
BOLLETTINO
UNIONE MATEMATICA ITALIANA

A. Di Concilio, A. Miranda

Function space topologies deriving from
hypertopologies and networks

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 4-B (2001),
n.2, p. 457–471.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2001_8_4B_2_457_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2001_8_4B_2_457_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2001.



Bollettino U. M. I.
(8) 4-B (2001), 457-471

Function Space Topologies Deriving
from Hypertopologies and Networks (*).

A. DI CONCILIO - A. MIRANDA

Sunto. – In un progetto di generalizzazione delle classiche topologie di tipo «set-open»
di Arens-Dugundji introduciamo un metodo generale per produrre topologie in
spazi di funzioni mediante l’uso di ipertopologie. Siano X , Y spazi topologici e
C(X , Y) l’insieme delle funzioni continue da X verso Y . Fissato un «network» a nel
dominio X ed una topologia t nell’iperspazio CL(Y) del codominio Y si genera una
topologia t a in C(X , Y) richiedendo che una rete ] fl( di C(X , Y) converge in t a ad
f�C(X , Y) se e solo se la rete ] fl (A)( converge in t ad f (A) per ogni elemento A in
a . Quando Y é metrizzabile acquisiamo prima interessanti proprietà individuali
delle topologie determinate in C(X , Y) mediante la procedura descritta da una me-
trica di Hausdorff nell’iperspazio CL(Y) di Y indotta a sua volta da una metrica
compatibile con Y e poi focalizziamo la nostra attenzione sulle proprietà del loro
estremo superiore che è indotto in C(X , Y) dalla ipertopologia localmente finita.

Introduction.

Let X , Y be topological spaces and C(X , Y) the set of all continuous func-
tions from X to Y . It can be shown that a net ] fl( in C(X , Y) converges to f�
C(X , Y) in the compact-open topology iff for each compact subset K of X the
net ] fl (K)( in the hyperspace CL(Y) of the codomain space Y converges to
f (K) in the Vietoris topology. Also, when Y4R equipped with the euclidean
distance, a net ] fl( in C(X , Y) converges to f�C(X , Y) in the bounded-open
topology, [7], iff for each functionally bounded subset B of X the net ] fl (B)( in
CL(Y) converges to f (B) again in the Vietoris topology. Looking at the com-
pact-open topology and bounded-open topology in this new perspective reveals
an interplay between set-open topologies on C(X , Y) and Vietoris topology on
CL(Y). Indeed, the compact-open topology and the bounded-open topology are
both a particular case in a more general result: when a is a network contain-
ing all singletons the net ] fl( in C(X , Y) converges to f�C(X , Y) in the a-
open topology, as defined in (1), iff for each member A in a the net ] fl (A)( in

(*) Lavoro eseguito con fondi MURST 60%.
1991 AMS Subject Numbers: 54 A 10, 54 B 20, 54 C 05, 54 C 35, 54 E 15.
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CL(Y) converges to f (A) in the Vietoris topology. This suggests, in the fruitful
and well-tested method to construct from known hypertopologies new func-
tion space topologies via some natural way, to consider for any network a in
X the topology t a , loc-fin in C(X , Y) induced from the locally finite hypertopolo-
gy on CL(Y), which is a Vietoris-type topology [2, 10], denoted in [2] t loc-fin .
Briefly: ] fl( t a , loc-fin-converges to f in C(X , Y) iff ] fl (A)( t loc-fin-converges to
f (A) in CL(Y) for each member A in a . And, when Y is metrized by a metric d ,
the topology t a , d induced from the Hausdorff metric hypertopology t H (d) de-
termined in CL(Y) from d . Then ] fl( t a , d-converges to f in C(X , Y) iff ] fl (A)(
t H (d)-converges to f (A) in CL(Y) for each member A in a .

