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Bollettino U. M. I.
(8) 4-B (2001), 391-427

(Finite) Presentations
of the Albert-Frank-Shalev Lie Algebras.

CLARETTA CARRARA (*)

Sunto. – In questo lavoro vengono studiate le algebre di Albert-Frank-Shalev. Queste
sono algebre di Lie modulari di dimensione infinita, ottenute da un loop di certe
algebre semplici di dimensione finita. Si dimostra che le algebre di Albert-Frank-
Shalev sono unicamente determinate, a meno di elementi centrali o secondo cen-
trali, da un certo quoziente finito-dimensionale. Tale risultato si ottiene dando la
presentazione finita di un’algebra il cui quoziente sul secondo centro (infinito-di-
mensionale) è isomorfo alle algebre di Albert-Frank-Shalev.

1. – Introduction.

Aner Shalev [Sha94] has shown that over any field of prime characteristic
there are countably many (pairwise non-isomorphic) infinite-dimensional gra-
ded Lie algebras of maximal class that are insoluble. To construct these alge-
bras, Shalev exploits the fact that certain modular simple Lie algebras origi-
nally constructed by Albert and Frank admit a (non singular) outer derivation,
and constructs its examples using a twisted loop algebra construction. The al-
gebras of Albert and Frank [AF55] are nowadays known as Hamiltonian non-
graded Lie algebras [Kos96].

Caranti, Mattarei and Newman [CMN97] have shown that over any field F
of prime characteristic there are NFN]0 algebras of maximal class, thus uncoun-
tably many. These algebras can be classified (see [CN99] and [Jur99]), and the
purpose of this paper is to provide part of the classification for odd primes. We
show that the algebras constructed by Shalev can be recognised by a certain
finite-dimensional quotient. These algebras are called Albert-Frank-Shalev or
AFS.

Our work can be conveniently formulated in terms of (finite) presentations.
The main result is the following.

(*) The author is member of GNSAGA, Italy. This work is part of the author’s Ph.D.
thesis at Trento, written under the supervision of A. Caranti.
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THEOREM 1. – For every AFS algebra L there is a finitely presented alge-
bra M such that the quotient of M by its second centre is isomorphic to L.

The algebra M is defined by a certain finite number of relations that deter-
mine the initial segment of its homogeneous components. For the explicit con-
struction of the algebra M and the proof that its second centre is infinite-di-
mensional see [C99]. Note that the fact that the second centre of M is infinite-
dimensional implies, by a result of B. H. Neumann (see for example [Rob82],
Theorem 2.2.3), that L itself is not finitely presented.

Our methods are direct and elementary, and rely mainly on commutator
expansions using the generalized Jacobi identity. We use several time Lucas’
Theorem to evaluate binomial coefficients modulo a prime. The ANU p-quo-
tient program [HNO95] has been invaluable in gathering the computational
evidence that guided our calculations (see [CMN97] for details of this
approach).

In Section 2 we introduce some preliminary notions about graded Lie alge-
bras of maximal class. We mainly cite some results from [CMN97] and [CN99],
and we clearly state and explain the main result of the work. In Section 3 we
introduce some notations, while in Section 4 we describe the finite presenta-
tion of the algebra M and we use a diagram to explain the role of AFS Lie al-
gebras in the classification of graded Lie algebras of maximal class. Section 5
contains the computations proving that the algebra AFS is finitely presented.
Finally in Section 6 and Section 7 we describe the second central elements of
the algebra M , respectively for p odd prime and p42.

2. – Preliminaries.

A finite-dimensional graded Lie algebra

L4 5
i41

n21
Li ,

generated by L1 , is said to be of maximal class if it has dimension n and nilpo-
tency class n21. Equivalently, dim (L1 )42 and dim (Li )41 for 1E iEn .
Note that the condition that L is generated by L1 is equivalent to [Li L1 ]4
Li11 for iF1.

This definition can be naturally extended to cover the infinite-dimensional
case. A graded Lie algebra

L45
i41

Q
Li

generated by L1 , is of maximal class if every finite-dimensional graded factor
of it is so in the above sense. In other words, dim (L1 )42 and dim (Li )G1 for
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iD1. Clearly, L is infinite-dimensional if and only if dim (Li )41 for all
iD1.

A p-group (finite or profinite) is of maximal class if the graded Lie algebra
associated to it with respect to the lower central series is of maximal class. In
the theory of p-groups studied by Blackburn [Bla58], an important role is pla-
yed by the so-called two-step centralizers. In the graded Lie algebras context,
the two-step centralizers are the subspaces Ci of L1 centralizing the homoge-
neous components Li :

Ci4CL1
(Li ) for iD1 .

It is useful to put formally C14C2 .
In [CMN97], Theorem 3.2, it is proved that graded Lie algebras of maximal

class are determined by their sequence of two-step centralizers (Ci )iD1 . Mo-
reover if C24Ci21cCi and the algebra has class at least i12, then Ci114C2 .
Thus it is natural to give the following

DEFINITION 1. – A constituent of a graded Lie algebra of maximal class L
is a subsequence (Ci , R , Cj ) of the sequence of two-step centralizers such that
C24Ci4Ci114R4Cj21cCj with either i41 or Ci21cC2 .

Note that this is the definition given in [CN99]. It is slightly different from
the one previously used in [CMN97]. Practically in the more recent definition
the length of every constituent is increased by one.

Following [CN99] we also give the following

DEFINITION 2. – Let v be a nonzero homogeneous element of L . Then v is
said to be at the end of the constituent (Ci , R , Cj ) if v�Lj , while it is said to
be at the beginning of the constituent if v�Li21 .

Note that in particular if C24Fy and v is an element at the end or at the
beginning of a constituent, then [vy]c0.

In this work we consider some problems related to the algebras of Albert-
Frank-Shalev. These are graded Lie algebras of maximal class obtained as
(twisted) loop algebras of the simple algebras studied by Albert and Frank
[AF55]. These algebras depend on three integer parameters a , b , n with 0E
aEbGn , and on a prime p , and are denoted by AF (a , b , n , p). Note that the
original choice of the parameters was 0GaEbEn . It is easy to see the equi-
valence of the two notations (see also [CN99]). Indeed the algebras
AF (0, b , n , p) and AF (b , n , n , p) have the same constituent lengths (see
[CMN97]), and thus they are isomorphic. The choice aD0 allows us to use a
more uniform notation.
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The (twisted) loop process permits to move from the finite-dimensional
algebras AF (a , b , n , p) to the infinite-dimensional AFS (a , b , n , p).

In the scheme of Kostrikin [Kos96], the Lie algebra AF (a , b , n , p) can
also be seen as the Hamiltonian algebra H(2 ; (n1 , n2 ), v 2 ), where n24b2a
and n11n24n .

In [CMN] it is proved that AFS (a , b , n , p) has the following sequence of
constituent lengths

2q , q r22 , (2q21, q r22 , (2q , q r22 )t21 )Q

where

q4p a , r4p b2a , t4p n2b .(1)

Note that we used our formal assumption C14C2 . Saying that an algebra has
constituent lengths g s , (a c , b d )Q , we mean that it has s constituents of length
g followed by c constituents of length a and d constituents of length b , then
again c of length a and d of length b cyclically.

From now on we will fix q , r and t as in (1), calling q the parameter of the
algebra. Note that q , rFp , while it is possible to have t41. For this reason in
particular AFS (b , n , n , p) has no constituents of length 2q besides the very
first one.

In [CMN97], Proposition 5.6, it is proved that in an infinite-dimensional
graded Lie algebra of maximal class with parameter q the length l of any con-
stituent is bounded by qG lG2q . Hence it is natural to call respectively short
and long the constituents of length q and 2q . All other constituents are called
intermediate. Note that in an AFS algebra the only intermediate constituents
are those of length 2q21.

We claim that the algebra AFS is determined by a large enough finite quo-
tient. Let L4AFS (a , b , n , p)4 ax , yb. Consider a base R m of its homogene-
ous relations of weight at most m in x , y . Since L is of maximal class the set
R m has cardinality at most m22; the set R m describes the initial segment of
the pattern of constituents of L , up to Lm . Let M4 ax , y : R m b. We claim that
for a suitable choice of m the quotient of M by its second centre Z2 (M) is iso-
morphic to the algebra L .

THEOREM 2. – Let L4AFS (a , b , n , p) and m4 (t11) rq12q21, where
q , r and t are as in (1), and p is any prime. Let R m be a base of the homogene-
ous relations of L of weight at most m in x , y .

Then M4 ax , y : R m b is a finitely presented, infinite-dimensional Lie al-
gebra such that L`M/Z2 (M).

