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Bollettino U. M. I.
(8) 4-B (2001), 239-267

On Decompositions in Generalised
Lorentz-Zygmund Spaces (*).

J. S. NEVES

Sunto. – Il lavoro presenta diverse caratterizzazioni degli spazi Lorentz-Zygmund ge-
neralizzati (GLZ) Lp , q ; a (R), con p , q� (0 , 1Q], m�N , a�Rm e (R , m) spazio mi-
surato con misura m(R) finita. Dato uno spazio misurato (R , m) e a� R2

m , ottenia-
mo representazioni equivalenti per la (quasi-) norma dello spazio GLZ LQ , Q ; a (R).
Inoltre, se (R , m) è uno spazio misurato con misura finita e a� R1

m , viene presen-
tata in termini di decomposizioni una norma equivalente per lo spazio L1, 1 ; a (R).
Si dimostra che le norme equivalenti considerate per LQ , Q ; a (R), con (R , m) uno
spazio a misura finita, e la norma di decomposizione in L1, 1 ; a (R) possono essere
utilizzate per ottenere semplici dimostrazioni di alcuni risultati di estrapolazione
concernenti questi spazi.

1. – Introduction.

In [7], Edmunds and Krbec obtained some decompositions for the expo-
nential Orlicz space LF 1

(V), usually denoted by Ea (V), with Young function
F 1 given by F 1 (t)4exp t a for large t , where aD0 and V is a measurable sub-
set of Rn with finite n-dimensional Lebesgue measure NVNn . Without loss of
generality, it was assumed that NVNn41. They showed that considering a
suitable decomposition of (0 , 1 ) into a union of disjoint intervals
](tk , tk21 )(k�N it is enough to control only the blow up of the norms
V f * VLk (tk , tk21 ) , where f * is the non-increasing rearrangement of f , by the same
power k 21/a to have LF 1

(V). The proof was based on the fact that LF 1
(V) coin-

cides with the Zygmund space L Q ( log L)21/a (V) (see [2, Theorem D] or [3,
Lemma IV.6.2]). In Section 3, we extend this result to the generalised
Lorentz-Zygmund (GLZ) spaces Lp , q ; a (R), with p , q� (0 , 1Q], m�N ,
a�Rm , and (R , m) a finite measure space, cf. Theorem 3.2. The method of the
proof is different from, and in our opinion easier than, that used in [7].

In [19], Triebel gave an equivalent norm for the exponential Orlicz space
LF 1

(V), where V is a measurable subset of Rn with finite volume; see also [6].
With this equivalent norm, he proved that the embeddings id : Bp , p

n/p (V)K
Ea (V) and id : Hp

n/p (V)KEa (V), with 1EpE1Q , 0EaEp 8 and V a
bounded C Q-domain in Rn, are compact and obtained estimates for the appro-

(*) 1991 Mathematics subject Classification: 46 E 30.
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ximation and entropy numbers of those embeddings. Let us just mention that
Bp , p

n/p (V) and Hp
n/p (V) are classical Besov spaces and fractional Sobolev spaces,

respectively. We refer to [19] for more details. Equivalent norms for the
double exponential Orlicz space LF 2

(V), usually denoted by EEa (V), with
Young function F 2 given by F 2 (t)4exp exp t a for large t , where aD0 and V
is a measurable subset of Rn with finite volume, were obtained by Edmunds,
Gurka and Opic in [6]. The proof was also based on the fact that LF 2

