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Bollettino U. M. I.
(8) 4-B (2001), 345-364

On Lower Semicontinuity in the Calculus of Variations.

GIOVANNI LEONI (*)

Sunto. – Vengono studiate proprietà di semicontinuitá per integrali multipli

u�W k , 1 (V ; Rd ) O s
V

f (x , u(x), R , ˜k u(x) ) dx

quando f soddisfa a condizioni di semicontinuità nelle variabili
(x , u , R , ˜k21 u(x) ) e può non essere soggetta a ipotesi di coercitività, e le succes-
sioni ammissibili in W k , 1 (V ; Rd ) convergono fortemente in W k21, 1 (V ; Rd ).

1. – Introduction.

In this paper we address lower semicontinuity properties for multiple func-
tionals of the form

u�W k , p (V ; Rd ) O s
V

f (x , u(x), R , ˜k u(x) ) dx ,(1.1)

where V is an open, bounded subset of RN , with NF1, and k , d�N , 1GpG
Q . Our treatment is mainly expository in intent, based on the references [21],
[46], [47], [48].

It is well known that k-quasiconvexity is a necessary and sufficient condi-
tion for (sequential) lower semicontinuity of the functional (1.1) with respect to
weak convergence (resp. weak * convergence if p4Q) in W k , p (V ; Rd ) and
under appropriate growth and continuity conditions on the integrand f. In-
deed this was shown by Morrey [69] when k41 and later extended by Meyers
[68] to the case kD1. We recall that a function f : Ek

dKR is said to be k-qua-
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The author wishes to thank Irene Fonseca for many stimulating conversations and the
Center for Nonlinear Analysis (NSF Grant No. DMS–9803791) for its support during
the preparation of this paper.
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siconvex if

f (j)Gs
Q

f (j1˜k w(y) ) dy

for all j�Ek
d and all w�C0

Q (Q ; Rd ), where E1
d »4Rd3N , while, for kD1, Ek

d

stands for the space of symmetric k-linear tensors from RN into Rd.
Here we will concentrate mainly on the case p41, which is more delicate

than the case pD1 since, due to lack of reflexivity of the space W k , 1 (V ; Rd ),
one can only conclude that an energy bounded sequence ]un(%W k , 1 (V ; Rd )
with

sup
n

Vun VW k , 1EQ(1.2)

admits a subsequence (not relabelled) such that

unKu in W k21, 1 (V ; Rd ) ,(1.3)

where u�W k21, 1 (V ; Rd ) and ˜k21 u is a vector-valued function of bounded
variation.

In this paper we seek to establish lower semicontinuity in the space
W k , 1 (V ; Rd ) under the natural notion of convergence (1.3), and without assu-
ming in general the strong condition (1.2). The main tool in the proofs of the
results presented below is the blow-up method introduced by Fonseca and
Müller [52], [53], which reduces the problem of lower semicontinuity for the
functional (1.1) to showing that the inequality

(1.4) lim inf
hKQ

s
Q

f (x01e h y , Tk21 (x01e h y)1

e h
k wh (y), R , ˜k wh (y) ) dyF f (x0 , u(x0 ), R , ˜k u(x0 ) )

holds for LN a.e. x0�V , where Q is the unit cube of RN , e h 70,

Tk (x) »4 !
NaNGk

1

a!
˜a u(x0 )(x2x0 )a ,

and ]wh(%W k , 1 (Q ; Rd) converges strongly in W k21, 1 (Q ; Rd) to the function

w0 (y) »4 !
NaN4k

1

a!
˜a u(x0 ) y a .

To prove (1.4) the usual strategy is to localize lower order terms, that is to
show that, by truncating the sequence ]wh( and rendering ]wh (y)(,



ON LOWER SEMICONTINUITY IN THE CALCULUS OF VARIATIONS 347

]˜wh (y)(, R , ]˜k21 wh (y)( uniformly bounded,

(1.5) lim inf
hKQ

s
Q

f (x01e h y , Tk21 (x01e h y)1e h
k wh (y), R , ˜k wh (y) ) dyF

lim inf
hKQ

s
Q

f (x0 , u(x0 ), R , ˜k21 u(x0 ), ˜k wh (y) ) dy ,

and then to further modify the sequence ]wh( in order to match the Dirichlet
boundary condition in the definition of k-quasiconvexity. The difficulty in this
problem is in the truncation, being the matching of boundary conditions an ea-
sy procedure.

A standing open problem is to find necessary and sufficient conditions for
(1.5) and, therefore, (1.4) to hold. In this paper we present some simple suffi-
cient assumptions, which are easy to verify in the applications. We will start
with first order gradients, that is with the case k41, and then move to the
more delicate situation of higher order derivatives. For first order derivatives
we also need to distinguish between the scalar case d41 and the vectorial ca-
se dD1.