Any topology t a , d is weaker than t a , loc-fin . Both kinds of topologies admit
other equivalent and simple descriptions. Any topology t a , d is uniformizable,
metrizable when a is countable and usually weaker than the topology of uni-
form convergence on members of a determined by the same metric d . When
the domain is metric too, t a , d-convergence is usally different from Hausdorff
and Attouch-Wets convergences. A topology t a , d , depending essentially on
the choice of the metric d in Y , is an hybrid object attached to X and Y , halh-
topological, half-uniform in nature. But the supremum of ]t a , d : d runs over all
compatible metrics on Y( is a topological character of X and Y since it coin-
cides with t a , loc-fin . Further, t a , loc-fin is uniformizable when Y is uniformizable
and a is normal w.r.t. Y , i.e. any f (A), f�C(X , Y), A�a , can be functionally
separated from any disjoint closed set in Y . All old and new examined cases
suggest a more general context. Any network a and any topology t in CL(Y)
induce jointly a topology t a in C(X , Y) by requiring:
(*) A net ] fl( in C(X , Y) t a-converges to f�C(X , Y) iff the net ] fl (A)( t-con-
verges to f (A) in CL(Y) for each member A�a .

For arbitrary networks in X uniformizable hypertopologies generate by
the procedure (*) uniformizable function space topologies.

We thank prof. S. Naimpally who suggested to study further generaliza-
tions of set-open topologies especially the locally finite case.

1. – Preliminaries and generalities.

Let X , Y be topological T1 spaces and C(X , Y) the set of all continuous
functions from X to Y . A collection a4]A( of subsets of X is a network if for
any point x in X and any open set U containing x there exists A in a such that
x�A%U . McCoy-Ntantu [8] in passing from compact networks to more ge-
neral ones considered a modification of Arens-Dugundji’s original definition of
set-open topologies, [1], introducing as subbase for a new a-open topology the



FUNCTION SPACE TOPOLOGIES DERIVING ETC. 459

collection of all sets:

[A : V ]4] f�C(X , Y) : f (A)%V((1)

when A is in a and V is open in Y .
Recall that the Vietoris topology on the hyperspace CL(Y) of Y , the set of

all non-empty closed subsets of Y , admits as basic open nhbds all sets of the
type:

[V1 , R , Vn ]4]E�CL(Y) : E% 0
i41

n

Vi , EOVicf , (i41, R , n((2)

where V1 , R , Vn are open in Y . The Vietoris topology can be splitted into a
miss part or plus part generated from the sets:

V 14]E�CL(Y) : E%V((3)

where V is open in Y and into a hit part or minus part generated from the
sets:

V 24]E�CL(Y) : EOVcf((4)

where again V is open in Y .
It becomes evident that:

LEMMA 1.1. – A net ] fl( converges to f in the a-open topology on C(X , Y),
as defined in (1), iff ] fl (A)( converges to f (A) in Vietoris plus in CL(Y) for
each member A in a. r

PROPOSITION 1.2. – If a contains all singletons, then ] fl( converges to f in
the a-open topology, as defined in (1), iff ] fl(A)( converges to f(A) in the Vie-
toris topology of CL(Y) for each member A in a.

PROOF. – It is enough to show that if A�a and ] fl (A)( converges to f (A)
in Vietoris plus then it converges also in Vietoris minus. Suppose V is an open
set in Y and f (A)�V 2 . Then there exists x�A with f (x)�V . Consider
[x : V]. Thus f� [x : V]. So eventually fl� [x : V], that means eventually
fl�V 2 . r

Motivated from prop. 1.2 from now on we suppose any network closed, con-
taining all singletons and will denote the a-open topology, defined in (1), as
t a , V . The above described interaction between set-open topologies and Vie-
toris hypertopology suggests a new general method to produce from known
hypertopologies new function space topologies.
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THEOREM 1.3. – A network a in X and a topology t in CL(Y) induce in
C(X , Y) a natural convergence t a , which topologizes C(X , Y), by requiring:
(*) ] fl( t a-converges to f in C(X , Y) iff ] fl (A)( t-converges to f (A) in CL(Y)
for each member A in a.

PROOF. – It is straightforward to show that t a is of topological na-
ture. r

From now on we refer to the above procedure as (*).

THEOREM 1.4. – A topology t a on C(X , Y) induced via (*) from an arbit-
rary network a in X and a uniformizable (completely regular) topology t on
CL(Y), is itself uniformizable (completely regular).

PROOF. – Let U4]U( a uniformity compatible with t . Put:

(A , U)4]( f , g) : ( f (A), g(A))�U((5)

where A�a , U�U . Then the collection ](A , U) : A�a , U�U ( is a subbase
for a uniformity on C(X , Y) which induces t a . r

We, now, focus our attention on those function space topologies deriving
from the locally finite hypertopology and, when Y is metrizable, from Haus-
dorff metric hypertopologies.