(V) coin-
cides with the GLZ space LQ , Q ; 0 , 21/a (V), see [4, Lemma 3.9]. Following the
same technique as in [6], we obtain in Section 4 equivalent representations for
the (quasi-) norms of the GLZ spaces LQ , Q ; a (R), with (R , m) a measure space
and a� R2

m , i.e. a4 (a 1 , R , a m )�Rm , a 1 , R , a m21G0 and a mE0, cf. The-
orem 4.1 and its Corollaries. In particular, when (R , m) has finite measure we
obtain equivalent norms for the GLZ spaces LQ , Q ; a (R), with a� R2

m , extend-
ing in this way the results in [19] and [6]. Still in Section 4, we give an equiva-
lent norm for the spaces L1, 1 ; a (R), with (R , m) a non-atomic finite measure
space and a� R1

m , i.e. a4 (a 1 , R , a m )�Rm , a 1 , R , a m21F0 and a mD0,
in terms of decompositions. This result extends a result obtained by Edmunds
and Triebel, cf. [8, Theorem 2, p. 72], for the spaces L 1 ( log L)a (V), with aD0
and V a measurable subset of Rn with finite volume. We refer to [9, Theorem
3.4] for a different proof of this result.

In Section 5, we show how the equivalent norms obtained in Section 4 for
LQ , Q ; a (R), with a� R2

m , and the decomposition norm in L1, 1 ; a (R), with
a� R1

m , can be employed to get simple proofs of some extrapolation results in-
volving these spaces. Let us remark that we do not follow a general setting in
terms of abstract extrapolation methods considered by Jawerth and Milman,
cf. [11] (see also [14]). We mention that the starting point of the extrapolation
theory was the Theorem of Yano [20] which can be described as follows. Sup-
pose that T is a bounded linear operator on Lp (0 , 1 ) for pD1 with VTVLpKLp

4
O ((p21)2a ) as pI1, for some aD0; then these estimates can be extrapolat-
ed to L 1 ( logL)a (0 , 1 )KL1 (0 , 1 ); see [22, Theorem XII.4.11 (ii), p. 119] for a
more general formulation. We refer to [17, Theorem IV.5.3, p. 92] where T was
supposed to be sublinear. We also refer to [9, Theorem 4.2] where T was sup-
posed to be subadditive. In [16, p. 23] and [8, p. 74] the case was considered
when T is the Hardy-Littlewood maximal operator. It should be emphasised
that the decomposition approach, used in [8] and [9], skips completely the ma-
chinery of weak type inequalities and the Marcinkiewicz interpolation Theo-
rem, since it follows at once from the expression of the norm in L 1 ( log L)a (V),
with aD0. There is also a dual statement for operators acting from Lp (R0 )
into Lp (R1 ), with (R0 , m 0 ) and (R1 , m 1 ) finite measure spaces, for p close to
1Q , such that VTVLpKLp

4 O (p 1/a ) as pK1Q , for some aD0; then there
exist positive constants l , K such that s

R1

exp (lNTfNa ) dm 1GK for each f with
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NfNG1; see [22, Theorem XII.4.11 (i), p. 119]. There is also a version of this re-
sult for sublinear operators. We refer to Section 5 for more details.

2. – Notation and preliminaries.

As usual, Rn denotes Euclidean n-dimensional space. Let (R , S , m), usual-
ly denoted by (R , m), be a totally s-finite measure space and referred in the
sequel only as a measure space. A set E�S is called an atom of (R , S , m) if
m(E)D0 and F%E , F�S implies either m(F)40 or m(E0F)40. If there are
no atoms, then (R , S , m) is called non-atomic. A measure space (R , m) is called
resonant if it is one of the following two types: (i) non-atomic; (ii) completely
atomic, with all atoms having equal measure. We refer to [3, pp. 45-51] for
more details and for a different, but equivalent, definition. When R4Rn we
shall always take m to be Lebesgue measure m n , and shall write NVNn4m n (V)
for any measurable subset V of Rn . The family of all extended scalar-valued
(real or complex) m-measurable functions on R will be denoted by M (R , m);
M 0 (R , m) will stand for the subset of M (R , m) consisting of all those functions
which are finite m-a.e. and M1 (R , m) (M 0

1 (R , m) ) will represent the subset of
M (R , m) (M 0 (R , m) ) made up of all those functions which are non-negative
m-a.e.

