0 ) .
(2.1)

For the proof of Theorem 1 we show that C a satisfies some parabolic inequali-
ty. For convenience the index a will be dropped in the following computation.
We compute

(2.2) C x4]2Gx Gxx12auux12F 8ux( e 2abt42ux] g[ut2f ]1au1F 8( e 2abt ,

(2.3) C xx4]2Gxx
2 12Gx Gxxx12aux

212auuxx12F 9ux
212F 8uxx( e 2abt .
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With Gx4gux , Gxxx4utx2 f 8ux , guxx4ut2 f2g 8ux
2 , we obtain

(2.4) gC xx4]2gGxx
2 12g 2 ux [utx2 f 8ux ]12g(a1F 9 ) ux

21

2(F 81au)[ut2 f2g 8ux
2 ]( e 2abt .

Next, we compute

C t4]2Gx Gxt12auut12F 8ut12abGx
212a 2 bu 214abF( e 2abt .(2.5)

With Gxt4g 8ux ut1guxt , we obtain

(2.6) C t4]2gux [ g 8ux ut1guxt ]12auut12F 8ut12abg 2 ux
21

2a 2 bu 214abF( e 2abt .

Combining (2.4) and (2.6),we obtain after some reduction

(2.7) gC xx2C t4]2gGxx
2 22 f 8 g 2 ux

212g(a1F 9 ) ux
222 fF 822auf2

2g 8ux
2 [ gut1au1F 8 ]22abg 2 ux

222a 2 bu 224abF( e 2abt .

Moreover we have from (2.2)

Gxx42
1

g
(au1F 8 )1

1

2gux

C x e 22abt ,(2.8)

i.e.

gGxx
2 4

1

g
(au1F 8 )21R .(2.9)

In (2.9) and later dots stand for a term of the form k(x , t) ux
22 C x where k(x , t)

is regular in (2L , L)3 (0 , Q). We may extract another term of the same
form from the right hand side of (2.7). We have in fact from (2.2)

gut1au1F 84 fg1R .(2.10)

Inserting (2.9) and (2.10) into (2.8) we obtain after some reduction

(2.11) LC»4gC xx2C t1R4m2ag 1

g
2bh [g 2ux

21au 2]22gux
2 ( fg2F 8)81

2F 8k 2au

g
2 f1

F 8

g
l22auf24abFn e 2abt4

m2ag 1

g
2bh [ g 2 ux

21au 2 ]12a[uf22bF]n e 2abt .
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From (1.7) we have bG
1

g
. This inequality implies that

uf22bFF
1

g
(ufg22F)F0 ,(2.12)

where the last inequality follows from (1.4) integrated by parts. This leads to
the desired parabolic inequality

LCF0 .(2.13)

It then follows from Nirenberg’s maximum principle [6, 11] that C takes its maxi-
mum either at x46L for some tD0, or initially at some point x� (2L , L), or
at a critical point (x, t) of u(x , t). However the first possibility cannot occur in
view of Friedmann’s maximum principle [4, 11]. In fact we have ut(6L , t)40
from (1.2), which implies Gxx (u(6L , t))40, and (2.2) gives C x(6L , t)40, so
that C cannot have its maximum at x46L . This establishes Theorem 1.

3. – Decay bounds. The particular case: f (s) »4msOg(s).

In this section we investigate the following initial boundary value
problem

[G(uA) ]xx1
muA

g(uA)
4uAt , x� (2L , L) , t� (0 , T) ,(3.1)

uA(6L , t)40 , t� (0 , T) ,(3.2)

uA(x , 0 )4h(x)F0 , x� (2L , L) ,(3.3)

under the assumptions of Section 1, where m is some constant to be specified.
We have the following result:

THEOREM 2. – Suppose that the constant m in (3.1) satisfies the inequality

0GmEa 0 »4
p 2 g 2

m

4L 2
.(3.4)

