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Generalized Maximum Principle and Evaluation
of the First Eigenvalue for Heisenberg-type Operators

with Discontinuous Coefficients.

M. CHICCO - M. R. LANCIA

Sunto. – Precedenti risultati riguardanti il principio di massimo generalizzato e la
valutazione del primo autovalore per operatori uniformemente ellittici di tipo va-
riazionale vengono estesi agli operatori subellittici di tipo Heisenberg non simme-
trici e a coefficienti discontinui.

Introduction.

In the mathematical literature the strong maximum principle for degene-
rate operators with nonnegative characteristic form and regular coefficients
has been studied by Bony [4]; for a complete discussion see also [20]. In his re-
sults the usual assumption on the sign of the coefficient c in the operator L is
adopted. Following this philosophy, maximum principles can be also achieved
for Heisenberg-type operators [17].

In this paper we prove a generalized maximum principle and we compute
the first eigenvalue for linear second order subelliptic operators whose princi-
pal part is in divergence form with respect to the Heisenberg vector fields
with discontinuous coefficients.

The generalized maximum principle differs from the ordinary one as fol-
lows. In the ordinary maximum principle usually one states that if a subsolu-
tion (of the elliptic equation) is Gm on ¯V , then it is also Gmax (0 , m) in the
interior of V . This property is valid provided one assumes the coefficient c of L
to be non negative a. e. in V .

In the present work we want to prove a generalized maximum principle:
if a subsolution u is non-positive on ¯V , then it is non-positive also in the inte-
rior of V . This property, as proved in Theorem 3.1, is valid iff there exists (at
least) a subsolution w such that wG0 in V and a(w , v)E0 for some test fun-
ction vF0 in V (for the definition of the bilinear form a(Q , Q), associated with
the subelliptic operator L , see (2.1)). These results were proved in [6] for uni-
formly elliptic divergence form equations, and they are extended in the pre-
sent note to the case of Heisenberg type subelliptic operators.
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We consider a local solution of the equation

Lu40 in V

where V is an open bounded connected set of R2n11 , with smooth boundary.
The operator L is given by

Lu42 !
j41

2n

X *j k!
i41

2n

aij (x) Xi u1dj (x) ul1 !
i41

2n

bi (x) Xi u1c(x) u

where Xj are the Heisenberg vector fields in R2n11 , Xj* is the L 2-adjoint of Xj .
The operator L is assumed to be uniformly subelliptic. More precisely we shall
assume the following:

(A) aij are measurable functions on R2n11 , and there exist positive con-
stants m , M such that mGM and

mNjN2G !
i , j41

2n

aij (x) j i j jGMNjN2

for all x�R2n11 and j�R2n

(B) there exists qD2n12 such that

bi�L q (V), di�L q (V), c�L q/2 (V)

for i41, R , 2n .
Under these assumptions we can prove the following

THEOREM 3.1. – Let BR%%V with 192RER. Every non positive subsolu-
tion u on ¯BR satisfies a generalized maximum principle iff there exists a
negative subsolution in BR .

Here by BR we denote the intrinsic balls defined in (1.7) and R is a suitable
value of the radius (see proposition 2.1). The lower bound on R is motivated by
the use of Harnack inequality (proved in [18]) in lemma 2.5 and corollary 2.6.
The previous results enable us to give in theorem 4.2 a characterization of the
first eigenvalue having largest real part:

THEOREM 4.2. – Let l 1 denote the eigenvalue of Problem (4.1) having the
largest real part. Then l 1 is real and it turns out

l 142sup{ inf
v�S

i2 (BR ), vD0

a(w , v)

(w , v)L 2 (BR )

: w�S 2 (BR ), wE0 in BR}
where S 2 (BR )4]u�L 2 (BR ) : Xi u�L 2 (BR ), i41, R , 2n( (see Definition
(1.2) below).
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In this paper, we extend to the non euclidean context of the Heisenberg
group the results proved in [6, 7] for the case of linear second order elliptic
partial differential equations in divergence form with discontinuous coefficien-
ts. Following the proofs in [6] we use a local Harnack inequality proved in [18],
for more general Hörmander vector fields (see also [2]), and we had to adapt
some proofs in [6] to our case. Actually , we use some results about connections
between Hausdorff measure and the analogue of p-capacity with respect to the
Heisenberg vector fields (here we will not give the proofs which can be found
in [16]).