DEFINITION 2.1. – Let f� M 0 (R , m). The distribution function m f of f is de-
fined by

m f (l)4m]x�R : Nf (x)NDl(, for all lF0 ,(1)

and the non-increasing rearrangement of f is the function f * defined on
[0 , 1Q) by

f *(t)4 inf ]lF0: m f (l)G t(, for all tF0 .(2)

The non-increasing rearrangement of the characteristic function f4x E ,
where E is a m-measurable subset of R with finite measure m(E), is
f *4x [0 , m(E) ) .

If (R , m) is a finite measure space, then the distribution function m f is
bounded by m(R) and so f *(t)40 for all tFm(R). In this case we may regard
f * as a function defined on the interval [0 , m(R) ); for more details we refer
to [3].

DEFINITION 2.2. – Two functions f� M 0 (R , m) and g� M 0 (S , n) are said
to be equimeasurable if they have the same distribution function, i.e., if
m f (l)4n g (l) for all lF0.
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Let p� (0 , 1Q]. We denote by Lp (R) the Lebesgue space endowed with
the (quasi-) norm V . Vp ; R . An alternative description of V . Vp ; R is given by the
next result, cf. Proposition II.1.8 in [3] or Theorem 1.8.5 in [21].

PROPOSITION 2.1. – Let f�Lp (R). If 0EpE1Q , then

V f Vp ; R
p 4s

R

NfNp dm4 s
0

1Q

( f *(t) )p dt4V f * Vp ; (0 , 1Q)
p .

Furthermore, in the case p41Q ,

V f VQ ; R4ess sup
x�R

Nf (x)N4 f *(0) .

Now let m�N and a4 (a 1 , R , a m )�Rm . Let us denote by w a
m and v a

m the
real functions defined by

w a
m (t)4 »

i41

m

li
a i (t) , for all t� (0 , 1Q) ,(3)

and

v a
m (t)4 »

i41

m

li21
a i (t) , for all t� [1 , 1Q) ,(4)

where l0 , l1 , R , lm are non-negative functions defined on (0 , 1Q) by

(5) l0 (t)4t , l1 (t)411Nlog tN , li (t)411logli21 (t) , i� ]2, R , m( .

DEFINITION 2.3. (cf. [5]) – Let p , q� (0 , 1Q], m�N and
a4 (a 1 , R , a m )�Rm . The generalised Lorentz-Zygmund (GLZ) space
Lp , q ; a (R) is defined to be the set of all functions f� M 0 (R , m) such that

V f Vp , q ; a ; R »4Vt 1/p21/q w a
m (t) f *(t)Vq , (0 , 1Q)(6)

is finite. Here V . Vq , (0 , 1Q) stands for the usual Lq (quasi-) norm over the inter-
val (0 , 1Q).

We remark that in [5], the space Lp , q ; a (R) and the quasi-norm V . Vp , q ; a ; R

defined above are denoted by Lp , q ; a 1 , R , a m
(R) and V . Vp , q ; a 1 , R , a m ; R , respect-

ively. We use the notation in [5] only when we are considering particular
cases.

Let us observe that when we consider a4 (0 , R , 0 ) in the previous Defi-
nition, we get the Lorentz space Lp , q (R) endowed with the (quasi-) norm
V . Vp , q ; R , which is just the Lebesgue space Lp (R) endowed with the (quasi-)
norm V . Vp ; R when p4q; if p4q , m41 and (R , m)4 (V , m n ), we get the Zyg-
mund space L p ( log L)a 1 (V) endowed with the (quasi-) norm V . Vp ; a 1 ; V .
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Let us introduce some more notation, that will be needed in Section 4. Let
m�N with mF2. We define the numbers exp0 , R , expm by

exp041, expi4e expi21 , i� ]1, R , m( .

Let a4 (a 1 , R , a m )�Rm . Let us denote by g a
m the non-negative function de-

fined by

g a
m (t)4 »

i41

m

l i21
a i (t), for all t� [expm22 , 1Q) ,(7)

where l 0 , R , l m are the non-negative functions defined by

l 0 (t)4 t , tF1 ; l i (t)4 log l i21 (t), tFexpi21 , i� ]1, R , m( .

We are going to need in Section 3 the following Lemma, which is very easy
to prove.