We then conclude that the solution uA(x , t) of (3.1)-(3.3) exists for all time (i.e.
T4Q in (3.1), (3.2)). Moreover we have the following decay estimate:

g 2 uAx
21a 0 uA2 (x , t)GH 2 e 22(a 02m) bt ,(3.5)

where b satisfies (1.7) and with

H 2 »4 max
x� (2L , L)

] g 2 (h) h 821a 0 h 2( .(3.6)

For the proof of Theorem 2, we introduce the auxiliary function C
A

a (x , t) de-
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fined on uA(x , t) by (1.6), (1.8) as

C
A

a (x , t) »4] g 2 (uA) uAx
21 (a1m) uA2( e 2abt , x� (2L , L) , 0E tET .(3.7)

Clearly C
A

a (x , t) satisfies either (i) or (ii) in (2.1). Let us assume that C
A

a sati-
sfies (i) in (2.1), i.e. assume

C
A

a (x , t)GC
A

a (x, t) ,(3.8)

with uAx (x, t)40. Inequality (3.8) evaluated at t4 t gives

gm
2 uAx

2 (x , t)Gg 2 (uA) uAx
2 (x , t)G (a1m)[uAM

2 2uA2 (x , t) ](3.9)

with

uAM »4 max
x� (2L , L)

uA(x , t) .(3.10)

Inequality (3.9) may be rewritten as

NduA(x , t)N

kuAM
2 2uA2 (x , t)

G
ka1m

gm

dx .(3.11)

Integrating (3.11) from the critical point x to the nearest endpoint of the inter-
val [2L , L], we obtain the inequality

a1mF
p 2 gm

2

4L 2
4: a 0 .(3.12)

If (3.12) does not hold, i.e. if we have

0GaEa 02m ,(3.13)

we conclude that C
A

a (x , t) cannot satisfy the first possibility (i), and must
therefore satisfy the second possibility (ii) in (2.1). This shows that blow-up
cannot occur i.e. T4Q Moreover (ii) in (2.1) with aKa 02m reduces to (3.5).
This achieves the proof of Theorem 2.

4. – Decay bounds: The general case.

In this section we want to determine restrictions on the initial data
of problem (1.1)-(1.3) sufficient to force the solution u(x , t) to decay ex-
ponentially in time. Consequently we obtain explicit decay bounds for u
and Nux N valid under somewhat stronger restrictions. As indicated earlier,
the solution of (1.1)-(1.3) may blow-up at some time t× that may be finite
or infinite [3, 5]. However if blow-up does occur at t×, the solution u(x , t)
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of problem (1.1)-(1.3) will exist in (0, t×). Our first analysis will be confined
on any time interval (0, T) with T prior an (hypothetic) blow-up time t×.

In a first step we establish the following comparison result:

LEMMA 1. – Under the assuptions of the first section, the solution u(x , t) of
problem (1.1)-(1.3) may be estimated as follows:

0Gu(x , t)GUe 2(a 02m)bt , x� (2L , L) , t� (0 , T) ,(4.1)

with b satisfying (1.7) and with

a 0 »4
p 2 g 2

m

4L 2
,(4.2)

m»4
f (uM ) g(uM )

uM

,(4.3)

uM »4 max
x� (2L , L)3 (0 , T)

u(x , t) ,(4.4)

U»4 max
x� (2L , L)o

g 2 (h) h 82

a 0

1h 2 .(4.5)

For the proof of Lemma 1, we note that
f (s) g(s)

s
is nondecreasing in sD0.

This follows from (1.4):

g fg

s
h84 1

s 2
[s( fg)82 fg]F0 , (sD0 .(4.6)

From (1.1), (4.6) and (4.3) we compute

(G(u) )xx1
mu

g(u)
2ut4

u

g(u)
ym2 f (u) g(u)

u
zF0 .(4.7)

Using a standar comparison result [11] we may compare u(x , t) with the so-
lution uA(x , t) of problem (3.1)-(3.3). This leads to the desired result:

0Gu(x , t)GuA(x , t)GUe 2(a 02m)bt ,(4.8)

where U , a 0 , m , b are given in Lemma 1.
In a second step we establish the next result:

LEMMA 2. – Assuming the hypotheses of the first section and assuming
that the initial data h(x) is small enough in the following sense

f (U) g(U)

U
Ea 0g»4 p 2 g 2

m

4L 2 h ,(4.9)
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where U is defined in (4.5), we then conclude that the solution u(x , t) of (1.1)-
(1.3) exists for all time (i.e. T4Q). Moreover we have

max
x� (2L , L)

f(u(x , t) ) g(u(x , t) )
u(x , t)

Ea 0 , (tD0 .(4.10)

For the prooof of Lemma 2 we first observe that (4.5), (4.9) and the monotoni-

city of
f (s) g(s)

s
imply the inequality

f (h) g(h)

h
G

f (U) g(U)

U
Ea 0 .(4.11)

Suppose now that (4.10) does not hold for all time. In view of (4.11) there must
be a first time T at which we have

m»4
f (uM ) g(uM )

uM

G
f(u(x , T) ) g(u(x , T) )

u(x , T)
4a 0 ,(4.12)

with uM »4 max
(x , t)� (2L , L)3 (0 , T)

u(x , t). It then follows from Lemma 1 that

u(x , t)GUe 2(a 02m)btGU , x� (2L , L), 0G tGT .(4.13)

From (4.13) and (4.9) we obtain

max
x� (2L , L)

f(u(x , T) ) g(u(x , T) )
u(x , T)

G
f (U) g(U)

U
Ea 0 ,(4.14)

from which we conclude indeed that (4.10) cannot be violated for any finite
value of T . This achieves the proof of Lemma 2.

In a last step we establish a decay bound for u and NuxN formulated in the
next theorem.

THEOREM 3. – Assuming the hypotheses of the first section and assuming
that the initial data are small enough in the sense that there exists a con-
stant a 1D0 such that

f (U) g(U)

U
Ea 02a 14

p 2 g 2
m

4L 2
2a 1 ,(4.15)

with U defined in (4.5), we have the following decay estimate:

g 2 ux
21a 1 u 212F(u)G H 2 e 22a 1 bt , x� (2L , L), tD0 ,(4.16)

with b satisfying (1.7) and with

H 2 »4 max
x� (2L , L)

] g 2 (h) h 821a 1 h 212F(h)( .(4.17)
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For the proof of Theorem 3 we first observe that (4.15) implies (4.9) so that the
solution u(x , t) of (1.1)-(1.3) does not blow-up in any finite time. Clearly
C a 1

(x , t) defined in (1.6) must satisfy either one of the two possibilities in
(2.1). Let us assume that C a 1

(x , t) satisfies the first possibility (i) in (2.1), i.e.
assume

C a 1
(x , t)GC a 1

(x, t) ,(4.18)

with ux (x, t)40.
Inequality (4.18) evaluated at t4 t reduces to

gm
2 ux

2 (x , t)Gg 2 ux
2 (x , t)Ga 1 [uM

2 2u 2 (x , t) ]12[F(uM )2F(u) ] ,(4.19)

with uM »4u(x, t). Together with

(4.20) F(uM )2F(u(x , t) )4s
u

uM

f (s) g(s)

s
s dsG

G
f (uM ) g(M )

uM

s
u

uM

s ds4
m

2
[uM

2 2u 2 (x , t) ] ,

we obtain

gm
2 ux

2 (x , t)G (a 11m)[uM
2 2u 2 (x , t) ] ,(4.21)

with m4
f (uM ) g(uM )

uM

. Inequality (4.21) is analogous to (3.9). As in Section 3,

we conclude from (4.21) that

a 11mF
p 2 gm

2

4L 2
4: a 0 .(4.22)

It remains to show that (4.22) cannot hold under assumption (4.15). Indeed
from (4.10) we obtain the strict inequality

m»4
f (uM ) g(uM )

uM

Ga 0 ,(4.23)

so that uGU by (4.1). Since
f (s) g(s)

s
is nondecreasing, it follows from (4.15)

that

mG
f (U) g(U)

U
Ea 02a 1 ,(4.24)

in contradiction of (4.22). This achieves the proof of Theorem 3.
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