In section 1 we describe the main tools we shall make use of. We introduce
the Heisenberg group and the associated Sobolev spaces. We recall that
R2n11 , equipped with the distance intrinsically associated with the Heisen-
berg vector fields, is a homogeneous space in the sense of abstract harmonic
analysis [8] with homogeneous dimension N42n12. Then, we state the re-
sults about the connections between Hausdorff measure and 2-capacity, where
the 2-capacity is defined with respect to the Heisenberg vector fields. In sec-
tion 2, we recall some preliminary results proved in [18] and we deduce some
straightforward consequences which, together with the relation between Haus-
dorff measure and 2-capacity, will turn out essential to the proof of corollary
2.6. In section 3 we prove the generalized maximum principle, where the tech-
nique follows the lines of [6] in the euclidean context. Finally, in section 4 we
can give a characterization of the first eigenvalue having largest real part.

1. – Notations.

Consider the euclidean space R2n11 , whose elements we denote by x4
(x1 , R , xn , y1 , R , yn , t), equipped with the multiplication law

(1.1) xQx 84(x11x18,R, xn1xn8, y11y18,R, yn1y 8n , t1t 812! (xi8yi2xiyi8)) .

It is a group whose identity is the origin and where the inverse is given
by

x 214 (2x1 , R , 2xn , 2y1 , R , 2yn , 2t)

The space R2n11 with the structure (1.1) is the Heisenberg group denoted
by H n [22]. The non isotropic dilations

d i x4 (dx1 , R dxn , dy1 , R dyn , d 2 t) (d�R , x�H n )(1.2)

are automorphisms of H n . The nonnegative function

r(x)4g!
i41

n

(xi
21yi

2 )21 t 2h1/4

(1.3)
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defines a norm for the Heisenberg group, in particular it is homogeneous of
degree 1 with respect to the dilations (1.2), i.e.

r(d i x)4NdNr(x)(1.4)

for every x�H n and d�R . Moreover, there exist positive constants c1 and c2

such that

c1 NxNGr(x)Gc2 NxN1/2(1.5)

for every x in a bounded set of H n , where NxN denotes the Euclidean norm in
R2n11 .

By (1.4) and (1.5) it follows that the function d defined by

d(x , x 8 )4r(x 821 Qx)(1.6)

is a distance in H n , topologically equivalent to the Euclidean one and left inva-
riant with respect to the law (1.1).

By using the distance d we define the intrinsic balls

B(x , R)4BR (x)4]x 8�H n : d(x , x 8 )ER( .(1.7)

The Lebesgue measure dx4dx1 Rdxn dy1 R dyn dt is invariant with re-
spect to the translations (1.1) so that for every x�H n and RD0 we
have

NBR (x)N4NBR (0)N(1.8)

Since the jacobian of the dilations (1.2) is given by

Jd4d 2n12(1.9)

from (1.8) and (1.9) it follows that for every x�H n and RD0

NBR (x)N4R 2n12 NB1N .(1.10)

In our context we need a vector field basis which is invariant with
respect to the translations (1.1). Such a basis is given by

Xi4

.
`
/
`
´

¯

¯xi

12yi
¯

¯t
for i41, R , n

¯

¯yn2 i

22xi2n
¯

¯t
for i4n11, R , 2n

T4
¯

¯t
.

(1.11)
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For the vector fields (1.11) we have the commutative law

[Xi , Xi1n ]424T for every i41, R , n(1.12)

while the other commutators vanish.
We recall that a commutator of two vector fields V1 and V2 is the new vector

field given by

[V1 , V2 ]4V1 V22V2 V1(1.13)

therefore, X1 , R , X2n are a basis for the Lie algebra of the vector fields inva-
riant with respect to (1.1). Moreover they are homogeneous of degree 1 with
respect to the dilations (1.2), whereas, by (1.12), T is homogeneous of degree 2
i.e.