1.1. The scalar case: non-coercive integrands.

In the scalar case d41 and when k41 the inequality (1.5) takes the simple
form

(1.6) lim inf
hKQ

s
Q

f (x01e hy,u(x0)1e hwh(y),˜wh(y)) dyF

lim inf
hKQ

s
Q

f (x0 , u(x0 ), ˜wh (y) ) dy .

Since for real valued functions u�W 1, p (V ; R) one may use simple trunca-
tions t L : RKR of the form

t L (u) »4
.
/
´

L

u

2L

if uFL ,

if 2LEuEL ,

if uG2L ,

(1.7)

it is clear that (1.6) holds if we assume that f (Q , Q , j) is lower semicontinuous,
uniformly with respect to j . Indeed we have the following

THEOREM 1 ([46], Theorem 1.1). – Assume that f : V3R3RNK [0 , Q) is
a Borel integrand, f (x , u , Q) is convex in RN , and for all (x0 , u0 )�V3R and
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eD0 there exists dD0 such that

f (x0 , u0 , j)2 f (x , u , j)Ge(11 f (x , u , j) )(1.8)

for all (x , u)�V3R with Nx2x0 N1Nu2u0 NGd and for all j�RN. Let
u�BV(V ; R), and let ]un( be a sequence of functions in W 1, 1 (V ; R) conver-
ging to u in L 1 (V ; R). Then

s
V

f (x , u(x), ˜u(x) ) dxG lim inf
nKQ

s
V

f (x , un (x), ˜un (x) ) dx .

Here ˜u is the Radon-Nikodym derivative of the distributional derivative Du
of u , with respect to the N-dimensional Lebesgue measure LN. Theorem 1 im-
proves a classical result of Serrin (cf. [72], Theorem 11(ii)), where the target
function u was assumed to be continuous and the condition corresponding to
(1.8) is significantly stronger. Conditions of the type (1.8) appeared already in
the papers of Fonseca and Müller [52], [53], Dal Maso and Sbordone [33], Fu-
sco and Hutchinson [57]. All these results deal with the vectorial case and re-
quire some type of coercivity conditions. See also the papers of Dal Maso ([32],
Theorem 3.2) and of Trombetti [76] for related results in the scalar case. As an
immediate corollary of Theorem 1 we have the following

COROLLARY 1 ([46], Corollary 1.2). – Let g : RNK [0, Q) be a convex func-
tion, and let h : V3RK [0 , Q) be a lower semicontinuous function. If u�
BV(V ; R) and ]un(%W 1, 1 (V ; R) converges to u in L 1 (V ; R), then

s
V

h(x , u) g(˜u) dxG lim inf
nKQ

s
V

h(x , un ) g(˜un ) dx .

This result seems to be new in this generality.
The lower semicontinuity of f in the u variable is not necessary, but in or-

der to drop it, stronger assumptions on the dependence on x seem to be
needed.

THEOREM 2 ([46], Theorem 1.5). – Assume that f : V3R3RNK [0 , Q) is
a Borel integrand, f (x , u , Q) is convex in RN , and for all x0�V and eD0 there
exists dD0 such that

Nf (x0 , u , j)2 f (x , u , j)NGe(11 f (x , u , j) )(1.9)

for all x�V with Nx2x0 NGd and for all (u , j)�R3RN. Suppose also that
f (x0 , Q , 0 ) is lower semicontinuous and

lim sup
NjNK0

( f (x0 , u , 0 )2 f (x0 , u , j) )1

NjN
�Lloc

1 (R ; R) .

Let u�BV(V ; R), and let ]un( be a sequence of functions in W 1, 1 (V ; R) con-
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verging to u in L 1 (V ; R). Then

s
V

f (x , u(x), ˜u(x) ) dxG lim inf
nKQ

s
V

f (x , un (x), ˜un (x) ) dx .

Theorem 2 extends a classical result of De Giorgi, Buttazzo and Dal Maso
[37] to integrands f4 f (x , u , j) which depend on x. See also the papers of Am-
brosio [6], Dal Maso ([32], Theorem 3.5) and of De Cicco [34] for related
results.

As for the lower semicontinuity with respect to x , note that for functionals
of the form

F(u) »4s
V

f (x , ˜u(x) ) dx ,

and without a coercivity assumption of the type

lim inf
NjNKQ

f (x , j)

NjN
4Q ,

condition (1.8) is rather sharp. Indeed, when N41 and V is bounded, Fusco
[55] proved that the functional

s
V

h(x)Nu 8 (x)N dx , u�W 1, 1 (V ; R) ,

where h(x) is a bounded, nonnegative measurable function, is lower semiconti-
nuous in L 1 (V ; R) if and only if h(x) has a lower semicontinuous representati-
ve. Moreover, in [32] Dal Maso, following a counterexample of Aronszajn, con-
structed a continuous function v : VKR , where V4 (0 , 1 )3 (0 , 1 ) and x4
(x1 , x2 ), and a sequence of functions ]un( converging to u(x)4x2 in
L Q (V ; R), such that

s
V

N( sin v(x), cos v(x) ) Q˜u(x)N dxD lim inf
nKQ

s
V

N( sin v(x), cos v(x) ) Q˜un (x)N dx .