LEMMA 2.1 (i). – Let m , k�N . Then

lm (e 2k11 )4 lm21 (k) .

(ii) Let m�N0 and k�N . Then

lm (k)G lm (k11)Ge lm (k) .

(iii) Let a�R and m , k�N . Then for each t� (e 2k , e 2k11 ), we have the
inequalities

min ]1, e a( lm21
a (k)G lm

a (t)Gmax ]1, e a( lm21
a (k) .

(iv) Let a�R , m�N and kF2. Then the inequalities

min ]1, e 2a( lm21
a (k)G lm

a (t)Gmax ]1, e 2a( lm21
a (k)

hold for each t� (e 2k11 , e 2k12 ).

The following Lemma, with an obvious proof, will be used later on.

LEMMA 2.2. – Let k�N and q0Dexpk21 . Then

(i) l k (q)G lk (q), for each q� [expk21 , 1Q);

(ii) lk (q)Ge k l k (q), for each q� [expk , 1Q);

(iii) lk (q)Gg k

l k (q0 )
11h l k (q), for each q� [q0 , 1Q).
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By a Young function F we mean a continuous non-negative, strictly in-
creasing and convex function on [0 , 1Q) satisfying

lim
tK01

F(t)

t
4 lim

tK1Q

t

F(t)
40 .

Given a Young function F and any measurable subset V of Rn , LF (V) will
denote the corresponding Orlicz space, i.e. the collection of functions f�
M 0 (V , m n ) for which there is a lD0 such that s

V

F(Nf (x)N/l) dxE1Q ,

equipped with the Luxemburg norm V . VF , V given by

V f VF , V4 inf{lD0: s
V

Fg Nf (x)N

l
h dxG1} .

We refer to [1, Chapter VIII] and [12, Chapter III] for more details.
Let F 1 and F 2 be Young functions. Recall that F 2 dominates F 1 globally

if there is a positive constant k such that

F 1 (t)GF 2 (kt)(8)

for all tF0. Similarly, F 2 dominates F 1 near infinity if there are positive
constants k and t0 such that (8) holds for all t� [t0 , 1Q). Two Young functions
are said to be equivalent globally (near infinity) if each dominates the other
globally (near infinity). We have from [1, Theorem 8.12, pp. 234-235] the fol-
lowing result: If F 1 and F 2 are equivalent globally (or near infinity and
NVNnE1Q), then LF 1

(V)4LF 2
(V) and the corresponding norms are

equivalent.

LEMMA 2.3. (cf. [6]) – Let V be a measurable subset of Rn with finite vol-
ume and let aD0. Then

(i) the space L Q ( log L)21/a (V)4LQ , Q ; 21/a (V) coincides with the Or-
licz space LF 1

(V), where F 1 (t)4exp t a for all tF t0 with some t0� (0 , 1Q),
and the corresponding (quasi-) norms are equivalent;

(ii) the space L Q ( log log L)21/a (V)4LQ , Q ; 0 , 21/a (V) coincides with
the Orlicz space LF 2

(V), where F 2 (t)4exp exp t a for all tF t0 with some
t0� (0 , 1Q), and the corresponding (quasi-) norms are equivalent.

We will denote the Orlicz spaces LF 1
(V) and LF 2

(V), considered in Lemma
2.3, by Ea (V) and EEa (V), respectively. In view of the same Lemma, we may
endow these spaces with the quasi-norms

V . VEa (V) »4V . VQ , Q ; 21/a ; V and V . VEEa (V) »4V . VQ , Q ; 0 , 21/a ; V .

For more details we refer to [6].
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Let m�N . We denote by R1
m and R2

m the following subsets of Rm :

R1
m 4](a 1 , R , a m )�Rm : a 1 , R , a m21F0 and a mD0(

R2
m 4](a 1 , R , a m )�Rm : a 1 , R , a m21G0 and a mE0( .