Let U 4]Ui : i�I( be a locally finite family of open sets in Y . De-
note:

U24]E�CL(Y) : EOUicf , (i�I( .

Recall that the locally finite hypertopology t loc-fin , [2], is generated from the
sets V 1 , as defined in (3), where V is open in Y , and U2 , where U runs over
all open locally finite families in Y .

When Y is metrizable and d metrizes it, then the hyperset 2Y of Y , the set of
all non-empty subsets of Y , is equipped with the following generalized
pseudometric:

dH (A , B)4
.
/
´

max ]sup
a�A

d(a , B), sup
b�B

d(b , A)( ,

Q ,

when it exists .

otherwise .

It is easy to prove that dH (A , B)4dH (A, B) for each A , B�2Y . The restriction
of dH to CL(Y) is a metric universally known as the Hausdorff metric.

Beer and others proved in [2] that when Y is metrizable the locally finite
hypertopology t loc-fin on CL(Y) agrees with the supremum of all Hausdorff
metric hypertopologies induced in CL(Y) from compatible metrics on Y .

When Y is completely regular, any compatible uniformity U4]U( deter-
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mines in CL(Y) the Hausdorff uniformity, whose a base is the collection of
sets:

U4](A , B)�CL(Y)3CL(Y) : A%U[B] and B%U[A]((7)

where U�U . Any Hausdorff hyperuniformity induces in turn a hypertopology
t H (U ). Naimpally and Sharma in [10] proved that the Hausdorff hypertopolo-
gy t H ( fine) induced from the finest uniformity is weaker than the locally fi-
nite hypertopology t loc-fin and they agree iff Y is normal.

2. – Topologies via (*) from Hausdorff metric hypertopologies.

Suppose Y is metrizable and d is a compatible metric. Let a be an arbitrary
network in X . For each A�a , put:

d×A ( f , g)4dH ( f (A), g(A) ) f , g�C(X , Y) .(8)

LEMMA 2.5. – For each A�a , d×A is a pseudometric on C(X , Y). r

Denote t a , d4 sup ]t(d×A ): A�a(, where t(d×A ) is the topology induced
from d×A .

PROPOSITION 2.6. – For any network a and any metric d compatible with
Y , the topology t a , d is uniformizable and then completely regular.

PROOF. – t a , d is induced in C(X , Y) from the uniformity supremum of all
pseudometrizable uniformities generated by the gage-base ]d×A : A�a( which
has as subbase the collection of all sets:

(A , e)4]( f , g) : d×A ( f , g)Ee((9)

when A�a and eD0. r

LEMMA 2.7. – t a , d is induced via procedure (*) from the Hausdorff hyper-
topology t H(d) (7), jointly with the network a. r

PROPOSITION 2.8. – The embedding e : YKC(X , Y) defined by identifying
any point y in Y with the relative constant function cy on X is a uniform iso-
morphism, when Y is equipped with the natural metric uniformity U(d) and
C(X , Y) is uniformized from sup ]U(d×A ) : A�a(.

PROOF. – It is enough to observe that the trace of any subbasic diagonal
nhbd (A , e), see (9), A�a , eD0 is just the e-image of the diagonal nhbd de-
termined in U(d) from e . r
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In comparison of t a , d’s deriving from different compatible metrics on Y we
need to introduce a notion of network especially related to C(X , Y). We say
that a network a is Y-compact iff f (A) is compact in Y for each f�C(X , Y) and
A�a . When Y4R , Y-compactness flats in R-boundedness or relatively pseu-
docompactness, [6].

THEOREM 2.9. – If d , r are uniformly equivalent metrics on Y or a is Y-
compact, then t a , d4t a , r .

PROOF. – It follows from two well-known facts. Two compatible metrics on
Y uniformly equivalent give the same Hausdorff hypertopology on CL(Y) and
any two Hausdorff hypertopologies agree on compact sets since they all agree
with Vietoris hypertopology. r

But usually for different compatible metrics d , r , t a , d is different from t a , r .