Xi (u(d i x) )4d( (Xi u)(d i x) )(i41, R , 2n)(1.14)

and

T(u(d i x) )4d 2 ( (Tu)(d i x) ) .(1.15)

The family of the intrinsic balls BR (x) reflects the nonisotropic nature of
the Heisenberg vector fields.

The space R2n11 , equipped with the distance d , acquires the structure of a
space of homogeneous type of dimension N42n12 in the sense of Coifman
and Weiss [8].

Let V be a bounded open subset of R2n11 . The following covering lemma
holds (see [8] ch. 3 lemma 1.1)

LEMMA 1.1. – For every e� (0 , 1 ), the ball B(x , r), x�V , 0ErEr0 , can be
covered by the union of balls B(yi , er) with yi�B(x , r), for i41, 2 , R , l such
that lEce a for suitable constants cD0 and aD0. The constants c and a are
independent on x , r and e and depend only on c0 .

This dimension will play a crucial role in view of the close connection bet-
ween capacity and Hausdorff dimension which we shall describe later. Follo-
wing [10, 22] we give the

DEFINITION 1.2. – We denote by S 2 (V) the Sobolev-type space of the fun-
ctions u�L 2 (V), such that the distribution derivatives Xi u belong to L 2 (V)
for i41, R , 2n .

The norm in S 2 (V) is given by

VuV24s
V

gNuN21 !
i41

2n

NXi uN2h dx .(1.16)
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The closure of C Q
0 (V) in the above norm is denoted by S

i
2 (V). By Sloc

2 (V)
we mean the set of functions u which belong to S 2 (V8) for every V 8%%V .

In the following, we set for brevity

VXuVL 2 (V)
2 »4s

V

!
i41

2n

NXi uN2 .

We recall the following properties of the above Sobolev spaces:

Poincaré inequality (see [12]). For every BR (x)%R2n11 and u�S
i

2 (BR (x) )
we have

s
BR (x)

NuN2 dxGcR 2 s
BR (x)

!
j41

2n

NXj uN2 dx .(1.17)

Sobolev inequality (see [13]). There exists a constant SD0 such that for
every u�S 2 (R2n11 ) we have

g s
R2n11

NuN2* dxh2/2*

GS s
R2n11

!
j41

2n

NXj uN2 dx ,(1.18)

where

2*4
2N

N22
g4 2n12

n
h .

Compact embedding (see [10]). For every bounded domain V the Sobolev
space S

i
2 (V) is compactly embedded into L p (V), for every pE2*.

Let E%R2n11 a compact set. We define the capacity of E as

(1.19) cap2 E4 inf{ s
R2n11

!
j41

2n

NXj fN2 dx : f�C Q
0 (R2n11 ); fF1 on E}

For the reader’s convenience we now recall some results whose proofs can
be found in [16].

In the sequel, we denote by H s (Q) the s-dimensional Hausdorff measure in
the metric space (R2n11 , d).

PROPOSITION 1.3. – Let A denote a compact set in H n and B(x , r)%V then
the following properties hold:

i) cap2 (B(x , r) )4r N22 NB1 N ;

ii) cap2 (A)GcH N22 (A);

where c is a costant depending only on N .
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THEOREM 1.4. – Let A denote a compact set in H n , if H N22 (A)EQ
then cap2 (A)40.

Proof. See [16].

THEOREM 1.5. – Let A%H n be a compact subset. If cap2 (A)40 then
H s (A)40 for every sDN22.

Proof. See [16].

DEFINITION 1.6. – Let V denote a bounded connected set and E%V. Let
u�S 2 (V). The function u is nonnegative in the sense of S 2 (V), or briefly
uF0 on E in S 2 (V) if there exists a sequence ]un(�C Q (V) such that

.
/
´

un (x)F0, (x�E

un (x)Ku in S 2 (V) .

REMARK 1. – If u�S 2 (V) and v�S 2 (V) we say that uFv on E in S 2 (V) if
u2vF0 on E in S 2 (V).

The following proposition can be easily proved [11]:

PROPOSITION 1.7. – If u�S 2 (V) and uGk a.e. in V then uGk on K in the
sense of S 2 (V) for every compact set K%V .