Note that we supposed that M starts as a graded Lie algebra of maximal
class up to the homogeneous component of weight m . In Section 4 we describe
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R m precisely, and we also see that we do not need all the m22 relators but
that it is enough to consider a subset R%R m . Note also that to prove Theorem
1 only the computations up to Section 5 are needed. Indeed at the end of Sec-
tion 5 we can already say that the finitely presented algebra M is such that
M/Z2 (M)`L . In Sections 6 and 7 a complete description of Z2 (M) is
given.

Most of the computations are based on the generalized Jacobi identity or
its analogue suggested in [CN99] that we will use without specific men-
tion:

[w [y xR x���
l

] ]4!
i40

l

(21)igl
i
h [w xR x���

i

y xR x���
l2 i

]

4 (21)l!
i40

l

(21)igl
i
h [w xR x���

l2 i

y xR x���
i

]

B!
i40

l

(21)igl
i
h [w xR x���

l2 i

y xR x���
i

] ,

where with the notation aBb we mean a46b .
To evaluate binomial coefficients modulo p we use the following

LUCAS’ THEOREM [Luc78] 1. – Let p be a prime and a and b be two non-
negative integers with p-adic decomposition

a4ak p k1ak21 p k211R1a1 p1a0 ,

b4bk p k1bk21 p k211R1b1 p1b0 ,

where 0Gai , biEp . Then

ga
b
hfgak

bk
hgak21

bk21
hRga1

b1
hga0

b0
h mod p .

3. – Notation.

Suppose M45
i41

Q
Mi is a graded Lie algebra such that M/Z2 (M) is a graded

Lie algebra of maximal class. We define a constituent of M as a constituent of
M/Z2 (M).

Following [CN99] we introduce the element z4x1y . Indeed if v is an ele-
ment centralized by x (resp. y), we obtain the same result commuting v with y



CLARETTA CARRARA396

(resp. x) or with z:

[vz]4 [vx]1 [vy]4 [vy] (resp. [vx] ) .

To simplify notation, we write [y x n y]4 [y xR x���
n

y], or

[y x 2q22 y (x q21 y)n ]4 [y xR x���
2q22

y xR x���
q21

yRR xR x���
q21

y

���
n

] ,

and similarly for more complex formulas. We also write [R x] (or [R y], or
[R z]) when all the components of a commutator except the last one are clear
from the context.

We denote by w 1 the element [y x 2q21 y (x q21 y)r22 ]. Inductively we
let

w i114 [w i x 2q22 y (x q21 y)r22 (x 2q21 y (x q21 y)r22 )t21 ] .

Note that the element w i has weight 11rq1 (i21)(p n21). For nDb we
also introduce the elements

uj , i4 [w i x 2q22 y (x q21 y)r22 (x 2q21 y (x q21 y)r22 ) j]

for 0G jG t21. Note that ut21, i4w i11 .

4. – The finite presentation.

We have seen in Section 2 that M4 ax , y : R m b, where the set R m consists
of the homogeneous relations of weight at most m4 (t11) rq12q21 defi-
ning L4AFS (a , b , n , p).

In other words we know that M starts as a graded Lie algebra of maximal
class with initial segment of constituent lengths

2q , q r22 , 2q21, q r22 , (2q , q r22 )t21 , 2q21 ,(2)

and Ci� ]Fx , Fy( for every i , 2G iGm .
Apparently in R m we need one relation for every homogeneous component

Mi with 2G iEm . Indeed all Mi are one-dimensional and either [Mi x] or
[Mi y] vanishes. Hence we have to specify whether Ci4Fx or Ci4Fy , for
2G iEm .

Actually we will see that giving all the m22 relations is redundant. We
claim that, using the notation introduced in Section 3, it is enough to consider
the subset R%R m defined in the following way:

R4R1NR2NR3NR4 ,
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with

R14][y x 2 i11 y], for 0G iGq22, [y x 2q ]( ,

R24][y x 2q21 y (x q21 y)m x q ] , for 0GmGr23( ,

R34][w 1 x 2q2p s21 y], for 1GsGa , [w 1 x 2q21 ]( ,

R44][uj , 1 x 2q22 y], for 0G jG t22, [w 2 x 2q21 ]( .

(3)

Note that the relations involving the elements uj , 1 are given only for
nDb .

We will prove that defining R as above, the Lie algebra M4 ax , y : Rb has
initial segment of constituent lengths (2), with the exception of the central
elements

[w 1 x 2q22 y (x q21 y)r2p s21 x q ], for 1GsGb2a21 ,

[w 1 x 2q22 y (x q21 y)r22 x 2q2p s21 y], for 1GsGa .

Note that to have ax , y : Rb4 ax , y : R m b, we should require these additional
relators, while without them ax , y : R m b is isomorphic to the quotient of
ax , y : Rb modulo its centre. Since anyway we are interested in M/Z2 (M), we
can skip requiring them.

Finally we can express the main result of this work in the following
way

THEOREM 3. – Let L4AFS (a , b , n , p) and M4 ax , y : Rb, where R4
R1NR2NR3NR4 with the sets Ri defined as in (3). Then M is a finitely pre-
sented, infinite-dimensional Lie algebra such that L`M/Z2 (M).

We now try to explain the meaning of the sets R1 RR4 also in view of the
results of [CN99]. The part of this work that we use can be outlined in the fol-
lowing picture that represents the tree of the infinite-dimensional graded Lie
algebras of maximal class. See the following description for more details. We
refer to [CN99], [CMN97] for the underlying general theory.

In a Lie algebra of maximal class L4 ax , yb with two two-step centralizers,
given a homogeneous component Li , either [Li x] or [Li y] vanish. The points of
the picture where two lines depart represent the homogeneous components
Li4Fv such that both the relations [vx] and [vy] lead to different infinite-di-
mensional Lie algebras of maximal class. Let us denote by L and L 8 the two al-
gebras obtained. It is clear that

LO5
jD i

Lj`L 8 O5
jD i

L 8j .

In any of these points we have to give a relation to specify which one of the two
algebras we choose.
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The relations in R1 fix the parameter q of the algebra. Indeed in [CMN97],
Theorem 5.5, it is proved that the first constituent of an infinite-dimensional
non-metabelian graded Lie algebra of maximal class over a field of characteri-
stic p is twice a power of the prime p . The value q4p h of this power is called
the parameter of the algebra.

Looking at the metabelian branch of the picture, the relations in R1 say
that we move on the principal branch of the metabelian Lie algebra up to the
homogeneous component of weight 2q . At this point, labelled 2q , the relator
[yx 2q ] make us move in the direction of the horizontal branch labelled
solvable.
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Moreover in [CMN97], Property 5.6, it is shown that if the parameter of
the algebra is q4p h , then the only possible constituent lengths are 2q and
2q2p s with s� ]0, 1 , R , h(.

Theorem 8.2 of [CMN97] states that a Lie algebra with all short consti-
tuents besides the first one is solvable. Moreover if the first non-short consti-
tuent beside the first one is long, the algebra is inflated [CN99]. If we are not
in one of these cases, then in [CN99], Property 5.3, 5.5, it is proved that bet-
ween the first constituent and the next non-short one there are r22 short
constituents, where r is a power of p . The value of r is fixed by the relations in
R2 .

Looking at the picture, the relations in R2 imply that we ignore all the al-
ternative on the solvable branch up to the point labelled q r22 . At this point, in
corrispondence of the homogeneous component of weight (r11)q , is fixed the
next non-short constituent, and we start moving in the direction of the inverse
limit AFS (see [CN99]).

Note also that by R3 the non-short constituent has length 2q21. This
means that we proceed in the AFS direction avoiding the inflated algebras.
These are represented in the picture by the oblique lines departing from the
points over the one labelled q r22 .

Finally in [CN99], Section 7, it is shown that in a Lie algebra of maximal
class with initial segment of constituents 2q , q r22 , 2q21, the sequence of
constituent lengths consists of repetitions of the patterns 2q , q r22 or 2q2
1, q r22 . For this reason, as we will see better later, we can avoid many rela-
tions. Moreover in [CN99], Section 8, it is proved that if an algebra starts as
above and it has another long constituent, then the initial segment of consti-
tuents has to be 2q , q r22 , 2q21, q r22 , (2q , q r22 )t21 , 2q21, with t power of
the prime p (possibly 1). The value of t is determined by the relations in
R4 .

Looking at the picture the relations in R4 fix the last point labelled 2q21,
q r22 , (2q , q r22 )t21 , 2q21 where we finally choose our specific algebra
AFS (a , b , n , p).

We will prove that from then on there are no more infinite branches depar-
ting from the one we are moving on.

We claim that the homogeneous components of M4 ax , y : R m b have di-
mention at most two, and that M/Z2 (M)`L .