EXAMPLE 1. – Let X4Y4R1 . Suppose d(x , y)4Nx2yN and r(x , y)4
N1/x21/yN , x , y�X and a contains the set P of all even integers. Consider
the collection 4 of all continuous functions which take an odd integer value for
some even integer. Then the identity map i belongs to the closure of 4 in t a , r

but not in t a , d . Indeed, the t a , d-subbasic nhbd of the map i, (P , 1 )d (i) does
not intersect 4 . On the other side, when (A , e)r (i) is any t a , r-subbasic nhbd of
the map i , we meet two cases: all even integers belong to A or not. In the for-
mer case, we choose an odd integer n in such a way that if xFn and yFn then
r(x , y)Ee . Next, by putting g(x)4x , xGn and g(x)42x2n , xFn , we con-
struct a function g which belongs to 4 and (A , e)r (i). In the latter one, we
choose an even integer n not belonging to A and then construct a continuous
function h with the property h(x)4x , x�A and h(n)41. Naturally h�
(A , e)r (i) but furthermore h�4 . r

By the way, t a , d is stronger than the point-open topology and more when a
contains all compact sets is stronger than the compact-open topology.

THEOREM 2.10. – Let a be any network in X and d any compatible metric
on Y. The topology of uniform convergence on members of a induced from d is
stronger than t a , d .

PROOF. – The result follows from comparison of uniformities. The topology
of uniform convergence on a can be uniformized by using the subbase of diago-
nal nhbds of the type:

[A , e]4]( f , g) : d( f (x), g(x) )Ee , (x�A((10)

where A�a , and eD0. On the other hand, t a , d is uniformized from the
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sup ]U(d×A ) : A�a( which admits as subbasic nhbds the sets (A , e), as defined
in (9), A�a , eD0. It is evident that (A , e)& [A , e], A�a ,
eD0. r

The above topologies are generally different as we will see later, but:

THEOREM 2.11. – If a is Y-compact and hereditarily closed, then t a , d

agrees with the topology of uniform convergence on a.

PROOF. – In this case any f (A), A�a , f�C(X , Y) is compact in Y , but on
compacta the Hausdorff hypertopology induced from d coincides with Vietoris
topology. Thus from prop. 1.2 and from generalized Arens theorem, [6], the re-
sult follows. r

It derives immediately:

COROLLARY 2.12. – When a contains all Y-compacta, t a , d sits in between
the topology of uniform convergence on Y-compacta and uniform conver-
gence on a.

3. – Comparison.

When (X , d1 ), (Y , d2 ) are both metric spaces and d4d13d2 is the box-
metric in X3Y , C(X , Y) can be equipped with the Attouch-Wets topology
t AW(d) via the natural identification of functions with their graphs, [3].

Let X4 l2 equipped with the Hilbert distance d1 (]xn(, ]yn()4

o !
n�N

(xn2yn )2 and Y4R with the euclidean distance d2 (x , y)4Nx2yN .

THEOREM 3.13. – Let a be the network in l2 consisting of all compacta plus
all closed spheres centered at 0 and more the entire l2. Then t a , d2

in C(l2 , R) is
different from the Attouch-Wets topology induced in C(l2 , R) from d1 , d2 .

PROOF. – Consider in l2 the natural system ]eh : h�N 1(, eh4]xn(,

xn4
.
/
´

0, nch

1, n4h
and the uniformly discrete collection of closed balls Bh cen-

tered at eh and having all radius e , eEk2O2.

Define f : l2KR by putting: f (x)4
.
/
´

d1 (x , en ),

e ,

if x�Bn for some n .

otherwise .

and for each n�N 1 , fn : l2KR , fn (x)4
.
/
´

f (x),

e ,

if x� 0
h41

n

Bh .

otherwise .
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All functions fn , f are continuous. The sequence ] fn( t a , d2
-converges to f

but does not converge to it in the Attouch-Wets topology.
Choose x040� l2 , y040�R and take k�N 1 such that 1 /kEe . Then all

(en , f (en ) ) are in the d-ball centered at (0 , 0 ) and radius k . But for each
n , h�N 1 and each point x whose d1-distance from en1h is less than 1 /k ,
fn (x)4e and f (en1h )40. So d2 ( f (en1h ), fn (x) )4eD1/k .

Now, observe that any compact set can meet at most a finite number of Bn .
So ] fn( is eventually constant on compacta. Thus ] fn( uniformly converges on
compacta. Next, consider a closed ball B centered at 0 and for each n , m�N 1 ,
ncm the isometry of l2 , gn , m , defined by:

gn , m (]xh()4]yh(, where yh4
.
/
´

xh ,

xm ,

xn ,

hcn , hcm

h4n

h4m .