If f : V3RNK [0 , Q) is a Borel integrand, f (x , Q) is convex in RN , and there
exists CD0 such that

f (x , j)GC(11NjN)

for all (x , j)�V3RN then we conjecture that a necessary condition for F(u)
to be lower semicontinuous with respect to L 1 (V ; R) convergence is some
form of regularity of f (Q , j).

To be also sufficient it may have to be uniform in j for non coercive functio-
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nals, as Dal Maso’s example seems to indicate. Together with the coercivity
assumption

lim inf
NjNKQ

f (x , j)4Q

lower semicontinuity of f in the x variable becomes a sufficient condition for
lower semicontinuity of the functional F(u), see Theorem 5 below.

1.2. The vectorial case: non-coercive integrands.

We now turn our attention to the vectorial case, and consider nonnegative
integrands

f : V3Rd3RdNK [0 , Q) where dD1 .

The situation is considerably more complicated, even when f (x , u , Q) is assu-
med to be convex rather than quasiconvex, which is the natural assumption
when dD1. This is due to the fact that in the truncation corresponding to (1.7),
namely

t L (u) »4
.
/
´

u

u

NuN
L

if NuNEL ,

if NuNFL ,
(1.10)

the fact that

˜(t L i u)(x)40 LN a.e. in ]x�V : u(x)c (t L i u)(x)(

is no longer valid. In [42] Eisen constructed an integrand of the form

f4 f (u , j)4h(u) g(j) ,(1.11)

where h is a nonnegative continuous function and g is nonnegative and convex,
for which the corresponding functional ceases to be lower semicontinuos with
respect to convergence in L 1 (for later purposes it is important to notice that
the function does not satisfy the property that gKQ as NjNKQ). Thus we
cannot hope to fully extend either Theorem 1 or Theorem 2 to the vectorial ca-
se. However, we can prove the following:

THEOREM 3 ([46], Theorem 1.7). – Let f be a nonnegative Borel integrand.
Suppose that for all (x0 , u0 )�V3Rd and eD0 there exist dD0 and a modu-
lus of continuity r , with r(s)GC(11s) for sD0 and for some CD0, such
that

f (x0 , u0 , j)2 f (x , u , j)Ge(11 f (x , u , j) )1r(Nu2u0 N)(1.12)
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for all x�V with Nx2x0 NGd , and for all (u , j)�Rd3RdN. Assume also that
either

(a) f (x0 , u0 , Q) is convex in RdN or

(b) f (x0 , u0 , Q) is quasiconvex in RdN and

0G f (x0 , u0 , j)GC(NjNq11) for all j�RdN ,(1.13)

where CD0 and the exponent qF1 may depend on (x0 , u0 ). In addition, if
qD1 then assume that

f (x0 , u0 , j)F
1

C
NjNq2C for all j�RdN .(1.14)

Let u�BV(V ; Rd ), and let ]un( be a sequence of functions in W 1, 1 (V ; Rd )
which converges to u in L 1 (V ; Rd ). Then

s
V

f (x , u , ˜u) dxG lim inf
nKQ

s
V

f (x , un , ˜un ) dx .

Here we intend by modulus of continuity a nonnegative, increasing, conti-
nuous function r such that r(0)40. Even in the scalar case, Theorem 3 impro-
ves Theorem 11(i) of Serrin in [72], since condition (1.12) is significantly wea-
ker than the corresponding one in [72]. An important class of integrands
which satisfy condition (1.12) is given by

f4 f (x , j)4h(x) g(j) ,

where h is a nonnegative lower semicontinuous function and g is a nonnegative
function which satisfies either condition (a) or (b).

Note that without (1.14) L 1 lower semicontinuity may fail even for the sim-
plest case when f4 f (j). This has been shown by Malý [63] for

f4 f (j)4Ndet jN , d4N ,

who constructed a sequence in W 1, N which converges to u(x)4x weakly in
W 1, p , where pEN21, and for which lower semicontinuity fail (see also Fon-
seca and Malý [50]).