More precisely we claim that for every iF2 between [w i x 2q22 ] and
[w i11 x 2q22 ], in M there can be only the following extra central ele-
ments:

[w i x 2q21 ], possibly second central for n4b ,(4a)

[w i x 2q21 y], for n4b , and if2 mod p ,(4b)
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[w i x 2q22 y (x q21 y)r2p s21 x q ], for 1GsGb2a21 ,(4c)

[w i x 2q22 y (x q21 y)r22 x 2q2p s21 y], for 1GsGa ,(4d)

[u0, i x 2q22 y], possibly second central ,(4e)

[u0, i x 2q22 yx], for if1 mod p ,(4f )

[ut2p s , i x 2q22 y], for 1GsGn2b21 .(4g)

Note that the elements (4c) and (4d) occur also for i41 as we noticed above,
while by the defining relations the elements (4a) occur only for iF3. Moreo-
ver the elements in (4e), (4f ) and (4g) exist only for nDb . The central ele-
ments (4d) correspond to [w i11 x 2q2p s21 y] for n4b , and to [u0, i x 2q2p s21 y]
for nDb .

Note also that in a complete period of the algebra, that is in a section of
p n21 homogeneous components, there are n central elements, and possibly
one second-central element.

5. – The proof.

5.1. The first constituent of M has length 2q .

We prove that the relations in R1 are enough to say that the first consti-
tuent of M has length 2q .

We first claim that [y x 2 i y]40 for 0G iGq21. We proceed by induc-
tion, the starting point being a trivial property of Lie algebras. Supposing it
true up to iGq22 we find:

04 [ [y x i11 ][y x i11 ] ]4!
j40

i11

(21) jgi11

j
hQ [y x i111 j y x i112 j ] .

By the inductive hypothesis and the defining relations it follows that the ele-
ments [y x 2 i12 y] vanish.

Hence the relations [y x 2 i11 y]40 say that the first constituent has len-
gth greater or equal to 2q . By the additional relator [y x 2q ] the length has to
be exactly 2q , and C2q4Fx .

5.2. Using the first constituent 2q.

The fact that the first constituent has length 2q implies that the only possi-
ble constituent lengths in M are of the form 2q or 2q2p s with s�
]0, 1 , R , a(.

This is a well known property of Lie algebras of maximal class, and the
computations to prove it in M are substantially the same of [CMN97], Proposi-
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tion 5.6. We have just to be careful to the possible additional central or second
central elements. For example when in [CMN97] an element v�Li is conside-
red and it is supposed Ci4Fy , it follows that [vy]40. Since in M the element
[vy] can be second central we can only say that [vyzz]40. In any case the only
proof that we have to give in a slightly different way is the following.

Let w be a nonzero element of Mi and let Ci4Fy , then [wxyy]40. Indeed
we can compute

04 [w[yxy] ]42[wyxy]2 [wxyy]2 [wyyx]42[wxyy] .

Note that at this point the relators in R1NR2NR3 are enough to say that
the initial segment of constituent lengths of M is

2q , q r22 , 2q21 .

Moreover Ci� ]Fx , Fy( for 2G iG (r14) q .

5.3. Using the first segment 2q , q r22.

In this part we consider two different situations.
Suppose first that in M there is a segment of constituent lengths

R , q r22 , 2q .

Then such segment is followed by another sequence q r22 , and the centralizers
belong to the set ]Fx , Fy(.

Let v be an element at the beginning of the long constituent of the seg-
ment. By 5.2 we have only to show that

[vy x 2q21 y (x q21 y)m x q ]40

for every 0GmEr22. We consider the element w at the beginning of the
(p s21)-th short constituent of the segment before the long one.

We let m4dp s22 with dg0 mod p . Since mEr22, it follows that dE
r/p s . Suppose now m1p s21Fr22, then dD (r/p s )21 in contrast with our
previous result. As a consequence we can use the defining relation [y z l x]4
0 with l4 (m1p s12) q214 (d11) p s q21. We find

04 [w[y z l x] ]4 [w[y z l ] x]

4u !
i40

m1p s11

(21)iqg l

iq
h2 (21)p sg l

p s q
hvQ [wR x]

4gdp s1p s21

p s hQ [wR x]

4d Q [wRx] .

Since dg0 it follows that [vy x 2q21 y (x q21 y)m x q ]40.
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Suppose now that in M there is a segment of constituent lengths

R , q r22 , 2q21 .

In this case we can prove that such a segment is followed by another sequence
q r22 , but with the exception of the central elements

[vy x 2q22 y (x q21 y)r2p s21 x q ] ,

where v is an element at the beginning of the intermediate constituent of the
segment. Also in this case the centralizers belong to the set ]Fx , Fy(.

As above we have just to consider the elements

[vy x 2q22 y (x q21 y)m x q ]

with 0GmEr22. We claim that if mcr2p s21 for some 1GsGb2a21
they vanish, while in the other cases they are central.

To prove the first part of the claim we let m4dp s21 with dg0 mod p .
Since p s21Er22 we can consider the element w such that [wx] is at the be-
ginning of the (p s21)-th short constituent before the intermediate one of the
segment. We also want to use the defining relation [yz (m1p s ) q1q21 y x q ]40,
hence we have to verify that m1p s21Gr23. Note that m4dp s21Er22
and thus dE (r/p s ). Suppose now m1p s214 (d11) p s22Fr22. Then
dF (r/p s )21, and by the previous observations the only possibility is
d4 (r/p s )21, that is m4r2p s21. Finally for mcr2p s21 we let
l4 (m1p s ) q1q21, and we compute

04 [w[yz l y x q ] ]4 [w[y z l ] y x q ]

B!
i41

m

(21)iq21g l

iq21
hQ [ [wR y] x q ]

1 !
i4m12

m1p s11

(21)iq22g l

iq22
hQ [ [wR y] x q ]

4 !
i40

m21

(21)igm1p s

i
hQ [ [wR y] x q ]

1 !
i4m11

m1p s

(21)igm1p s

i
hQ [ [wR y] x q ]

Bgm1p s

m
hQ [wR y x q ]

4d Q [vy x 2q22 y (x q21 y)m x q ] .

Hence the first part of the claim is proved.



(FINITE) PRESENTATIONS OF THE ALBERT-FRANK-SHALEV LIE ALGEBRAS 403

We now show that for m4r2p s21 the elements

[vy x 2q22 y (x q21 y)m x q ]

are central. In view of Subsection 5.2 we have only to prove that they are cen-
tralized by x . We use the defining relation [y z l x]40 with l4 (m13)q21
obtaining:

04 [v[y z l x] ]4 [v[y z l ] x]

B [R yx]1 !
i41

m11

(21)iqg l

iq
hQ [R zx]1 (21)l Q [R zx]

4 [R yx]1u211 !
i41

m11

(21)igm12

i
hvQ [R zx]

42[vy x 2q22 y (x q21 y)m x q11 ] .

5.4. Using the initial segment 2q , q r22 , 2q21.

We now consider the possible constituents of length 2q2p s for some 1G
sGa . We distinguish two cases.

Let first v be an element at the end of a segment of constituent
lengths

R , 2q , q r22 .

We claim that [vy x 2q2p s21 y]40 for every 1GsGa . Let w be an ele-
ment at the beginning of the long constituent of the segment. We use the defi-
ning relation [y z l y]40, with l4rq12q2p s21. We find

04 [w[y z l ] y]2 [wy [y z l y] ]

4 [wR y]1!
i42

r

(21)iqg l

iq
hQ [wR y]

2!
i42

r

(21)iq21g l

iq21
hQ [wR z]2 (21)l Q [wR y]

4g21!
i42

r

(21)ig l

iq
hhQ [wR y]2!

i41

r21

(21)ig l

iq1q21
hQ [wR z] .

To evaluate the binomial coefficients we have to manage separately the value
p s4q , but in both cases

!
i42

r

(21)ig l

iq
h4 (21)r421, while !

i41

r21

(21)ig l

iq1q21
h40 .
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Hence from the previous computation it follows that [vy x 2q2p s21 y]40.
When v is an element at the end of a segment of constituent lengths

R , 2q21, q r22 ,

we can only prove that [vy x 2q2p s21 y] is central. By Subsection 5.2 it is
enough to show that it is centralized by x . We consider the element w at the
beginning of the intermediate constituent of the segment, and we use the
defining relation [y z l y]40 with l4rq12q2p s21. We find

04 [w[y z l y] ]42[wy[y z l ] ]

42!
i42

r

(21)iq22g l

iq22
hQ [ [wR z] z]2 (21)l21 l Q [ [wR y] z] .

As above we have to distinguish the value p s4q to evaluate the binomial coef-
ficient. In both cases

!
i42

r

(21)ig l

iq22
h40 ,

and from the previous formula we obtain

04 [wR yx]4 [vy x 2q2p s21 yx] .