Any gn , m fixes 0, then B and interchanges en with em . More, gn , m (BOBn )4
BOBm and f (BOBn )4 f (BOBm ). From the above considerations the ball B
contains all Bn or none of them or intersects all of them in a uniform way. In
any case f (B)4 fn (B) for each n�N 1 . The same for f (l2 ) and fn (l2 ). And the
result definitively follows. r

COROLLARY 3.14. – Let a be a network in X and d a metric in Y. Then the
topology of uniform convergence on a is usually strictly finer than t a , d .

PROOF. – The example studied in the theorem 3.13 works. The sequence
] fn( cannot converge to f uniformly (on a), otherwise trivially that would im-
ply uniform convergence on bounded sets and then Attouch-Wets conver-
gence [4]. r

Again suppose X , Y as before but now C(X , Y) equipped with the Haus-
dorff convergence in the box-metric, [5]. The following theorems state the dif-
ferent nature of the Hausdorff convergence and t a , d .

THEOREM 3.15. – Let X4R2NN , Y4R , both metrized by the euclidean
distance d. Suppose a consists of all compacta plus the entire space X. Then
the Hausdorff convergence in C(X , Y) is different from t a , d one.

PROOF. – Put for each n�N 1 and x�X , fn (x)4 (x11/n)2 and f (x)4x 2 .
Then ] fn( does not converge in Hausdorff but t a , d- converges to f . When
h�X , hF1 and e41 we find only the same h to a distance less than 1 from h ,
but for no fixed n�N1 d( f(h), fn(h))41/n 212(h/n) can be less than 1 for any hF1.

On the other side ] fn( is uniformly convergent to f on compacta. Next,
if h�X , hF0 then (2h21/n)�X , d( f (h), fn (2h21/n) )40 and d( fn (h),
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f (2h21/n) )40 for each n�N 1 . More, if h�X , hG21, then (h21/n)�X
and (h11/n)�X , d( f (h), fn (h21/n) )40 and d( fn (h), f (h11/n) )40
for each n�N 1 . Finally, for each eD0 there exists n�N 1 such that if nDn
and x� [21, 0], d( fn (x), f (x) )Ee . Therefore, for each eD0 any integer n
greater than n and 1 /e works. r

THEOREM 3.16. – The Hausdorff convergence related to a box-metric d13d2

does not imply t a , d2
-convergence also when the entire space X is in the net-

work a.

PROOF. – Let X4Y4R , d(x , y)4Nx2yN . Suppose a contains X and a
uniformly discrete set, to simplify N . If fn(x)4 (x11/n)2 and f(x)4x 2 , (x�X ,
(n�N 1 , then ] fn(, as Naimpally proved, Hausdorff converges to f . But on
the other hand for each n , m�N 1 , d( f (m), fn (N) )42m/n11/n 2 . So
dH ( f (N), fn (N) )41Q for each n .

4. – t a , loc-fin .

Let X , Y be T1 topological spaces and a a closed network in X . The typical
set-open topology on C(X , Y) [1], has as subbase the collection ][A , B] : A�a ,
B open in Y ( , where [A , B]4] f�C(X , Y) : f (A)%B(. To generalize the
compact-open topology to real-valued non continuous functions, to balance the
disadvantage A is compact but f (A) is not compact McCoy-Ntantu, [8], consi-
dered a modification by introducing as subbase the collection of all sets of the
type: [A : B]4] f�RX : f (A)%B(, where A�a and B is open in R , already
considered in preliminaries . The using of closures reveals as a right option. It
creates a really new class, but anyway containing all most used ones, of set-
open topologies. And furthermore, in producing via procedure (*) function
space topologies from hypertopologies allows to work in a confortable setting
such as the hyperspace instead of the hyperset of the codomain which is a too
big extension of it.

Now we enlarge open sets in locally finite families of open sets again using
closures, supporting later this option with an example contained in the last
theorem.

Suppose U 4]Ui : i�I ( is a family of subsets in Y and A�a . Set:

[A : U]4] f�C(X , Y) : f (A)%NU and f (A)OUicf , (i�I ( .(11)

The collection ][A : U] : A�a and U running over all locally finite open fami-
lies of Y( is a subbase for a topology on C(X , Y) which we will denote
t a , loc-fin .