Theorem 3 covers the case in which the integrand f is essentially of the
type f4 f (x , j). To cover the general case f4 f (x , u , j), rather than using
(1.10) it is more convenient to adopt a truncation of the type

t L , M (u) »4
.
/
´

u

0

if NuNEL ,

if NuNFL1M .
(1.15)

A weak form of coercivity will then be needed to control the derivatives of the
sequence ]un( in sets of the form ]x�V : LnGNun NGLn1Mn(.
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THEOREM 1.4 ([46], Theorem 1.8). – Theorem 3 still holds if we replace con-
dition (1.12) with the following: for all (x0 , u0 )�V3Rd either f (x0 , u0 , j)f0
for all j�RdN , or for every eD0 there exist C1 , C2 , dD0 such that

f (x0 , u0 , j)2 f (x , u , j)Ge(11 f (x , u , j) ) ,(1.16)

f (x , u , j)FC1 NxN2C2 ,(1.17)

for all (x , u)�V3Rd with Nx2x0 N1Nu2u0 NGd and for all j�RdN.

Theorem 4 was proven by Fonseca and Müller [52], under somewhat stron-
ger hypotheses, and in the case where assumption (b) of Theorem 3 holds with
q41. The convex case can be thought of as a natural extension of Theorem
11(ii) in [72] of Serrin to the vectorial case. Note that Theorem 4 can be applied
to integrands of the type

f4 f (u , j)4h(u) g(j) ,

where h is a nonnegative lower semicontinuous function and g is nonnegative,
convex, and

g(j)KQ as NjNKQ .(1.18)

Thus, under the additional condition (1.18), one can recover lower semiconti-
nuity for the class of integrands treated in Eisen’s counterexample. Note that
we do not assume any control from below on the function h(u), other than
h(u)F0.

Most of the proofs are carried out firstly for f which grow at most linearly
in the gradient variable j. While this approach is standard in the convex set-
ting, due to the well known results which allow to approximate from below
convex functions by an increasing sequence of convex functions which grow
at most linearly, it was only very recently that Kristensen brought this idea
to the vectorial setting, exploiting his approximation result for quasiconvex
functions (see [60]; also [65]).

1.3. Coercive integrands.

I n a l l t h e p r e v i o u s T h e o r e m s w e h a v e s e e n t h a t w h e n c o e r c i v i t y , o r
weak forms of it, fails then one needs to assume regularity conditions on
f (Q , Q , j) which are uniform with respect to the gradient variable j . Theorem 5
below shows that the uniformity can be dropped at least for convex and po-
lyconvex integrands, if one strengthen the coercivity condition on f .

THEOREM 5 ([47], Theorem 1.1). – Let f : V3Rd3Rd3NK [0 , Q] be a
lower semicontinuous function, with f (x , u , Q) convex in Rd3N. Suppose that
for all (x0 , u0 )�V3Rd either f (x0 , u0 , j)f0 for all j�Rd3N , or there exist
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C , d 0D0, and a continuous function g : B(x0 , d 0 )3B(u0 , d 0 )KRd3N such
that

f (x , u , g(x , u) )�L Q (B(x0 , d 0 )3B(u0 , d 0 ) ; R) ,(1.19)

f (x , u , j)FCNjN2
1

C
(1.20)

for all (x , u)�V3Rd with Nx2x0 N1Nu2u0 NGd 0 and for all j�Rd3N. Let
u�BV(V ; Rd ), and let ]un( be a sequence of functions in W 1, 1 (V ; Rd ) con-
verging to u in L 1 (V ; Rd ). Then

s
V

f (x , u , ˜u) dxG lim inf
nKQ

s
V

f (x , un , ˜un ) dx .

COROLLARY 2 ([47], Corollary 1.2). – Let f : V3Rd3Rd3NK [0 , Q] be a
lower semicontinuous function, with f (x , u , Q) convex in Rd3N. Suppose
that

f (x , u , j)KQ as NjNKQ

and that f (x , u , 0 )�L Q
loc (V3Rd ; R). Let u�BV(V ; Rd ), and let ]un( be a se-

quence of functions in W 1, 1 (V ; Rd ) converging to u in L 1 (V ; Rd ). Then

s
V

f (x , u , ˜u) dxG lim inf
nKQ

s
V

f (x , un , ˜un ) dx .

Corollary 1.9 extends Theorem 12(i) [72] of Serrin to the vectorial case (see
also Theorem 3.2 of Ambrosio [6]). The tecniques used in the proof are rather
different to those of the authors just mentioned which only work in the scalar
case (see also [42], [70]). It is interesting to observe that without a condition of
the type (1.19) Theorem 5 is false in general. This has been recently proved by
Černý and Malý in [27].

The method used in Theorem 5 can also be applied to polyconvex integrands.
For each matrix j�Rd3N let M (j)�Rt be the vector whose components are
all the minors of j , where

t4t(d , N) »4 !
k41

min ]d , N(gd
k
hgN

k
h .