Note that by all the previous properties and by using the whole set of rela-
tors R m , we can finally say that the initial segment of constituent lengths of M
is

2q , q r22 , 2q21, q r22 , (2q , q r22 )t21 , 2q21 ,

with the exception of the central elements (4c) and (4d) for i41. Moreover
Ci� ]Fx , Fy( for 2G iG (t11) rq12q21.

5.5. Using the initial segment 2q , q r22 , 2q21, q r22 , (2q , q r22 )t21 , 2q21.

At this point we can complete the proof.
We first observe that if v is an element such that both [v x 2q21 y] and

[v x 2q22 yx] are different from zero, then

[v x 2q21 yy]404 [v x 2q22 yxy] .

Both computations are immediate using respectively the defining relations
[y x q y]40 and [y x y]40.

In the following three proofs we will always use the last defining
relation

[w 2 x 2q21 ]4 [y z l x]40
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with l4 ( (t11) r12) q23. Note that in the case q4p42, when t41 the
value of l is (t11) rq1q2142rq1q21, hence in this case they have to be
worked out separately.

Let us suppose first v is an element at the end of a segment of constituent
lengths

R , 2q , q r22 , 2q21, q r22 , (2q , q r22 )t21 .

We claim that [vy x 2q21 y]40.
To prove it we let w be a element at the beginning of the first constituent of

the segment. If qD2 we find

04 [wy[y z l x] ]4 [wy[y z l ] x]2 [wyx[y z l ] ]

42!
j41

t

!
i41

r21

(21)( jr1 i) q1q23g l

( jr1 i) q1q23
hQ [wyR z]

1(21)l Q [wyRyx]2 (21)l21 l Q [wyR yx]2 (21)l Q [wyR y]

42 Q [wyR yx]1 [wyR y]1!
j41

t

(21) jgt11

j
hQ [wyR z]

42[vy x 2q21 y] .

In the case q4p42 computing the same bracket we obtain

04[wy[y z l x]]4[wy[y z l]x]2[wyx[y z l]]

4u!
i41

r21g l

iq1q21
h1!

j41

t

!
i41

r21g l

( jr1i) q1q22
hv Q [wyR zx]1[wyR yx]

1u!
i41

r21g l

iq1q22
h1!

j41

t

!
i41

r21g l

( jr1i) q1q23
hv Q [wyR zz]

1l[wyR yx]1[wyR yx]

4u!
i41

r21g(t11) r

i
h1!

j41

t

!
i41

r21g(t11) r

jr1i
hv Q [wyR zx]

1u!
i41

r21g(t11) r

i
h1!

j41

t

!
i41

r21g (t11) r

jr1i21
hv Q [wyR zz]1[wyR y]

4[wyR y]1!
j41

t gt11

j
h [wyR zz]

4 [vy x 2q21 y] .
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Note that by this property and Subsection 5.2 it follows that for nDb the
elements [w i x 2q21 ] are central.

We now suppose v is an element at the end of a sequence of constituent
lengths

R , 2q21, q r22 , (2q , q r22 )t21 , 2q21, q r22 .

In this case it follows that

.
/
´

[vy x 2q21 yx]40

[vy x 2q22 yxx]40

if n4b

if nDb .

To prove it we consider an element w at the beginning of the first constituent
of the segment. If qD2 we find

04[wy[y z l x]]4[wy[y z l] x]2[wyx[y z l]]

B[[wR y] x]2l Q [[wR x] x]1l Q [[wR y] x]2gl
2
h Q [[wR y] xx]

2u!
i42

r

(21)iq11g l

iq11
h1!

j41

t

!
i42

r

(21)( jr1i) qg l

( jr1i) q
hv Q [[wR z]z]

42 2 Q [[wR y] x]23 Q [[wR y] xx]

1u2gt11

1
h13gt11

1
h1!

j41

t

(21) jgt11

j11
hv Q [[wR z] z]

42 2 Q [ [wR y] x]23 Q [ [wR y] xx]

1u2gt11

1
h2!

j42

t11

(21) jgt11

j
hvQ [wR zz] .

We have now to distinguish two cases. For t41 we have

042 2 Q [ [wR y]x]23 Q [ [wR y] xx]13 Q [ [wR z] z]4 [vy x 2q21 yx],
while for tFp we find

0422 Q [ [wR y] x]23 Q [ [wR y] xx]12 Q [ [wR z] z]42[vy x 2q22 yxx] ,
as claimed.

As above we now compute the same commutator in the case q4p42:

04 [wy[y z l x] ]4 [wy[y z l ] x]2 [wyx[y z l ] ]

4u!
j40

t21

!
i41

r21g l

( jr1 i) q1q22
h1!

i41

r21g l

(tr1 i) q1q23
hvQ [wR zzx]

1l[wR yzx]1 [wR zyx]
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1u!
j40

t21

!
i41

r21g l

( jr1 i) q1q23
h1!

i41

r21g l

(tr1 i) q1q24
hvQ [wR zzz]

1g l

l22
h [wR yzz]1l[wR zyz]

4ugt11

t
h1!

j40

t21gt11

j
h1gt11

t
hv [wR zzx]1 [wR yxx]

4!
j40

t21gt11

j
h [wR zzx]1 [wR yxx] .

For t41 we obtain

[wR zzx]1 [wR yxx]4 [vy x 2q21 yx]40 ,

while for tD1 we find

[wR yxx]4 [vy x 2q22 yxx]40 .

Let us consider now the elements [w i x 2q21 y] for n4b , and
[u0, i x 2q22 yx] for nDb . Using the previous computation and the observa-
tions at the beginning of Subsection 5.5 it follows that they are central when
they do not vanish.

Actually we can prove that already [w i x 2q21 ] and [u0, i x 2q22 yx] can be
central. More precisely we claim that [w i x 2q21 y]40 for every ig2 mod p in
the case n4b , and that [u0, i x 2q22 yx]40 for every ig1 mod p in the case
nDb. The computations to prove this claim are quite long so we postpone
them at next session.

In the last of this series of computations we let v be an element at the end
of the segment of constituent lengths

R , (2q , q r22 )t21 , 2q21, q r22 , (2q , q r22 ) j(5)

with jD0. Then [vy x 2q22 yx]40.
To prove it we take the element w at the beginning of the (t2 j)-th long

constituent preceding the intermediate one. If qD2 we find

04 [wy[y z l x] ]

4 [wy[y z l ] x]2 [wyx [y z l ] ]

B [ [wR y] x]2 [ [wR y] ]1l Q [ [wR y] x]

2!
h40

j

!
i42

r

(21)(hr1 i)qg l

(hr1 i) q
hQ [ [wR z] z]
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42 [ [wR y] ]22 Q [ [wR y] x]2!
h40

j

(21)h11g t11

h11
hQ [ [wR z] z]

42 [wR y]22 Q [wR yx]1 [wR zz]

42 [vy x 2q22 yx] .

If q42 we obtain:

04 [wy[y z l x] ]

4 [wy[y z l ] x]2 [wyx [y z l ] ]

4u !
h40

t2j21

!
i41

r21g l

(hr1i) q1q21
h1 !

h4t2j

t

!
i41

r21g l

(hr1i) q1q22
hv Q [wR zx]

1[wR yx]

1u !
h40

t2j21

!
i41

r21g l

(hr1i) q1q22
h1 !

h4t2j

t

!
i41

r21g l

(hr1i) q1q23
hv Q [wR zz]

1l[wR yz]1 [wR y]

4 !
h4 t2 j

t gt11

h
h [wR zz]1 [wR y]

4 [wR zz]1 [wR y]

4 [vy x 2q22 yx] .

By this property it follows that in the case nDb the elements [uj , i x 2q22 y]
are central for every 1G jG t22. Actually we can prove that most of these
elements vanish. As above we let v be an element at the end of a segment of
constituent lengths (5). We claim that [vy x 2q22 y]40 if jc t2p s for some
1GsGn2b .

For qD2 we distinguish two cases. Let us suppose first j is odd. We consi-
der the element w at the beginning of the intermediate constituent of the seg-
ment (5). Note that [wy]4w i . Moreover since jD0 we can use the defining
relation [y z l y]40 with l4 ( ( j11) r12) q23. We find

04 [w[y z l y] ]4 [w[y z l ] y]2 [wy[y z l ] ]

4 [wyR y]2 (21)l Q [wyR y]

42 Q [vy (2q22) y] .

We now let j4dp s with dg0 mod p and even. Since p sG jG t22, we can
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take the element w at the beginning of the p s-th long constituent before the
intermediate one of (5). To use the defining relation [y z l y]40 with l4
( ( (d11) p s11) r11) q1q23 we have to require (d11) p sG t21 and thus
jc t2p s . In these cases we obtain

04 [w[y z l y] ]4 [w[y z l ]y]2 [wy [y z l ] ]

4u12 (21)l1 !
h40

p s21

!
i42

r

(21)(hr1 i) qg l

(hr1 i) q
hvQ [wR y]

4u21 !
h40

p s21

(21)h!
i42

r

(21)ig(dp s1p s11) r1

hr1 i
hvQ [wR y]

4u21!
h41

p s

(21)hg(d11) p s11

h
hvQ [wR y]

42 d Q [vy x 2q22 y] .