Observe that if f� [A : U] and f (A) is compact, then U must be finite.
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More, if the cardinality of A is less than the cardinality of U, then [A : U]
is empty.

If we denote, for A and U as above, [A : U]14] f�C(X , Y) : f (A)%NU(
and [A : U]24] f�C(X , Y) : f (A)OUicf , (i�I( after realizing that
[A : U]14 [A : NU], see (1) , we can deduce:

LEMMA 4.17. – t a , loc-fin can be splitted into two parts, a miss part generated
from ][A : V] : A�a , V open in Y (, (1), that is t a , V , and a hit part generated
from ][A : U]2 : A�a , U locally finite open family in Y (. r

And, when Y is regular:

LEMMA 4.18. – t a , loc-fin is generated from ][A : U] : A�a , U discrete open
family in Y(.

PROOF. – Recall that if you pick xi�Ui where ]Ui : i�I ( is a locally finite
open family, then you can find a discrete open family ]Vi : i�I( such that
xi�Vi%Ui . r

LEMMA 4.19. – t a , loc-fin is generated by procedure (*) from a jointly with
the locally finite hypertopology. r

Usually t a , loc-fin is different from t a , V as the following example shows.

EXAMPLE 2. – Let X4 l2 , Y4R , a done from all closed balls centered at 0.
Consider in R the locally finite open family U 4]]1 /(n11), 1 /n[ : n�N 1(.
Let B the unitary ball in l2 . Then [B : U]2 is a subbasic t a , loc-fin nhbd of the
usual Hilbert norm V V2 defined in l2 by V]xn(V24o !

n�N
x 2

n which is trivially a

continuous function from l2 to the reals. Well, none of t a , V- nhbds of the norm
of the type [B1 : V1 ]ORO [Bn : Vn ], with B1 , R , Bn balls of a , V1 , R , Vn open
sets in R , can be contained in [B : U]2 . Say r the minimum of Bi’s radius.
Shrink any ball Bi and B in a ball whose radius is less than 1 /n , for some nD2,
and less than r , just multiplying for a convenient coefficient any element of l2 .
And then operate with the norm, so obtaining a continuous function g : l2KR ,
which on any ball Bi takes values in the respective Vi , but, for which g(B) does
not intersect ]1 /n , 1 /(n21)[ in U. r

Of course, when a is Y-compact or Y is feebly compact, any locally finite
open family is finite ,t a , loc-fin and t a , V are indistinguishable.

Vice versa their coincidence can force compactness of a .

THEOREM 4.20. – Let X4Rn , Y4R and a done from closed connected sub-
sets in Rn. Then t a , V4t a , loc-fin iff a is compact.
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PROOF. – Firstly consider n41, since the general case can be reduced to
the one-dimensional one. Suppose a contains a not compact, then unbounded,
interval A . If ]an( is a uniformly discrete sequence in A , U 4]]an21/n , an1
1/n[ : n�N 1( is a locally finite open collection whose union is not bounded in
R . Then [A : U]2 contains the identity map i of R but none of the sets
[A1 : V1 ]ORO [An : Vn ] which i belongs to, with A1 , R , An�a and V1 , RVn

open in R , is contained in [A : U]2 . When 0
i41

n

Ai is bounded, that is compact, it

is enough to pick a continuous bounded function g which coincides with the

identity map on the 0
i41

n

Ai . Otherwise, order the indices in such a way when i4

1, R , h , f (Ai ) is bounded, when i4h11, Rk , Ai is bounded below but not
above, when i4k11, R , r , Ai is bounded above but not below. Observing
that Ai , i4h11, R , r , is an half-line, let m1�O]Ai : i4k11, R , r( and

less than any element in 0
i41

k

Ai and m2�O]Ai : i4h11, R , k( and greater

than any element in N]Ai : i41, R , h , k11, R , r). Shrink the half-line
(2Q, m1] to the interval ]m12e, m1] and the half-line [m2 ,1Q) to the interval
[m1 , m11e[ for a convenient eD0 and glue with the restriction of the identity
map on [m1 , m2 ], so obtaining a continuous function which works.