Given a Banach space X let us denote by X * its dual space.
Let j0�N and let ]Aj(jF j0

be a sequence of Banach spaces. We denote by
l1 (Aj ) the space of all sequences a4]aj(jF j0

with aj�Aj , jF j0 , such that

VaVl1 (Aj )4 !
j4 j0

1Q

Vaj VAj
E1Q .

By lQ (Aj ) we denote the space of all sequences a4]aj(jF j0
with aj�Aj , jF j0 ,

for which VaVlQ (Aj )4 sup
jF j0

Vaj VAj
is finite. The space c0 (Aj ) is the subspace of

lQ (Aj ) consisting of all sequences a4]aj(jF j0
such that

lim
jK1Q

Vaj VAj
40 .

By Lemma 1.11.1 in [18, pp. 68-69], generalised in an obvious way,

[c0 (Aj ) ]*4 l1 (Aj*) ,(9)

with the usual interpretation (not only isomorphic but also isometric). More
precisely, given g4] gj(jF j0

� l1 (Aj*), the functional gA defined by

gA( f )4 !
j4 j0

1Q

gj ( fj ) , for all f4] fj(jF j0
�c0 (Aj ) ,(10)

is an element of [c0 (Aj ) ]* and is such that

V gA V[c0 (Aj ) ]*4 !
j4 j0

1Q

Vgj VAj*4VgVl1 (Aj*) .(11)

Conversely, let us consider gA � [c0 (Aj ) ]* . Then gA can be identified with an ele-
ment g4] gj(jF j0

� l1 ( (Aj*) by (10) and such that (11) holds; see [18] for more
details.

For general facts about Banach function spaces with Banach function norm
(or simply a function norm) r on a measure space (R , m) we refer to [3, Chap.
1, Chap. 2]. Nevertheless, let us recall a few concepts and results. A function
norm r over a measure space (R , m) is said to be rearrangement-invariant if
r( f )4r( g) for every pair of equimeasurable functions f and g in
M 0

1 (R , m).
Let (R , m) be a measure space and let r be a function norm. The associate
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function norm r 8 of r is defined on M1 (R , m) by

r 8 ( g)4 supms
R

fg dm : f� M1 (R , m), r( f )G1n ,(12)

for each g� M1 (R , m). The collection X4X(r) of all functions f in M (R , m)
for which r(NfN) is finite is called a Banach function space. The norm of a
function f in X is given by

V f VX4r(NfN) .(13)

The Banach function space X4X(r) generated by a rearrangement-invariant
function norm r is called a rearrangement-invariant space. The Banach func-
tion space X(r 8 ) determined by r 8 , where r 8 is the associate norm of r , is
called the associate space of X(r) and is denoted by X 8 . It follows from (12)
and (13) that the norm of a function g in the associate space X 8 is given by

VgVX 8 »4 supms
R

NfgNdm : f�X , V f VXG1n .

Let X be a Banach function space over the measure space (R , m). The clo-
sure in X of the set of simple functions is denoted by Xb .

PROPOSITION 2.2. (cf. [3], Proposition I.3.10) – The subspace Xb is the clo-
sure in X of the set of bounded functions supported in sets of finite
measure.

Let us recall the Lorentz-Luxemburg Theorem, cf. Theorem I.2.7 in [3].

THEOREM 2.1. – Every Banach function space X coincides with its second
associate space X 9 »4 (X 8 )8 . In other words, a function f belongs to X if, and
only if, it belongs to X 9 , and in that case V f VX4V f VX 9 .

REMARK 2.1. – If X and Y are two Banach function spaces such that Y4X 8 ,
up to equivalence of norms, then it follows, by the Lorentz-Luxemburg Theo-
rem, cf. Theorem 2.1, and by the definition of Y 8 , that Y 84X , up to equiva-
lence of norms. In other words, X and Y are mutually associate.

Now we recall the Luxemburg representation theorem, cf. [3, Theorem
II.4.10].