Since dg0 our claim follows.
When q4p42 we let again j4dp s with dg0 mod p , and we use the same

defining relation considered in the last computation. Note that in this case it is
more convenient to write the value of l as l4 ( (d11) p s11) rq1q21. We
obtain

04 [w[y z l y] ]4 [w[y z l ] y]2 [wy [y z l ] ]

4u11!
h40

p s21

!
i42

r g l

(hr1i) q
h1!

h4p s

p s1j

!
i41

r21g l

(hr1i) q1q21
hvQ[wR y]

1u!
h40

p s21

!
i41

r21g l

(hr1i) q1q21
h1!

h4p s

p s1j

!
i41

r21g l

(hr1i) q1q22
hvQ[wR z]

1[wR y]

4 !
h40

p s21g(d11) p s11

h11
h [wR y]

4d Q [vy x 2q22 y] .

Finally we proved that for jc t2p s the elements [uj , i x 2q22 y] vanish,
while [ut2p s , i x 2q22 y] with 1GsGn2b21 are central and [u0. i x 2q22 y]
second central.
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6. – Second central elements (odd primes).

6.1. The case n4b .

In the previous section we claimed that in the case b4n the elements
[w i x 2q21 y] vanish when ig2 mod p , and we proved that in any case they are
central. We now prove the claim.

First of all we introduce the elements g i such that [g i xy]4w i . Note that
these elements have weight equivalent to zero modulo p n21, the dimension
of the finite algebra AF. For this reason and because of the periodical structu-
re of M , commuting g i with any element w4 [w j z l ], we obtain an element in
the homogeneous component generated by an analogous element w 84
[w j1 i z l ]. As a consequence, if w is such that, for instance, [wx]40, then also
[wg i x]4 [w 8 x]40. We will often use the following property that results
from the previous observation. If [wxy]404 [wyx], then [w[g i xy] ]40. We
can see a use of this property in the following example. Let w be an element
such that [wz q11 ]4 [wxy x q21 ]. We find

[w[ [g i xy] z q21 ] ]4 [w[g i xy]z q21 ]1 (21)1gq21

1
hQ [wz[g i xy] z q22 ]

4 [w[g i x] yz q21 ]2 [wzy[g i x] z q22 ]

4 [w[g i x] y x q21 ]2 [wxy[g i x] x q22 ] .

It is clear that to proceed we have to know the behavior of [g i x].
To simplify notation we let vk , i4 [w i x 2q22 (y x q21 )k ]. Note that vr22, i4

w i11 .
We claim that:

[g i x g 1 ]4 [g i11 x] ,(6a)

[w i x 2q23 [g j x] ]42 [w i1 j x 2q22 ] ,(6b)

[w i x 2q22 [g j x] ]42 [w i1 j x 2q21 ] ,(6c)

[w i x 2q22 y[g i x] ]42 [w i1 j x 2q22 yx]2 j Q [w i1 j x 2q21 y] ,(6d)

[vk , i y x q22 [g j x] ]42 vk11, i1 j for 0GkGr23(6e)

[vk , i y [g j x] ]42 [vk , i1 j yx] for 1GkGr22 ,(6f )

for every i , j.
The element [w i x 2q21 y] has weight i(p n21)12q12 that is even, thus
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the Lie bracket between an element of weight

1

2
Q (i(p n21)12q12)

and itself reaches the homogeneous component generated by [w i x 2q22 yx]
and possibly by [w i x 2q21 y]. To find such element we have to distinguish the
case i even from i odd.

Suppose first i42 j even. Using (6b), (6c) and (6d) we find:

04 [ [w j x q21 ][w j x q21 ] ]

4 [w j x q21 [ [g j xy] x q21 ]

4 [w j x 2q23 [g j x] yx]1[w j x 2q22 [g j x] y]2[w j x 2q22 y[g j x]](7)

42 [w 2j x 2q22 yx]2[w 2j x 2q21 y]1[w 2j x 2q22 yx]1j[w 2j x 2q21 y]

4 ( j21) Q [w 2 j x 2q21 y].

Substituting the value i42 j , it follows that

(i22) Q [w i x 2q21 y]40

as we claimed.
Suppose now i42 j11 odd. In this case we let 2k4r23, and compute:

04 [ [vk , j y x (q21) /2 ][vk , j y x (q21) /2 ] ]

B ( (q21) /2) Q [vk , j y x q22 [vk , j y] x]2 [vk11, j [vj , k y] ] .

Note that [vk , j y]4 [ [g j xy]z l ], with l4 (k11)q1q21. Hence by the pre-
vious computation, we can consider the identity

2 Q [vk11, j [ [g j xy]z l ] ]1 [vk , j y x q22 [ [g j xy] z l ] x]40 .

We find

042 !
i40

k

(21)iqg l

iq
hQ [vk1 i11, j [g j xy] R zz]

12 !
i41

k

(21)iq21g l

iq21
hQ [vk1 i , j y x q22 [g j xy] R zz]

12(21)l Q [w j11 x 2q22 [g j xy] ]12(21)l21 l Q [w j11 x 2q23 [g j xy] z]
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1!
i40

k

(21)iq11g l

iq11
hQ [vk1 i11, j [g j xy] R zx]

1!
i40

k

(21)iqg l

iq
hQ [vk1 i , j y x q22 [g j xy] R zx]

1(21)l Q [w j11 x 2q23 [g j xy] x]

42 2 !
i40

k

(21)igk11

i
hQ [vk1 i11, j y[g j x] R zz]

12 !
i41

k

(21)i21gk11

i21
hQ [vk1 i , j y x q22 [g j x] yR zz]

1 2(21)k11 Q [w j11 x 2q22 [g j x] y]22(21)k11 Q [w j11 x 2q22 y[g j x] ]

12(21)k11 l Q [w j11 x 2q23 [g j x] yx]

1!
i40

k

(21)i11gk11

i
hQ [vk1 i11, j y[g j x] R yx]

1!
i40

k

(21)igk11

i
hQ [vk1 i , j y x q22 [g j x] yR yx]

1(21)l Q [w j11 x 2q23 [g j x] yx] .

We now use formulas (6b)R (6f ) to obtain

04u2 !
i40

k

(21)igk11

i
h22 !

i40

k21

(21)igk11

i
hvQ [R zz]

1u!
i40

k

(21)igk11

i
h2!

i40

k

(21)igk11

i
hvQ [R zx]

12(21)k Q [R xy]22(21)k Q [R yx]22(21)k j Q [R xy]13(21)k Q [R yx]

42(21)k (k11) Q [R zz]12(21)k (12 j) Q [R xy]1 (21)k Q [R yx]

B (2k1422 j) Q [w 2 j11 x 2q21 y]1 (2k13) Q [w 2 j11 x 2q22 yx] .

Substituting the values i42 j11 and 2k4r23 we finally obtain our
claim:

(i22) Q [w i x 2q21 y]40 .
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We now prove formulas (6a)R (6f ). Note that g 14 [y z l ] with l4p n224
4 (r21) q1q22. From now on we will always consider this value for l .

Formula (6a) is a direct computation:

[g i x g 1 ]4 [g i x [yz l ] ]4 [g i xyz l ]4 [g i11 xy] .

To prove the other formulas proceed by induction on the index of the elements
g j . To prove (6b) we start evaluating

[w i x 2q23 g 1 ]4!
k40

r22

(21)kq11g l

kq11
hQ [w i R ]422 Q [w i11 x 2q23 ] .

Analogously

[w i x 2q22 g 1 ]4!
k40

r22

(21)kqg l

kq
hQ [w i R ]42[w i11 x 2q22 ] .

Using these two formulas we obtain

[w i x 2q23 [g 1 x] ]4 [w i x 2q23 g 1 x]2 [w i x 2q22 g 1 ]42[w i11 x 2q22 ] ,

and (6b) is verified for j41. Supposing it true up to j and using (6a) we easily
obtain it for j11:

[w i x 2q23 [g j11 x] ]4 [w i x 2q23 [g j x] g 1 ] ]2 [w i x 2q23 g 1 [g j x] ]

42 [w i1 j11 x 2q22 ] .