THEOREM 6 ([47], Theorem 1.4). – Let h : V3Rd3RtK [0 , Q] be a lower
semicontinuous function, with h(x , u , Q) convex in Rt. Suppose that for all
(x0 , u0 )�V3Rd either h(x0 , u0 , v)f0 for all v�Rt , or there exist C ,
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d 0D0, and a continuous function g : B(x0 , d 0 )3B(u0 , d 0 )KRt such that

h(x , u , g(x , u) )�L Q (B(x0 , d 0 )3B(u0 , d 0 ); R) ,(1.21)

h(x , u , v)FCNvN2
1

C
(1.22)

for all (x , u)�V3Rd with Nx2x0 N1Nu2u0 NGd 0 and for all v�Rt. Let
u�BV(V ; Rd ), and let ]un( be a sequence of functions in W 1, p (V ; Rd ) which
converges to u in L 1 (V ; Rd ), where p4min ]d , N(. Then

s
V

h(x , u , M (˜u) ) dxG lim inf
nKQ

s
V

h(x , un , M (˜un ) ) dx .

Theorem 6 is closely related to recent results of Dal Maso and Sbordone [33],
and of Fusco and Hutchinson [57], where condition (1.21) is replaced by a con-
dition of the type (1.16).

COROLLARY 3 ([47], Corollary 1.4). – Let W : V3RN3RK [0 , Q) be a con-
tinuous function, with W(x , u , Q) convex in R. Suppose that for all (x , u)�
V3RN

W(x , u , s)KQ as NsNKQ .(1.23)

Let u�W 1, N (V ; RN ), and let ]un( be a sequence of functions in
W 1, N (V ; RN ) bounded in W 1, N21 (V ; RN ) and converging to u in
L 1 (V ; RN ). Then

s
V

W(x , u , det˜u) dxG lim inf
nKQ

s
V

W(x , un , det˜un ) dx .

To the author’s knowledge Corollary 3 is new in this generality. Lower se-
micontinuity for polyconvex and quasiconvex integrands of this type has been
studied by several authors in the past years, see in particular the papers [1],
[13], [15], [22], [26], [31], [33], [57], [50], [51], [58], [63], [64] for the polyconvex
case and [17], [49], [65], [66] for the quasiconvex case. It is rather interesting
to observe that when W depends only on the gradient variable s , rather than
on the full set of variables (x , u , s), then condition (1.23) can be dropped. This
was shown by Celada and Dal Maso in [26]. No analogous results without a
coercivity condition of the type (1.22) are known for the case when dcN.

1.4. Higher order derivatives.

We now turn our attention to functionals of the form

u�W k , p (V ; Rd ) O s
V

f (x , u(x), R , ˜k u(x) ) dx ,(1.24)
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where kF2. While in the previous subsections we have chosen to address es-
sentially only the case p41, we consider here also the case pD1. Indeed for
higher order derivatives much less is known compared to the case k41. Me-
yers [68] proved that k-quasiconvexity is a necessary and sufficient condition
for (sequential) lower semicontinuity of a functional

uO s
V

f (x , u(x), R , ˜k u(x) ) dx ,

with respect to weak convergence (resp. weak * convergence if p4Q) in
W k , p (V ; Rd ) and under appropriate growth and continuity conditions on the
integrand f , thus extending to the case kD1 the notion of quasi-convexity in-
troduced by Morrey when k41. Meyers’ theorem uses results of Agmon, Dou-
glis and Nirenberg [3] concerning Poisson kernels for elliptic equations. Fu-
sco [56] later gave a simpler proof using De Giorgi’s Slicing Lemma. He also
extended the result to Carathéodory integrands when p41, while the case
pD1 has been recently established by Guidorzi and Poggiolini [59] under the
Lipschitz condition

Nf (x , v , j)2 f (x , v , j 1 )NGC(11NjNp211Nj 1 Np21 )Nj2j 1 N

(note that this condition is automatically satisfied for k41 and k42, see [65]
and [59]), and by Braides, Fonseca and the author in [21], who obtained the
following general relaxation result in W k , p (V ; Rd ) with respect to weak
convergence.

THEOREM 7 ([21], Theorem 1.3). – Let 1GpGQ , k�N , and suppose that
f : V3E[k21]

d 3Ek
dK [0 , Q) is a Carathéodory function satisfying

0G f (x , u , v)GC(11NuNp1NvNp ) , 1GpEQ ,

for LN a.e. x�V and all (u , v)�E[k21]
d 3Ek

d , where CD0, and

f�Lloc
Q (V3E[k21]

d 3Ek
n ; [0 , Q) ) if p4Q .