THEOREM 2.2. – Let r be a rearrangement-invariant function norm over
a resonant measure space (R , m). Then there is a (not necessarily unique)
rearrangement-invariant function norm r over (R1 , m 1 ) such that
r( f )4r( f *), for all f in M 0

1 (R , m).
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Furthermore, if s is any rearrangement-invariant function norm over
(R1 , m 1 ) which represents r , in the sense that r( f )4s ( f *), for all f in
M 0

1 (R , m), then the associate norm r 8 of r is represented in the same way by
the associate norm s 8 of s , that is, r 8 ( g)4s 8 ( g *), for all g in
M 0

1 (R , m).

Let X be a rearrangement-invariant Banach function space over a resonant
measure space (R , m). For each finite value of t belonging to the range of m , let
E be a m-measurable subset of R with m(E)4 t and let

W X (t)4Vx EVX .(14)

The function W X so defined is called the fundamental function of X . Observe
that the particular choice of the set E with m(E)4 t is immaterial since if F is
any other subset of R with m(F)4 t , then x E and x F are equimeasurable and so
Vx EVX4Vx FVX , because of the rearrangement invariance of X . Therefore, W X is
well defined by (14).

THEOREM 2.3. (cf. [3], Theorem II.5.5) – Let (R , m) be a non-atomic mea-
sure space and let X be an arbitrary rearrangement-invariant space over
(R , m). Then

lim
tK01

W X (t)40 if , and only if , (Xb )*4X 8 .

For two non-negative expressions (i.e. functions or functionals) A , B we
use the symbol A Z B to mean that A Gc B , for some positive constant c inde-
pendent of the variables in the expressions A and B . If A Z B and B Z A , we
write A B B .

We adopt the convention that (aO1Q)40 and (a/0 )41Q for all aD0.
If p� [1 , 1Q], the conjugate number p 8 is given by (1 /p)1 (1 /p 8 )41.

3. – Decompositions.

As was said in the Introduction, the following results extend the decompo-
sitions considered in [7] for the exponential Orlicz spaces Ea (V).

Let us assume, in this Section, that (R , m) is a finite measure space. With-
out loss of generality we suppose that m(R)41; see Remark 3.1. In the sequel,
we shall consider the decomposition of (0 , 1 ) into ](e 2k , e 2k11 )(kF1 .

THEOREM 3.1. – Let p , q� (0 , 1Q], m�N and a4 (a 1 , R , a m )�Rn .
Then for each f�Lp , q ; a (R) we have
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(i) if 0EqE1Q ,

V f Vp , q ; a ; RB k !
k41

1Q

(e 2k/p v a
m (k) f *(e 2k ) )ql1/q

(15)

B k !
k42

1Q

(e 2k/p v a
m (k) f *(e 2k11 ) )ql1/q

;(16)

(ii) if q41Q ,

V f Vp , q ; a ; RB sup
kF1

]e 2k/p v a
m (k) f *(e 2k )((17)

B sup
kF2

]e 2k/p v a
m (k) f *(e 2k11 )( .(18)

PROOF. – (i) Let 0EqE1Q and suppose f�Lp , q ; a (R). Then by Lemma
2.1 it follows that

V f Vp , q ; a ; R
q Fc1 !

k42

1Q

(e 2k(1 /p21/q) w a
m (e 2k11 ) f *(e 2k11 ) )q e 2k

Fc2 !
k41

1Q

(e 2k/p v a
m (k) f *(e 2k ) )q .

Conversely, for f�Lp , q ; a (R), we have again by Lemma 2.1

V f Vp , q ; a ; R
q Gc3 !

k42

1Q

(e 2k/p v a
m (k) f *(e 2k11 ) )qGc4 !

k41

1Q

(e 2k/p v a
m (k) f *(e 2k ) )q ,

which gives the desired inequalities.
(ii) The proof of the case q41Q is similar to the previous one. r

Let V be a measurable subset of Rn such that NVNn41. By Theorem 3.1 we
conclude that

V f VEa (V)B sup
kF1

f *(e 2k )

k 1/a
B sup

kF2

f *(e 2k11 )

k 1/a
, for each f�Ea (V) ,

and

V f VEEa (V)B sup
kF1

f *(e 2k )

(11 log k)1/a
B sup

kF2

f *(e 2k11 )

log1/a k
, for each f�EEa (V) .