To compute formula (6c) we can observe that [g j xx]40. We find

04 [w i x 2q23 [g j xx] ]4 [w i x 2q23 [g j x] x]2 [w i x 2q22 [g j x] ] ,

and (6c) is a direct consequence of (6b).
As above, to compute formula (6d) we first evaluate

[w i x 2q22 y g 1 ]4 (21)l Q [w i R y]42[w i11 x 2q22 y] .

Also

[w i x 2q22 yxg 1 ]4!
k40

r23

(21)kq1q22g l

kq1q22
hQ [w i R zz]

1(21)l21 l Q [w i R yx]1 (21)l Q [w i R y]

42 Q [w i11 x 2q22 zz]22 Q [w i11 x 2q22 yx]2 [w i11 x 2q21 y]

4 [w i11 x 2q21 y] .

Note that we obtain the same result also in the case r4p42 or when the first
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summatory vanishes. It follows that

[w i x 2q22 y[g 1 x] ]42[w i11 x 2q22 yx]2 [w i11 x 2q21 y] ,

and (6d) is verified for j41. By induction we suppose it true up to j . Using for-
mula (6a) we find

[w i x 2q22 y[g j11 x] ]4 [w i x 2q22 y [g j x] g 1 ]2 [w i x 2q22 yg 1 [g j x] ]

42 [w i1 j x 2q22 yxg 1 ]2 j Q [w i1 j x 2q21 yg 1 ]

1[w i11 x 2q22 y[g j x] ]

42 [w i1 j11 x 2q22 yx]2 ( j11) Q [w i1 j11 x 2q21 y] .

As in the previous cases to compute formula (6e) we start from

[vk , i yg 1 ]4 [vk , i y [y z l ] ]

4 !
j4r212k

r21

(21) jq1q22g l

jq1q22
hQ [vR]

42 !
j4r212k

r21

(21) jgr21

j
hQ [vR]

42 (k11) Q [vk , i11 y] .

Note that we ignored the possible central elements [vk21, i11 y x q ], because
anyway they vanish in the final computation.

In a similar way we find

[vk , i yxg 1 ]4 [vk , i yx[y z l ] ]

4 !
j40

r232k

(21) jq1q22g l

jq1q22
hQ [vR]

1 !
j4r212k

r21

(21) jq1q23g l

jq1q23
hQ [vR]

4u2 !
j40

r232k

(21) jgr21

j
h22 !

j4r212k

r21

(21) jgr21

j
hvQ [vR]

4 (2(r222k)22(k11) ) Q [vR]

42k Q [vk , i11 yx] .
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Note that this formula is valid also for k4r22 or for q4p42 when respecti-
vely the first or the second summatory vanishes. We can now compute

[vk , i y[g 1 x] ]4 [vk , i yg 1 x]2 [vk , i yxg 1 ]42[vk , i11 yx]

and (6e) is verified for j41. Supposing it true up to j we obtain

[vk , i y[g j11 x] ]4 [vk , i y[g j x] g 1 ]2 [vk , i yg 1 [g j x] ]42[vk , i1 j11 yx] .

Finally to compute formula (6f ) we can observe that

04 [vk , i [g j xy x q21 y] ]

42[vk , i y[g j xy x q21 ] ]

42[vk , i y x q22 [g j xy]x]2 [vk11, i [g j xy] ]

B [vk , i y x q22 [g j x] yx]2 [vk11, i y[g j x] ] .

It follows that

[vk11, i y[g j x] ]4 [vk , i y x q22 [g j x] yx]

for every kF0, and formula (6f ) is a direct consequence of (6e).

6.2. The case nDb.

In Section 5 we saw that in the case nDb the elements [u0, i x 2q22 y] can
be second central in M . More precisely we proved that [u0, i x 2q22 yx] is cen-
tral for every i , but we claimed that already

[u0, i x 2q22 yx]40

when ig1 modulo p .
As above, to prove the claim we introduce the elements g i of weight zero

modulo p n21. In this case we let g i be the element such that [g i y]4ut22, i .
Indeed as in the case n4b commuting any element w4 [w j z l ] with g j we ob-
tain an element in the homogeneous component generated by an analogous
element w 84 [w j1 i z l ]. It follows that if w is an element such that [wy]40,
then also [w[g j y] ]40. The use of this property is easier than in the case n4
b . Let us consider the following example. Let w be an element such that
[wz q ]4 [wyx q21]. Then

[w[ [g i y] z q21 ] ]4 [w[g i y] z q21 ]4 [w[g i y] x q21] .

Hence in this case we have to study the behavior of [g i y].
We keep for the elements vk , i the same notation as in the case n4b .
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We claim that the elements g j verify the following properties:

[g i11 y]42 [g i yg 1 ] ,(8a)

[vk , i [g j y] ]4 [vk , i1 j y] for 0GkGr22 .(8b)

[u0, i x 2q22 [g j y] ]4 [u0, i1 j x 2q22 y] ,(8c)

[u0, i x 2q21 [g j y] ]4 [u0, i1 j x 2q21 y]1 j Q [u0, i1 j x 2q22 yx] ,(8d)

for every i , jF1. Note that in formula (8b) we ignored the possible elements
[w i1 j x 2q21 ] or [vk , i1 j x q ] as they are central and thus useless in the proof of
the claim.

We now consider the homogeneous component generated by
[u0, i11 x 2q21 y] and possibly by the central element [u0, i11 x 2q22 yx]. Since
this component has weight 11 i(p n21)12rq2112q , to reach it we can
compute the Lie bracket between two elements of weight

1

2
Q (11 i(p n21)12rq2112q) .

We have to distinguish the case i even from i odd.
Suppose first i42 j , even. We compute the Lie bracket between

[w j11 x q21] and itself. Note that [w j11 x q21]4[ [g j y]z l ] with l4rq1q21.
Using (8b), (8c) and (8d) we obtain

04 [w j11 x q21[ [g j y] z l ] ]

4!
k40

r22

(21)kq1q21g l

kq1q21
hQ [vk , j11 [g j y] R z]

1(21)l21 l Q [u0, j11 x 2q22 [g j y] z]1 (21)l Q [u0, j11 x 2q21 [g j y] ]

4 [w j11 x 2q22 [g j y] R z]2 [u0, j11 x 2q22 [g j y]z]2 [u0, j11 x 2q21 [g j y] ]

42 j Q [u0, 2 j11 x 2q22 yx] .

(9)

Substituting the value i42 j we finally obtain

(i21) Q [u0, i x 2q22 yx]40

as we claimed.
Suppose now i42 j21 odd. We let 2k4 t23, 2m4r23 and 2h4q23,

and compute the Lie bracket between

w4 [uk , j x 2q21 y (x q21 y)m x h11 ]
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and itself. Note that w4 [g j21 y z l ] with l4 ( (k12) r1m12) q1h . We
find

04 [ww]4 [w[g j21 y z l ] ]

B [u0, j11 x 2q21 [g j21 y] ]2l Q [u0, j11 x 2q22 [g j21 y] z]

1!
i42

r

(21)iqg l

iq
hQ [vr2 i , j11 [g j21 y] R zz] .

Using formulas (8b), (8c) and (8d) we obtain

04 [u0, 2 j R xy]1 ( j21) Q [u0, 2 j R yx]2 (h21) Q [u0, 2 j R yx]

1!
i42

r

(21)ig(k12) r1m12

i
hQ [u0, 2 j R zz]

4 [u0, 2 j R xy]1 ( j2h) Q [u0, 2 j R yx]

1g!
i42

r

(21)igm12

i
h1 (21)r (k12)hQ [u0, 2 j R zz]

4 [u0, 2 j R xy]1 ( j2h) Q [u0, 2 j R yx]1 (m2k21) Q [u0, 2 j R zz] .

Substituting the original values of j , h , k , and m we finally obtain

042 Q [u0, i11 R xy]1 (i12) Q [u0, i11 R yx]22 Q [u0, i11 R zz]

4 i Q [u0, i11 x 2q22 yx] .

It follows that (i21) Q [u0, i x 2q22 yx]40 as we claimed.
We now prove formulas (8a)R (8d) proceeding by induction on the index of

the elements g j . Since g 14 [y z p n22 ] from now on we let l4p n224 ( (t2
1) r1r21) q1q22.