Then for every u�W k , p (V ; Rd ) we have

inf{lim inf
nKQ

s
V

f (x , un , R , ˜k un ) dx : ]un(%W k , p (V ; Rd ),

un �u in W k , p (V ; Rd ) (�˜ if p4Q)}4s
V

Mk f (x , u , R , ˜k u) dx ,
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where, for LN a.e. x�V and all (u , v)�E[k21]
d 3Ek

d ,

Mk f (x , u , v) »4 inf{s
Q

f (x , u , v1˜k w(y) ) dy : w�Cc
Q (Q ; Rd )} .

Here

˜l u»4g ¯ l u

¯x1
a 1

R ¯xN
a N
h

a 11R1a N4 l

, lF1 .

When k41 we recover classical relaxation results (see e.g. the work of Acerbi
and Fusco [2], Dacorogna [30], Marcellini and Sbordone [67], and the referen-
ces contained therein).

To the best of our knowledge, when kD1, Theorem 7 gives the first inte-
gral representation formula for the relaxed energy when the integrand is non
convex and depends on the full set of variables, that is f4 f (x , u , R , ˜k u).
This is due to the fact that classical truncation methods for k41 cannot be
extended in a simple way to truncate higher order derivatives. The results of
Fonseca and Müller (see the proof of Lemma 2.15 in [54]), where the trunca-
tion is only on the highest order derivative ˜k u , allows us to overcome this dif-
ficulty. Note however that this technique relies heavily on p-equi-integrability,
and thus cannot work in the case p41 if one replaces weak convergence in
W k , 1 (V ; Rd ) with the natural convergence, i.e. strong convergence in
W k21, 1 (V ; Rd ).

In this context a relaxation result has been given by Amar and De Cicco
[4], but only when f4 f (˜k u), so that truncation is not needed. The general ca-
se where f depends also on lower order derivatives has been addressed by
Fonseca, Malý, Paroni and the author [48]. A first striking difference with the
first order case k41 is that in the scalar case d41, that is when u(x) is an R-
valued function, the analogous of Theorem 1 and of Corollary 1 are false when
kD2. Indeed we can show the following:

THEOREM 8 ([48], Theorem 4). – Let V»4 (0 , 1 )N , NF3, and let h be a
smooth cut-off function on R with 0GhG1, h(u)41 for uG1, h(u)40 for
uF2. There exists a sequence of functions ]un( in W 2, 1 (V ; R) converging to
zero in W 1, 1 (V ; R) such that ]VDun VL 1 (V ; R)( is uniformly bounded and

lim inf
nKQ

s
V

h(un )(12Dun )1 dxEs
V

h(0) dx .

A positive result is given in the case where f depends essentially only on x
and on the highest order derivatives, that is ˜k u(x). This situation is signifi-
cantly simpler than the general case, since it does not require to truncate the
initial sequence ]un(%W k , 1 (V ; Rd ).
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THEOREM 9 ([48], Theorem 1). – Let f : V3E[k21]
d 3Ek

dK [0 , Q) be a Bo-
rel integrand. Suppose that for all (x0 , v0 )�V3E[k21]

d and eD0 there exist
d 0D0 and a modulus of continuity r , with r(s)GC0 (11s) for sD0 and for
some C0D0, such that

f (x0 , v0 , j)2 f (x , v , j)Ge(11 f (x , v , j) )1r(Nv2v0 N)(1.25)

for all x�V with Nx2x0 NGd 0 , and for all (v , j)�E[k21]
d 3Ek

d. Assume also
that one of the following three conditions is satisfied:

(a) f (x0 , v0 , Q) is k-quasiconvex in Ek
d and

1

C1

NjN2C1G f (x0 , v0 , j)GC1 (11NjN) for all j�Ek
d ,(1.26)

where C1D0;

(b) f (x0 , v0 , Q) is 1-quasiconvex in Ek
d and

0G f (x0 , v0 , j)GC1 (11NjN) for all j�Ek
d ,(1.27)

where C1D0;

(c) f (x0 , v0 , Q) is convex in Ek
d .

Let u�BV k (V ; Rd ) and let ]un( be a sequence of functions in
W k , 1 (V ; Rd ) converging to u in W k21, 1 (V ; Rd ). Then

s
V

f (x , u , R , ˜k u) dxG lim inf
nKQ

s
V

f (x , un , R , ˜k un ) dx .

Here ˜k u is the Radon-Nikodym derivative of the distributional derivative
D k u of ˜k21 u , with respect to the N-dimensional Lebesgue measure LN , and
for any integer kF2 we define

BV k (V ; Rd ) »4]u�W k21, 1 (V ; Rd ) : ˜k21 u�BV(V ; Ek21
d )( .