REMARK 2. – It is easy to see, as in the euclidean context, that if u�S 2 (V)
and E%V is a compact subset and u40 in the sense of S 2 (V) then u40 in E
in the sense of the capacity defined in (1.19).

2. – Preliminary results.

In this section we recall, in the case of interest for us, some results proved
in [18] and we deduce some consequence which will turn out essential to our
purposes.

2.1. Variational formulation of the problem.

Let V be a bounded domain in R2n11 . Let us consider the following diffe-
rential operator

Lu42 !
j41

2n

X *j k!
i41

2n

aij (x) Xi u1dj (x) ul1 !
i41

2n

bi (x) Xi u1c(x) u

where X1 , X2 , R , X2n are the Heisenberg vector fields and X *j is the L 2-ad-
joint of Xj .



M. CHICCO - M. R. LANCIA448

We make the following assumptions:

A) aij (i , j41, R , 2n) are 2n32n measurable functions on V that satisfy
the following conditions:

i) there exists MD0 such that Naij (x)NGM for a.e. x�V ;

ii) there exists mD0 such that

mNjN2G !
i , j41

2n

aij j i j j

for almost every x�V and every j�Rm ;

B) bi�L N (V), i41, R , 2n ;

C) c�L N/2 (V) and dj�L N (V), j41, R , 2n where N42n12.

Let a be the bilinear form defined by:

a(u , v)4s
V

g!
i , j

(aij Xi uXj v1bi (Xi u) v1dj uXj v1cuvh dx(2.1)

u�S 2
loc (V), v�S

i
2 (V).

In [18] it was proved the following:

PROPOSITION 2.1. – Let BR4BR (x)%V , RGR0 /2 . Then:

i) a is continuous in S
i

2 (V)3S
i

2 (V)

ii) there exists R with 0GRGR0 /2 and nD0 depending on the structu-
ral costants and on S , M , m , bi , di , c but not depending on x�V , such that a
is coercive on S

i
2 (BR ) for every RGR:

a(u , u)FnVuV
S
i2 (BR ) for every u�S

i
2 (BR ) .(2.2)

(Here R0 is a suitable constant defined in [18]).
As pointed out in [18] (see remark 2.2), Proposition 2.1 still holds when the

hypothesis C) is replaced by

C 8 ) dj�L q (V) ( j41, 2 , R , 2n), c�L q/2 (V), qDN

which cannot be removed in order to prove Harnack inequality and Theorem
2.3. Therefore from now on we will assume C 8 ) to hold.

DEFINITION 2.2. – We say that u�Sloc
2 (V) is a local solution of the

equation

Lu40(2.3)
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if for every BR’V and for every v�S2 (BR ) it turns out

(2.4) a(u , v)4s
BR

g!
i , j

(aij Xi uXj v1bi (Xi u) v1dj uXj v1cuvh dx40 .

If in addition u�S 2 (V) we say that u is a solution.
We say that u is a local subsolution if

a(u , W)G0 (W�S
i

2 (BR ), WF0 .(2.5)

In [18] a Harnack inequality is proved.

THEOREM 2.3. – Let u�S 2
loc (V) be a positive local solution of (2.3). There

exists CD0, such that for every BR with B192R%V and 192RER we
have

sup
BR

uGC inf
BR

u .(2.6)

From Harnack inequality and theorem (3.2) in [18] the following result can
be deduced:

COROLLARY 2.4. – Let u be a local positive solution in V of Lu=- !
i41

2n

Xi
x fi

with fi�L p (V), pDN then

sup
B(x , r)

uGK g inf
B(x , r)

u1! V fi VL p (BR ) NRN12N/ph ,

where K does not depend on BR .

From the above corollary it follows

LEMMA 2.5. – Let u�S 2 (V), uG0 in V , u non identically zero in V ,
a(u , v)40 for every v�S

i
2 (V). Then for every BR%%V with 192RER

sup
BR

uE0 .(2.7)

Proof: see the proof of corollary (8.1) in [21].

COROLLARY 2.6. – Let w�S 2 (V), wG0 in V , w not identically zero in V ,
a(w , v)G0 for every v�S

i
2 (V), vF0.