Formula (8a) is a direct computation:

[g i yg 1 ]4 [g i y [y z l ] ]

4!
h41

t21

!
i42

r

(21)(hr1 i) q22g l

(hr1 i) q22
hQ [g i R z]

4!
h41

t21

(21)hgt21

h
hQ [g i R z]

42 [g i11 y] .
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To prove formula (8b) we start computing

[vk , i g 1 ]4 [vk , i [yz l ] ]

4u !
i40

r222k

(21)iqg l

iq
h1!

j41

t21

!
i42k

r222k

(21)( jr1 i) qg l

( jr1 i) q
hvQ [R z]

4 !
i40

r222k

(21)ig(t21) r1r21

i
hQ [R z]

1!
j41

t21

(21) j !
i42k

r222k

(21)ig(t21) r1r21

jr1 i
hQ [R z]

4!
j40

t21

(21) jgt21

j
h !

i40

r222k

(21)igr21

i
hQ [R z]

1!
j41

t21

(21) jgt21

j21
h !

i42k

21

(21)igr21

r1 i
hQ [R z]

42 k Qvk , i11 .

Analogously we find

[vk , i yg 1 ]4 !
i42k

0

(21)(tr1 i) q22g l

(tr1 i) q22
hQ [R z]

4 !
i42k21

21

(21)igr21

r1 i
hQ [R z]

42 (k11) Q [vk , i11 y] .

Putting together the last two formulas we obtain (8b) for j41. We now suppo-
se it valid up to j and using (8a) we obtain it for j11:

[vk , i [g j11 y] ]42[vk , i [g j y] g 1 ]1 [vk , i g 1 [g j y] ]4 [vk , i1 j11 y] .

To compute formula (8c), as above we start computing

[u0, i x 2q22 g 1 ]4 [u0, i x 2q22 [y z l ] ]

4!
h40

t22

!
i40

r22

(21)(hr1 i) q11g l

(hr1 i) q11
hQ [R z]

1!
i40

r22

(21)( (t21) r1 i) qg l

( (t21) r1 i) q
hQ [R z]
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42 !
h40

t22

(21)hgt21

h
h !

i40

r22

(21)igr21

i
hQ [R z]

1!
i40

r22

(21)igr21

i
hQ [R z]

4u22 !
h40

t22

(21)hgt21

h
h21vQ [R z]

4 [u0, i11 x 2q22 ] .

Since [u0, i x 2q22 y] is at most second central, we easily obtain formula (8b) for
j41:

[u0, i x 2q22 [g 1 y] ]4 [u0, i x 2q22 g 1 y]4 [u0, i11 x 2q22 y] .

Supposing it true up to j and using again formula (8a) we find

[u0, i x 2q22 [g j11 y] ]42 [u0, i x 2q22 [g j y] g 1 ]1 [u0, i x 2q22 g 1 [g j y] ]

4 [u0, i1 j11 x 2q22 y] .

Finally, to compute formula (8d) we first observe that

04 [u0, i x 2q22 [g 1 x] ]4 [u0, i x 2q22 g 1 x]2 [u0, i x 2q21 g 1 ] .

Hence by the computations in (8c) we find

[u0, i x 2q21 g 1 y]4 [u0, i x 2q22 g 1 xy]4 [u0, i11 x 2q21 y] .

We now compute

[u0, i x 2q21 yg 1 ]4!
i40

r22

(21)( (t21) r1 i) q22g l

( (t21) r1 i) q22
hQ [u0, i R zz]

1(21)l21 l Q [u0, i R yx]1 (21)l Q [R zy]

4u212!
i40

r23

(21)igr21

i
hvQ [R zz]

22 Q [R yx]2 [R xy]

4 [R zz]22 Q [R yx]2 [R xy]

42 [u0, i11 x 2q22 yx] .
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Hence we obtain (8d) for j41:

[u0, i11 x 2q21 [g 1 y] ]4 [u0, i11 x 2q21 y]1 [u0, i11 x 2q22 yx] .

Supposing (8d) true up to j we finally obtain

[u0, i x 2q21 [g j11 y] ]42[u0, i x 2q21 [g j y] g 1 ]1 [u0, i x 2q21 g 1 [g j y] ]

42[u0, i1 j x 2q21 y g 1 ]2 j Q [u0, i1 j x 2q22 yx g 1 ]

1[u0, i11 x 2q21 [g j y] ]

4 [u0, i1 j11 x 2q21 y]1 ( j11) Q [u0, i1 j11 x 2q22 yx] .

7. – The differences in the case p42.

When we consider a field of characteristic 2 there are some differences. We
have seen that the computations of Section 5 are valid also for p42. Hence we
already know that AFS (a , b , n , 2 ) is (second-central)-by-finitely presented.
Actually we can be more precise. We claim that between w 2 i and w 2 i12 we have
only the following extra central elements for every iF2:

[w 2 i x 2q21 ], possibly second central for n4b ,

[w 2 i x 2q21 y], for n4b , and i42k11 ,

[w 2 i x 2q22 y (x q21 y)r2p s21 x q ], for 1GsGb2a21 ,

[w 2 i x 2q22 y (x q21 y)r22 x 2q2p s21 y] , for 1GsGa ,

[u0, 2 i11 x 2q22 y], possibly second central ,

[u0, 2 i11 x 2q22 yx], for i42k .

[ut2p s , 2 i11 x 2q22 y], for 1GsGn2b21 .

Note that in characteristic 2 the algebra that we obtain has n central elements
in twice the period of the algebra, from w 2 i to w 2 i12 .

By the results of Section 5 we have only to prove that

[w 2 i x 2q21 y]40, for n4b , and i even number ,(10a)

[ut2p s , 2 i x 2q22 y]40, for 1GsGn2b21 .(10b)

[w 2 i11 x 2q21 ]40 ,(10c)
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[w 2 i11 x 2q22 y (x q21 y)r2p s21 x q ], for 1GsGb2a21 ,(10d)

[w 2 i11 x 2q22 y (x q21 y)r22 x 2q2p s21 y], for 1GsGb ,(10e)

[u0, 2 i11 x 2q22 yx], for i odd number .(10f )

To prove it we distinguish the case n4b from nDb.

7.1. The case n4b.

In this case we have just to prove (10a), (10c), (10d) and (10e). Note that
(10e) is equivalent to

[w 2 i x 2q2p s21 y]40 .

We proceed as in Subsection 6.1. In particular we keep the same notation
for the elements g i and vk , i . We also use formulas (6a),R, (6f ) of Subsection
6.1, valid also for p42. Moreover we prove the following formulas:

[w i x 2q2p s22 [g j x] ]4 [w i1 j x 2q2p s21 ] ,(11a)

[vh , i , vk , j ]4 [vk1h2r12, i1 j11 x], for h1kFr22 .(11b)

Formula (11a) can be proved in the same way as formulas (6a),R, (6f ) by
induction on j. We remind that g 14 [yz l ] with l4p n224 (r21) q1q22.
We first compute

[w i x 2q2p s22 g 1 ]4 [w i x 2q2p s22 [y z l ] ]

4 !
j40

r22 g l

jq1p sh [w i11 x 2q2p s22 ]

4 [w i11 x 2q2p s22 ] .

Analogously we find

[w i x 2q2p s21 g 1 ]4 !
j40

r22g l

jq1p s21
h [w i11 x 2q2p s21 ]40 .

It follows that (11a) is verified for j41. Supposing it true up to j and using
(6a) we find

[w i x 2q2p s22 [g j11 x] ]4 [w i x 2q2p s22 [g j xg 1 ] ]

4 [w i x 2q2p s22 [g j x] g 1 ]1 [w i x 2q2p s22 g 1 [g j x] ]

4 [w i1 j x 2q2p s21 g 1 ]1 [w i11 x 2q2p s22 [g j x] ]

4 [w i1 j11 x 2q2p s21 ] .

To prove formula (11b) we first observe that [vh , i , vk , j ]4 [vh , i [ [g j xy]z l ]
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with l4 (k11) q1q21. If h1k4r22, using (6b) and (6f ) we find

[vh , i , vk , j ]4 !
l40

k gl

lq
h [vh1 l , i y[g j x] Rz]1 [w i11 x 2q23 [g j x] y]

4 !
l40

k gk11

q
h [w i1 j11 x 2q22 z]1 [w i1 j11 x 2q22 y]

4 [w i1 j11 x 2q22 z]1 [w i1 j11 x 2q22 y]

4 [w i1 j11 x 2q21 ]4 [v0, i1 j11 x] .

Analogously if h1kDr22 we obtain

[vh , i , vk , j ]4 !
l40

r2h22gl

lq
h [vh1 l , i y[g j x] R z]

1g l

(r2h21) q1q22
h [w i11 x 2q23 [g j x] yR z]

1 !
l4r2h

k g l

lq1q22
h [vl1h2r , i11 y x q22 [g j x] yR z]

1[vh1k2r11, i11 y x q22 [g j x] y]

4 !
l40

k g(k11) q

lq
h [vh1k2r12, i1 j11 z]

1[vh1k2r11, i1 j11 y x q21 y]

4 [vh1k2r12, i1 j11 z]1 [vh1k2r12, i1 j11 y]

4 [vh1k2r12, i1 j11 x] .