An important class of integrands which satisfy (1.25) of Theorem 9 is given
by

f4 f (x , j) »4h(x) g(j) ,

where h(x) is a nonnegative lower semicontinuous function and g is a nonnega-
tive function which satisfies either (a) or (b) or (c). The case where h(x)f1
and g satisfies condition (a) was proved by Amar and De Cicco [4]. Theorem 9
extends Theorem 3 to higher order derivatives. Even in the simple case f4
f (j) it is not known if Theorem 9(a) still holds without the coercivity
condition

f (j)F
1

C1

NjN2C1 .

When the integrand f depends on the full set of variables in an essential
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way, the situation becomes significantly more complicated since one needs to
truncate gradients and higher order derivatives in order to localize lower or-
der terms. However, setting v»4 (u , R , ˜k21 u) and applying Theorems 4
and 5 to v and to the integrand fA such that fA(v , ˜v)4 f (u , R , ˜k u), we find
easily the two results below, Theorems 10 and 11.

THEOREM 10 ([48], Theorem 2). – Let f : V3E[k21]
d 3Ek

dK [0 , Q) be a Bo-
rel integrand, with f (x , v , Q) 1-quasiconvex in Ek

d . Suppose that for all
(x0 , v0 )�V3E[k21]

d either f (x0 , v0 , j)f0 for all j�Ek
d , or for every eD0 the-

re exist C , d 0D0 such that

f (x0 , v0 , j)2 f (x , v , j)Ge(11 f (x , v , j) ) ,(1.28)

CNjN2
1

C
G f (x0 , v0 , j)GC(11NjN)(1.29)

for all (x , v)�V3E[k21]
d with Nx2x0 N1Nv2v0 NGd 0 and for all j�Ek

d. Let
u�BV k (V ; Rd ), and let ]un( be a sequence of functions in W k , 1 (V ; Rd ) con-
verging to u in W k21, 1 (V ; Rd ). Then

s
V

f (x , u , R , ˜k u) dxG lim inf
nKQ

s
V

f (x , un , R , ˜k un ) dx .

A standing open problem is to decide whether Theorem 10 continues to
hold under the weaker assumption that f (x , v , Q) is k-quasiconvex, which is the
natural assumption in this context.

As in Theorem 9, conditions (1.28) and (1.29) can be considerably weakened
if we assume that f (x , v , Q) is convex rather than 1-quasiconvex. Indeed we ha-
ve the following result:

THEOREM 11 ([48], Theorem 3). – Let f : V3E[k21]
d 3Ek

dKK [0 , Q] be a
lower semicontinuous function, with f (x , v , Q) convex in Ek

d . Suppose that for
all (x0 , v0 )�V3E[k21]

d either f (x0 , v0 , j)f0 for all j�Ek
d , or there exist C1 ,

d 0D0, and a continuous function g : B(x0 , d 0 )3B(v0 , d 0 )KEk
d such

that

f (x , v , g(x , v) )�L Q (B(x0 , d 0 )3B(v0 , d 0 ); R) ,(1.30)

f (x , v , j)FC1 NjN2
1

C1

(1.31)

for all (x , v)�V3E[k21]
d with Nx2x0 N1Nv2v0 NGd 0 and for all j�Ek

d. Let
u�BV k (V ; Rd ), and let ]un( be a sequence of functions in W k , 1 (V ; Rd ) con-
verging to u in W k21, 1 (V ; Rd ). Then

s
V

f (x , u , R , ˜k u) dxG lim inf
nKQ

s
V

f (x , un , R , ˜k un ) dx .
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The situation is more complicated if the integrand f is k-polyconvex, since
the method used to prove Theorems 10 and 11 cannot be applied in this case.
For each j�Ek

d let M (j)�Rt be the vector whose components are all the mi-
nors of j.

THEOREM 12 ([48], Theorem 5). – Let h : V3E[k21]
d 3RtK [0 , Q] be a

lower semicontinuous function, with h(x , v , Q) convex in Rt. Suppose that for
all (x0 , v0 )�V3E[k21]

d either h(x0 , v0 , v)f0 for all v�Rt , or there exist C ,
d 0D0, and a continuous function g : B(x0 , d 0 )3B(v0 , d 0 )KRt such
that

h(x , v , g(x , v) )�L Q (B(x0 , d 0 )3B(v0 , d 0 ); R) ,(1.32)

h(x , v , v)FCNvN2
1

C
(1.33)

for all (x , v)�V3E[k21]
d with Nx2x0 N1Nv2v0 NGd 0 and for all v�Rt. Let

u�BV k (V ; Rd ), and let ]un( be a sequence of functions in W k , p (V ; Rd )
which converges to u in W k21, 1 (V ; Rd ), where p is the minimum between N
and the dimension of the vectorial space Ek21

d . Then

s
V

h(x, u,R,˜k21u, M (˜ku)) dxGlim inf
nKQ

s
V

h(x, un ,R,˜k21un , M (˜kun)) dx .