Then, for every BR%%V , with 192RER we have

sup
BR

wE0(2.8)

Proof. Let us consider the following subsets of V :

B1 »4]x�V : there exists a neighborhood U of x s.t. w40 a.e. in U(
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B2 »4]x�V : there exists a neighborhood U of x s.t. ess sup
U

wE0(

B3 »4V0(B1NB2 )4]x�V : for every neighborhood of x there exist a sub-
set A1 s.t. NA1ND0 where w40 a.e. and a subset A2 with NA2ND0 where wE0
a.e.(

It turns out that our hypothesis implies that B1 cannot coincide with V . If
B2fV , by compactness arguments we have that for every compact set D%V
it follows ess sup

D
wE0, whence the thesis. Therefore, if both B1 and B2 are not

empty, then B3 also is not empty, due to the fact that V is a connected set. Fi-
nally we can restrict ourselves to consider only the last case.

Let x0�B3 . Then there exists a ball B(x0 , r) with radius r small enough
such that w�S

i
2 (B(x0 , r) ). In fact, if this were not the case, by contradiction

there would exist a r0D0 s.t. w�S
i

2 (B(x0 , r) ) for every r� (0 , r0 ). Thus, by
virtue of remark 2, w40 in the capacity sense on the boundary ¯B(x0 , r) of
every ball B(x0 , r) for r� (0 , r0 ). Theorem 1.5 yields that if cap2 (¯B(x0 , r) )40
then H N21 (¯B(x0 , r) )40 for every r� (r , r0 ). By means of the intrinsic coa-
rea formula (see (17) in [9], or [5]) we have that

s
B(x0 , r0 )

w(x)NXrNdx40

where NXrN4g!
i41

2n

(Xi r)2h1/2

. Taking into account that NXrND0 a.e. we dedu-

ce that w(x)40 a.e. in B(x0 , r0 ), a contradiction. Therefore we can choose r s.t.
w�S

i
2 (B(x0 , r) ) and s.t. the form a(Q , Q) is coercive in S

i
2 (B(x0 , r) ). (As pointed

out in [18] this happens whenever the measure of B(x0 , r) is suitably small).
Then if we consider the solution u of the Dirichlet problem

.
/
´

a(u , v)40 (v�S
i

2 (B(x0 , r) )

u2w�S
i

2 (B(x0 , r) )

(the existence easily follows as in thm. (3.3) of [21]), we can prove that

wGu a.e., on B(x0 , r) .(2.9)

In fact, if we set g4max (w2u , 0 ), the function g turns out to be in
S
i

(B(x0 , r) ), gF0 a.e. and a(g , g)G0 whence gf0 a.e. in B(x0 , r). In the same
way we can prove that uG0 on B(x0 , r) and that u is not identically zero on
B(x0 , r) because u2w�S

i
2 (B(x0 , r) ) and w�S

i
2 (B(x0 , r) ). Therefore by lem-
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ma 2.5 we have

sup
B(x , rA)

uE0 for every B(x , rA)%B(x0 , r) .

If by chance x0�B(x , rA) then it would follow that sup
B(x , rA)

w40, thus contra-
dicting (2.9).

3. – The generalized maximum principle.

In this section we prove that every non positive subsolution u on ¯BR sati-
sfies a generalized maximum principle iff there exists a negative subsolution in
BR .

THEOREM 3.1. – The two following statements are equivalent:

a) for every u�Sloc
2 (V) such that uG0 on ¯BR , BR%V , 192RER and

a(u , v)G0 (v�S
i

2 (BR ), vF0, then uG0 in BR .

b) There exists a function w�Sloc
2 (V) such that wG0 in BR%V ,

a(w , v)G0 (v�S
i

2 (BR ), vF0 in BR , and a(w , v)E0 at least for one function
v�S

i
2 (BR ), vF0 a.e. in BR .

PROOF. – We prove that a) ¨ b). For the sake of simplicity, let f�C 0 (V) fE
0. Let us consider the boundary value problem

.
/
´

a(w , v)4s
V

fvdx (v�S
i

2 (BR )

w�S
i

2 (BR )

there exists a unique solution w�S
i

2 (BR ) for every BR%V with RER.
Let w denote the solution, then it satisfies b). In fact, condition a) and the

hypothesis on f yield

wG0 in BR , a(u , w)E0 if v�S
i

2 (BR ), vD0 in BR .