The general case. When A�a is not compact, it must be unbounded. Thus
at least one of its natural projections p(A) is unbounded. Also its closure p (A)
is unbounded but connected. Furthermore p� [A : U] is equivalent to say
i� [p (A) : U] and p� [A1 : V1 ]ORO [An : Vn ] to i� [p(A1 ) : V1 ]ORO
[p(An ) : Vn ]. And so the result follows from one-dimensional case. r

Suppose a , b are networks in X . We say that a refines b when any element
in a can be covered by a finite union of elements in b .

PROPOSITION 4.21. – If a refines b and b is hereditarily closed, then
t a , loc-fin%t b , loc-fin .

PROOF. – Let A�a , U 4]Ui : i�I( a locally finite open family in Y and f�

[A : U]. Suppose A% 0
h41

n

Bh , Bh�b and AOBhcf , (h41, R , n . Denote by

Vh4]Ui : Ui� U and UiO f (AOBh )cf(. Then NVh4 U. More [AO
B1 : V1 ]ORO [AOBn : Vn ] is a t a , loc-fin-nhbd of f all contained in
[A : U]. r

PROPOSITION 4.22. – If X is completely regular, Y contains a non trivial
path and t a , loc-fin%t b , loc-fin , then a refines b.
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PROOF. – See analogous in McCoy-Ntantu [8]. r

In the above conditions:

COROLLARY 4.23. – t a , loc-fin coincides with the point-open topology iff a is
the finite network. r

COROLLARY 4.24. – t a , loc-fin coincides with the compact-open topology iff a
is the compact network. r

PROPOSITION 4.25. – The codomain space Y embeds as a closed subspace in
C(X , Y) equipped with t a , loc-fin .

PROOF. – Suppose Y identified with the set of all constant functions on X .
Observe that e(Y)O [A : U]4f , when U is not finite and e(Y)O [A : V]4
e(V ) for each A and each open set in Y . Then, more, e(Y ) is closed since it is
closed in the point-open topology which is naturally contained in
t a , loc-fin . r

PROPOSITION 4.26. – The codomain space Y is Hausdorff iff t a , loc-fin is
Hausdorff.

PROOF. – It follows from proposition 4.25 and Hausdorffness of the point-
open topology which is weaker than t a , loc-fin . r

To acquire stronger separation properties for t a , loc-fin we need to use net-
works especially close to Y . We say that a network a in X is regular w.r.t. Y iff
when f (A)%V , f�C(X , Y), A�a , V is open in Y , then there exists an open set
U in Y such that f (A)%U%U%V . We say that a network a in X is normal w.r.t.
Y iff when f (A)%V , then there exists a Urysohn function which separates f (A)
from Y2V . Naturally normality of a network w.r.t. Y implies regularity w.r.t. Y .

When Y is completely regular and U is a compatible uniformity, the Haus-
dorff hypertopology t H (U ) jointly with a network a generates via procedure
(*) a completely regular function space topology t a (U ). Denote t a , fine that one
induced from the finest uniformity which, as is known, is generated from all
open normal coverings of Y .

THEOREM 4.27.

(i) Y regular and a regular w.r.t. Y implies t a , loc-fin is regular.

(ii) Y completely regular (uniformizable) and a normal w.r.t. Y implies
t a , loc-fin is completely regular (uniformizable).
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PROOF. – (i) Let f� [A : B], A�a , B open in Y . Then f (A)%V%V%B , for
some open set V in Y . Since the closure of [A : V] in t a , V is contained in
[A : V], then Cl[A : V ] in t a , loc-fin is in [A : V] as well. So f�Cl[A : V]% [A : V]%
[A : B]. Next, f� [A : U]2 , where U 4]Ui : i�I( is a locally finite open family
in Y . For each i�I select xi� f (A)OUi and an open set Vi such that xi�Vi%
Vi%Ui . Put V 4]Vi : i�I(. Then f� [A : V]2 . Since Cl[A : V]2 in t a , loc-fin is
contained in [A : V]2 it follows that f� [A : V]2%Cl[A : V]2% [A : V]2%
[A : U]2 .