Theorem 12 is closely related to a result of Ball, Currie and Olver [14],
where it was assumed that

h(x , v , v)Fg(NvN)2
1

C
,

where

g(s)

s
KQ as sKQ .

2. – Open problems.

1. In [72] Serrin proved the following

THEOREM 13 ([72], Theorem 12). – Assume that f�C(V3R3RN ; [0 , Q) ),
f (x , u , Q) is convex in RN and f satisfies any one of the following condi-
tions:

(i) f (x , u , j)KQ as NjNKQ for each (x , u)�V3R.
(ii) f (x , u , Q) is strictly convex in RN for each (x , u)�V3R.

(iii) The derivatives fx , fj and fjx exist and are continuous.
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Then F(u , V) is lower semicontinuous in Wloc
1 , 1 (V ; R) with respect to lo-

cal convergence in L 1.

Theorem 13 was extended to the vectorial case by Morrey in his book on
Calculus of Variations ([69], Thms. 4.1.1, 4.1.2). However, several years later
Eisen [42] found a gap in Morrey’s proof, thus placing in doubt the validity of
Theorem 13 when dD1, and constructed counterexamples for Theorem 13(iii)
when dD1 (see also [74] for more details and an extensive bibliography). Co-
rollary 2 above shows that Theorem 13(i) continues to hold when dD1, while,
to our knowledge the validity of Theorem 13(ii) when dD1 remains open.

2. Consider a continuous integrand f : V3Rd3RdNK [0 , Q), dD1,
such that f (x , u , Q) is quasiconvex in RdN and

1

C
NjN2CG f (x , u , j)GC(NjN11) for all (x , u , j)�V3Rd3RdN .

Is it possible to find a sequence of nonnegative functions fj 6f , which satisfy
the same properties of f , but are also continuous in (x , u) uniformly with re-
spect to j? If so then the functional corresponding to the integrand f would be
lower semicontinuous with respect to L 1 convergence. Note that this approxi-
mation result is true for convex functions and for quasiconvex functions with
superlinear growth (see the paper of Marcellini [65]).

3. Let f : Ek
dK [0 , Q) be k-quasiconvex and assume that

0G f (j)GC(NjN11) for all j�Ek
d .

Let u�BV k (V ; Rd ) and let ]un( be a sequence of functions in W k , 1 (V ; Rd )
converging to u in W k21, 1 (V ; Rd ). Does the following inequality

s
V

f (˜k u) dxG lim inf
nKQ

s
V

f (˜k un ) dx

hold? It certainly holds if one assume that f (j)FC1 NjN for NjN large, but for
k41 this coercivity condition can be avoided using De Giorgi’s Slicing
Lemma.

4. Assume that

f : V3E[k21]
d 3Ek

dK [0 , Q)

is continuous and such that f (x , v , Q) is k-quasiconvex in Ek
d and

1

C
NjN2CG f (x , v , j)GC(NjN11) for all (x , v , j)�V3E[k21]

d 3Ek
d .

Under some condition of the type (1.16), is the corresponding functional lower
semicontinuous with respect to strong convergence in W k21, 1 (V ; Rd )?
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[17] G. BOUCHITTÉ, I. FONSECA - J. MALÝ, Relaxation of multiple integrals below the
growth exponent, Proc. Royal Soc. Edin., 128A (1998), 463-479.
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[54] I. FONSECA I. - S. MÜLLER, A-quasiconvexity, lower semicontinuity and Young

measures, SIAM J. Math. Anal., 30 (1999), 1355-1390.
[55] N. FUSCO, Dualità e semicontinuità per integrali del tipo dell’area, Rend. Accad.

Sci. Fis. Mat., IV. Ser., 46 (1979), 81-90.
[56] N. FUSCO, Quasiconvessità e semicontinuità per integrali multipli di ordine su-

periore, Ricerche Mat., 29 (1980), 307-323.
[57] N. FUSCO - J. E. HUTCHINSON, A direct proof for lower semicontinuity of polycon-

vex functionals, Manuscripta Math., 85 (1995), 35-50.
[58] W. GANGBO, On the weak lower semicontinuity of energies with polyconvex inte-

grands, J. Math. Pures et Appl., 73 (1994), 455-469.
[59] M. GUIDORZI - L. POGGIOLINI, Lower semicontinuity for quasiconvex integrals of

higher order, NoDEA, 6 (1999), 227-246.
[60] J. KRISTENSEN, Lower semicontinuity in spaces of weakly differentiable fun-

ctions, Math. Ann., 313 (1999), 653-710.
[61] C. LARSEN, Quasiconvexification in W p and optimal jump microstructure in BV

relaxation, SIAM J. Math. Anal., 29 (1998), 823-848.
[62] F. C. LIU, A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26

(1977), 645-651.
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