Let us now prove that b) ¨ a).
Let u�Sloc

2 (V), uG0 on ¯BR , a(u , v)G0 for every v�S
i

2 (BR ), vF0; we
want to show that uG0 in BR . Let us consider the function wk (x)4max (u1
kw , 0 ), where k�R and w is the function which satisfies condition b).
Let

AR (k)4]x�BR : wk (x)D0(

k04 inf ]k : wk (x)40 a.e. in BR( ;
(3.1)

if we show that k0G0 then we get our result.
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We proceed by contradiction. Let us assume that k0D0. Let BR (x),
192RER, so that by corollary (2.6) we claim that sup

BR

wE0; moreover it can

be shown (as in [21] sect. 5) that sup
BR

uE1Q . Therefore there exists a h�R
such that

wk40 in BR for kFh

whence obviously

lim
kK1Q

NAR (k)N40 .(3.2)

We now prove that

lim
kKk0

NAR (k)N40(3.3)

even though k0 is finite. If (3.3) did not hold, there would exist a set H%BR ,
NHND0 such that u1k0 w40 in H and u1k0 wG0 in BR . Then let Br%BR

such that NBrOHND0, Corollary 2.6 applied to the function u1k0 w yields
u1k0 w40 in Br , so that by covering arguments (see [8]), u1k0 w40 in BR ,
i.e. u42k0 w . Hence a(w , v)40 (v�S

i
2 (BR ) which contradicts condition b)

and proves (3.3). On the other hand, as the function R�kKNAR (k)N is decrea-
sing, from (3.3) we get NAR (k0 )N40 whence wk0

40 a.e. in BR . Therefore ar-
guing as before we have a contradiction and then k0G0.

COROLLARY 3.2. – Let us assume condition a) of Theorem 3.1 to hold. Let
mD0 and let z be in S 2 (V), zG0 on ¯BR , for every BR%V such that

a(z , v)1m(z , v)L 2 (BR )G0 (v�S
i

2 (BR ), vF0 .

Then z is G0 in BR .

PROOF. – By virtue of theorem 3.1 there exists a function w�S
i

2 (BR ) s.t.
wG0 in BR%V , a(w , v)E0 (v�S

i
2 (BR ), vD0 in BR . Then a(w , v)1

m(w , v)L 2 (BR )E0, (v�S
i

2 (BR ), vD0, so that Theorem 3.1 applied to the form
a(w , v)1m(w , v) gives the result.

4. – Characterization of the eigenvalues.

In this section, we give a characterization of the eigenvalues of the
problem

.
/
´

a(w , v)1l(w , v)L 2 (V)40, (v�S
i

2 (V)

u�S
i

2 (V) .

(4.1)
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Before stating our result, we recall a theorem which will be useful
later (see [14]), for the sake of clarity.

THEOREM 4.1 (Kreı̆n and Rutman). – Let X be a Banach space and T denote
a completely continuous operator from X into X such that T maps a cone K
into K and T has at least a non-zero eigenvalue. Then T has a positive eigen-
value l 1 such that l 1FNlN for every l eigenvalue of T .

THEOREM 4.2. – Let l 1 denote the eigenvalue of problem (4.1) having the
largest real part. Then l 1 is real and it turns out

l 142sup{ inf
v�S

i2 (BR ), vD0

a(w , v)

(w , v)L 2 (BR )

: w�S 2 (BR ), wE0 in BR}(4.2)

PROOF. – The proof will take four steps.