(ii) We show that t a , loc-fin =t a , fine . Let us suppose A�a , U 4]Ui :�I (
is a discrete open family in Y and f� [A : U]. Then f (A)%N]Ui : i�I( and
f (A)OUicf , (i�I . The hypothesis assures the open set covering R14]Y2
f (A), 0

i�I
Ui( is normal. Next pick xi� f (A)OUi and choose a Urysohn function

gi such that gi (xi )41 and gi (Y2Ui )40. Since Y2gi
21 (0)%Ui , ]Y2

gi
21 (0) : i�I( is a discrete family and the cozero-set covering R24]Y2N

i�I gi
21 (1), Y2gi

21 (0) : i�I( is normal. So R1 , R2 both belong to the fine uni-
formity of Y . Consider the diagonal nhbds U1 , U2 determined from R1 , R2 re-
spectively. If g is in (A , U1 )( f ), see (5), (7), then g(A)%Ni�I Ui and further-
more if g is in (A , U2 )( f ), then g(A)OY2gi

21 (0)cf , for each i�I . It follows
that (A , U1 )( f )O (A , U2 )( f )% [A : U]; that means t a , loc-fin%t a , fine . Vice ver-
sa, suppose A�a , U 4]Ui : i�I( is an open normal covering in Y , U is its
natural diagonal nbhd. Then U admits an open locally finite refinement V 4
]Vj : j�J(. Consider W 4]Vj� V: V jO f (A)cf(. Then [A : W] is a t a , loc-fin-
nhbd of f contained in (A , U)( f ). If g� [A : W], any y� g(A) belongs to some
Vj� W which in turn has to contain some point of f (A) and has to be contained
in some Ui� U. The same happens when f substitues g . And the result defini-
tively follows. r

COROLLARY 4.28. – When Y is normal, for any network a in
X , t a , loc-fin =t a , fine .

THEOREM 4.29. – When Y is metrizable, t a , loc-fin is the supremum of all
t a , d’s where d runs over all compatible metrics on Y .

PROOF. – It follows from results in [2] and procedure (*). r

In conclusion we consider the locally finite Arens-Dugundji generalization,
call it ca , loc-fin , which admits as subbase

][A , U] : A�a , U 4]Ui , i41, R , n( is a locally finite open family in Y (

where [A , U]4] f�C(X , Y) : f (A)%NU and f (A)OUicf , (i�I(.
It is very easy to see that ca , loc-fin and t a , loc-fin have the same hit part.
We show that:
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THEOREM 4.30. – When Y is metrizable, t a , loc-fin is weaker than ca , loc-fin but
generally different.

PROOF. – By Beer and others results any t a , d is weaker than ca , loc-fin since
in the definition of t a , d’s we use Hausdorff pseudometrics for which the clo-
sures have no influence. Since t a , loc-fin is the supremum of all t a , d’s, then,
t a , loc-fin is weaker than ca , loc-fin . In the following example they are different.
Let X4](x , y)�R2 : xD0, yD0(, Y4R and a4CL(X). Consider C4
](x , 1 /x) : xD0( and the projection p on the x-axis. Then p� [C , R1 ] but no
[C1 : U1 ]ORO [Cn : Un ] containing p can be contained in [C , R1 ], with
C1 R , Cn closed in X and U1 , R , Un locally finite open families in R. Set Ui4
]Uij : j�Ji(, i41, R , n and pick xij�p (Ci )OUij . Observe that E4]xij : j�
Ji , i41, R , n( is discrete.

Suppose the Ci’s are indexed in such a way 0�NUi if i41, R , h and 0�
NUi if i4h11, R , n . Then for a convenient eD0, [0 , e]’NUi , i41, R , h
and [0 , e]Op (Ci )4f , i4h11, R , n . Naturally E cannot contain ]0 , e[. Se-
lect in ]0 , e[ a point x0 and a nhbd ]x1 , x2 [%]0 , e[ of x0 which does not intersect
E . Denote S14]x1 , x0 ]3 [0 , Q), S24 [x0 , x2 [3[0 , Q) and S4]x1 , x2 [3
[0 , Q). Define the following continuous partial map g , gNCi

4p if i4

4h11, R , n ; gNCi2S4p , i41, R , h ; gNS1
4h1 i p with h1 (x)4

x1

x12x0

(x2x0 );

gNS2
4h2 i p with h2 (x)4

x2

x22x0

(x2x0 ). After glueing on 0
i41

n

CiNS extend

continuously over all X by Tietze’s extension theorem. Call again g the
extension. Then g� [C , R1 ] since g(x0 , 1 /x0 )40�R1, but g is in

1
i41

n

[Ci : Ui ]. r
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