Formulas (10c) and (10d) are now a direct consequence of (11b). We let
2k4r22 and compute

04[vk , i , vk , i ]4 [v2k2r12, 2 i11 x]4[v0, 2 i11 x]4 [w 2 i11 x 2q21 ]

04[vr2p s2121, i , vr2p s2121, i ]4[vr2p s , 2 i11 x]4 [w 2 i11 x 2q22 (y x q21 )r2p s
x] .

To prove (10e) we use formula (11a):

04 [ [w i x q2p s2121 ][w i x q2p s2121 ] ]4 [w i x q2p s2121 [ [g i xy] x q2p s2121 ] ]

4 [w i x 2q2p s22 [ [g i x] y] ]4 [w 2 i x 2q2p s21 y] .
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Finally to prove (10a) we proceed as in (7), using equations (6b), (6c) and
(6d). We obtain that (i11) Q [w 2 i x 2q2 i y], and thus for i even the elements
[w 2 i x 2q2 i y] vanishes.

7.2. The case nDb.

In this case we have to prove formulas (10b),R, (10f ). As above we proceed
as in Subsection 6.2, keeping the same notation for the elements g i and vk , i ,
and using formulas (8a),R, (8d). We also need the following equations:

(12a) [ut22,i x 2q21 (y x q21)k[vjy]]4[ut22,i1j x 2q21 y (x q21 y)k], for 1GkGr22

(12b) [ut2p s,i x 2q22 [g jy]]4[ut2p s,i1j x 2q22 y], for 1GsGb .(12b)

Note that in (12a) we ignored the possible elements
[ut22, i1 j x 2q21 (y x q21 )k x] because they are central and useless in the final
computation.

To prove (12a) and (12b) we proceed as in Section 6.2. We remind that g 14
[y z l ] with l4p n224 ( (t21) r1r21) q1q22.

We start computing

[ut22, i x 2q21 (y x q21 )k g 1 ]4 [ut22, i x 2q21 y (x q21 y)k [y z l ] ]

4 !
l40

r222kgl

lq
h [ut22, i1 j x 2q21 (y x q21 )k ]

4 (k11) Q [ut22, i1 j x 2q21 (y x q21 )k ] .

Analogously we can compute

[ut22, i x 2q21 y (x q21 y)k g 1 ]

4 !
j41

t21

!
l42k

r2k22g l

( jr1 l) q22
h [ut22, i R]1 !

l42k

0 g l

(tr1 l) q22
h [ut22, i R]

4!
j41

t21

!
l42k21

r2k23 g(t21) r1r21

jr1l
h [ut22, i R]1 !

l42k21

21 u(t21) r1r21

(t21) r1r1l
v [ut22, i R]

4 !
j40

t21gt21

j
h !

l42k21

21 gr21

r1 l
h [ut22, i11 x 2q21 y (x q21 y)k ]

1 !
j41

t21gt21

j
h !

l40

r2k23gr21

l
h [ut22, i11 x 2q21 y (x q21 y)k ] .
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Note that for k4r22 the second summatory does not exist, while for kEr2
2 its coefficient has value k. Since the first addendum vanishes, in any case it
follows that

[ut22, i x 2q21 y (x q21 y)k g 1 ]4k Q [ut22, i11 x 2q21 y (x q21 y)k ] .

Hence we obtain (12a) for j41:

[ut22, i x 2q21 (y x q21 )k [g 1 y] ]

4 [ut22, i x 2q21 (y x q21 )k g 1 y]1 [ut22, i x 2q21 y (x q21 y)k g 1 ]

4 [ut22, i11 x 2q21 y (x q21 y)k ] .

Supposing inductively formula (12a) verified up to j and using (8a) we can
compute it for j11:

[ut22, i x 2q21 (y x q21 )k [g j11 y] ]4 [ut22, i x 2q21 (y x q21 )k [g j yv1 ] ]

4 [ut22, i x 2q21 (y x q21 )k [g j y]g 1 ]1 [ut22, i x 2q21 (y x q21 )k g 1 [g j y] ]

4 [ut22, i1 j x 2q21 y (x q21 y)k g 1 ]1 (k11) Q [ut22, i11 x 2q21 (y x q21 )k [g j y] ]

4 [ut22, i1 j11 x 2q21 y (x q21 y)k ] .

To prove formula (12b), as above we start computing

[ut2p s , i x 2q22 g 1 ]4 [ut2p s , i x 2q22 [y z l ] ]

4 !
l4p s21

t21

!
h40

r22 g l

lr1h
h [ut2p s , i11 x 2q22 ]

4 !
l4p s21

t21 gt21

l
h [ut2p s , i11 x 2q22 ]

4 [ut2p s , i11 x 2q22 ] .

Observing that [ut2p s , i x 2q22 y]40 we obtain (12b) for j41:

[ut2p s , i x 2q22 [g 1 y] ]4 [ut2p s , i x 2q22 g 1 y]4 [ut2p s , i11 x 2q22 y] .

Note that we obtain a central element. We now suppose inductively (12b) veri-
fied up to j and compute it for j11. Using (8a) we easily find

[ut2p s , i x 2q22 [g j11 y] ]4 [ut2p s , i x 2q22 [g j y] g 1 ]1 [ut2p s , i x 2q22 g 1 [g j y] ]

4 [ut2p s , i11 x 2q22 [g j y] ]

4 [ut2p s , i1 j11 x 2q22 y] .
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To prove (10b) we use formula (12b). Indeed we can compute

04 [ut2p s2121, i x q21 [ut2p s2121, i x q21 ] ]

4 [ut2p s2121, i x q21 [ [g i21 y] z (t2p s2111) rq1q22 ] ]

4 [ut2p s2121, i x q21 z (t2p s2111) rq1q22 [g i21 y] ]

4 [ut2p s , i11 x 2q22 [g i21 y] ]

4 [ut2p s , 2 i x 2q22 y] .

Analogously (10c) and (10d) are consequences of formula (12a). In the first
proof we let 2k4r and compute

04 [ut22, i x 2q21 (y x q21 )k21 [ut22, i x 2q21 (y x q21 )k21 ] ]

4 [ut22, i x 2q21 (y x q21 )k21 [ut22, i x 2q21 y (x q21 y)k22 ] x q21 ]

4 [ut22, i x 2q21 (y x q21 )k21 [g i yz kq ] x q21 ]

4 !
l40

k21gkq

lq
h [ut22, i x 2q21 (y x q21 )k1 l21 [g i y] R x q21 ]

4 !
l40

k21gk
l
h [w 2 i11 x 2q21 ]

4 [w 2 i11 x 2q21 ] .

Similarly in the second proof we compute

04 [ut22, i x 2q21 (y x q21 )r2p s2121 [ut22, i x 2q21 (y x q21 )r2p s2121 ] ]

4[ut22, i x 2q21 (y x q21 )r2p s2121 [ut22, i x 2q21 y (x q21 y)r2p s2122 ] x q21 ]

4 [ut22, i x 2q21 (y x q21 )r2p s2121 [g i yz (r2p s21 ) q ] x q21 ]

4 !
l40

p s2121g(r2p s21 ) q

lq
h [ut22, i x 2q21 (y x q21 )r2p s21211 l [g i y] R x q21 ]

4 !
l40

p s2121gr2p s21

l
h [w 2 i11 x 2q22 y (x q21 y)r2p s21 x q ]

4 [w 2 i11 x 2q22 y (x q21 y)r2p s21 x q ] .
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To prove (10e) we use formula (8b):

04 [w i11 x q2p s2121 [w i11 x q2p s2121 ] ]

4 [w i11 x q2p s2121 [g i y z rq22 y x q2p s2121 ] ]

4 [w i11 x 2q2p s22 [g i y z rq22 ] y]

4 !
l40

r22g(r21) q1q22

lq1p s
h [w i11 x 2q22 (y x q21 )l [g i y] R y]

4 !
l40

r22g(r21) q1q22

lq1p s
h [u0, 2 i11 x 2q2p s21 y] .

To evaluate the summatory we have to distinguish the case p s4q from p sEq,
but in both cases we find

!
l40

r22g(r21) q1q22

lq1p s
h41 .

It follows that

[w 2 i11 x 2q22 y (x q21 y)r22 x 2q2p s21 y]40 .

Finally to prove (10f ) we proceed as in (9), using formulas (8b), (8c) and
(8d). We compute [w i11 x q21 [w i11 x q21 ] ] and obtain that i Q
[u0, 2 i11 x 2q22 yx]40. It follows that for i odd number the element
[u0, 2 i11 x 2q22 yx] vanishes.

8. – Computations.

The ANU p-Quotient Program [HNO95] and GAP [S+95] were very useful
to discover the structures of the involved algebras and to see how to perform
computations in full generality.
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