Step 1). We prove that l 1�R. Suppose that m does not belong to the spec-
trum of (4.1) and consider the operator

Gm : L 2 (BR )KS
i

2 (BR )

defined as:

a(Gm u , v)1m(Gm u , v)L 2 (BR )4 (u , v)L 2 (BR ) (v�S
i

2 (BR ) .(4.3)

Taking into account that S
i

2 (BR ) is compactly embedded in L 2 (BR ) (see
[3, 12]) for every BR%V such that RER, the operator Gm is compact in L 2 (BR).
Let m be large enough such that there exists a positive constant m 0 with

a(z , z)1mVzV2
L 2 (BR )Fm 0 VzV2

S
i2 (BR ) (z�S

i
2 (BR )(4.4)

(see [18] and [21]). If (4.4) holds, m does not belong to the spectrum; moreover
if u�L 2 (BR ), uG0 in BR then Gm uG0 in BR . In fact, set uA4max (Gm u , 0 ),
v4uA in (4.3); taking (4.4) into account we get

m 0 VuA V

2

S
i2 (BR )Ga(uA, uA)1mVuA VL 2 (BR )4 (u , uA)L 2 (BR )G0 .

Then uA40 in BR and Gm uG0 in BR . Thus the operator Gm leaves invariant the
cone K defined by

K4]u�L 2 (BR ) : uG0 in BR( .

The operator Gm , under assumption (4.4), satisfies the hypothesis of Kreı̆n-
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Rutman Theorem, therefore there exists a real eigenvalue t1 of Gm such that

NtNG t1 for every eigenvalue t of Gm .(4.5)

Moreover, it is well known that if l is an eigenvalue of the problem (4.1) the
number t4 (m2l) is an eigenvalue of the operator Gm and viceversa. If we set
t14 (m2l 1 )21 , (4.5) yields

Nm2lNFm2l 1(4.6)

for every l eigenvalue of (4.1). Then taking into account that (4.6) holds under
the hypothesis that m is large enough, we let m diverge at 1Q , thus
obtaining:

Re (l)Gl 1(4.7)

for every l eigenvalue of (4.1). This guarantees the existence of an eigenvalue
l 1 having maximal real part. We are now ready to make the second step.

Step 2). We set

l 842sup{ inf
v�S

i2 (BR ), vD0

a(w , v)

(w , v)L 2 (BR )

: w�S 2 (BR ), wE0 in BR}
and we remark that l 8D2Q . By contradiction, if l 842Q take any real p ;
then there exists a function w�S 2 (BR ), wE0 in BR , such that

inf
v�S

i2 (BR ), vD0

a(w , v)

(w , v)L 2 (BR )

D2p

whence a(w , v)1p(w , v)L 2 (BR )E0, (v�S
i

2 (BR ), vD0.
From Theorem 3.1 it follows that neither p is an eigenvalue of problem (4.1)

nor any number tDp . But problem (4.1), like the compact operator Gm defined in
(4.3), has at least an eigenvalue: this is a contradiction, so l8 is real.

We prove now that l 8 is an eigenvalue of problem (4.1). By contradiction, if
l 8 were not an eigenvalue, there would exist the operator Gl 8 , which satisfies
the property Gl 8 uG0 in BR for every u�L 2 (BR ), uG0 in BR .

In fact, by the definition of l 8 and Theorem (3.1), it can be shown that

lim
mKl 81

VGm u2Gl 8 uVL 2 (BR )40

and Gm uG0 in BR if mDl 8 . If l 8 were not an eigenvalue and if 0El 82mE
VGl 8 V

21 then m would not be an eigenvalue so that we would have

Gm4Gl 8 [I2 (l 82m) Gl 8 ]214 !
j40

Q

(l 82m) jGl 8
j11 .

Hence, with this choice of m it turns out that Gm uG0 in BR whenever uG0 in
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BR . If w4Gm u with u�L 2 (BR ), uE0 it turns out that a(w , v)1
m(w , v)L 2 (BR )E0, (v�S

i
2 (BR ), vD0 in BR so that wE0 in BR , by virtue of Co-

rollary 2.6. It follows that

inf
v�S

i2 (BR ), vD0

a(w , v)

(w , v)L 2 (BR )

F2m

and this is absurd because mEl 8 , therefore l 8 is an eigenvalue.

Step 3). As l 1 is the eigenvalue having maximal real part it follows that
l 8Gl 1 .

Step 4). We prove that l 1Gl 8 . Take a number pDl 8 and prove that pD
l 1 . If pDl 8 , arguing as in step 2, we deduce that neither p is an eigenvalue of
problem (4.1) nor any number tDp . Therefore l 1Gp , and since p is any num-
ber greater than l 8 , we conclude l 1Gl 8 .
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