The next Lemma, with an easy proof, will be used to prove the last result of
this Section.
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LEMMA 3.1. – Let f� M 0 (R , m), Jk4 (e 2k , e 2k11 ), kF1. Then

(i) for each k�N we have

c1 f *(e 2k11 )GV f * Vk , Jk
Gc2 f *(e 2k ) ,(19)

where c1 and c2 are positive constants independent of f and k ;

(ii) for each kF2 we have

c1 f *(e 2k12 )GV f * Vk , Jk21
Gc2 f *(e 2k11 ) ,(20)

where c1 and c2 are positive constants independent of f and k .

THEOREM 3.2. – Let p , q� (0 , 1Q], m�N and a4 (a 1 , R , a m )�Rn . Let
Jk4 (e 2k , e 2k11 ), kF1, and Ik4Jk21 , kF2. Then for each f�Lp , q ; a (R) we
have

(i) if 0EqE1Q ,

V f Vp , q ; a ; RB k !
k41

1Q

(e 2k/p v a
m (k)V f * Vk , Jk

)ql1/q

(21)

B k !
k42

1Q

(e 2k/p v a
m (k)V f * Vk , Ik

)ql1/q

;(22)

(ii) if q41Q ,

V f Vp , q ; a ; RB sup
kF1

]e 2k/p v a
m (k)V f * Vk , Jk

((23)

B sup
kF2

]e 2k/p v a
m (k)V f * Vk , Ik

( .(24)

PROOF. – (i) Suppose 0EqE1Q and let f�Lp , q ; a (R). Then by (15) and by
(19), we have

V f Vp , q ; a ; R
q Fc1 !

k41

1Q

(e 2k/p v a
m (k)V f * Vk , Jk

)q .

By (16) and by (20), we also have

V f Vp , q ; a ; R
q Fc2 !

k42

1Q

(e 2k/p v a
m (k)V f * Vk , Ik

)q .

Conversely, for f�Lp , q ; a (R), by (16) and by (19), we have

V f Vp , q ; a ; R
q Gc3 !

k41

1Q

(e 2k/p v a
m (k)V f * Vk , Jk

)q .
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By (16), by Lemma 2.1 and by (20), we have

V f Vp , q ; a ; R
q Gc4 !

k43

1Q

(e 2k/p v a
m (k) f *(e 2k12 ) )qGc5 !

k42

1Q

(e 2k/p v a
m (k)V f * Vk , Ik

)q ,

which gives the desired inequalities.
(ii) The proof of the case q41Q is similar to the previous one. r

Let V be a measurable subset of Rn such that NVNn41. By Theorem 3.2 we
conclude that for each f�Ea (V)

V f VEa (V)B sup
kF1

V f * Vk , Jk

k 1/a
B sup

kF2

V f * Vk , Ik

k 1/a
.(25)

The first estimate in (25) is given in [7] by Corollary 2.3. The counterpart
for the spaces EEa (V) is given by

V f VEEa (V)B sup
kF1

V f * Vk , Jk

(11 log k)1/a
B sup

kF2

V f * Vk , Ik

log1/a k
, for all f�EEa (V) .

REMARK 3.1. – If (R , m) is a finite measure space with measure m(R), m�N
and a�Rm , we have w a

m (s)Bw a
m (sm(R) ) , for all s� (0 , 1 ). This follows from

the estimates e 2j li (s)G li (sm(R) )Ge j li (s), for all s� (0 , 1 ) and i41, R , m
where j is a positive integer such that e j21G l1 (m(R) )Ge j.

With the previous considerations, it is easy to see that the estimates
in Theorem 3.1 and Theorem 3.2 still hold, up to constants, if we replace
f *(e 2k ) by f * (e 2k m(R) ) , for each k�N , and Jk4 (e 2k , e 2k11 ) by
Jk4 (e 2k m(R), e 2k11 m(R) ) , for each k�N , respectively.

4. – Equivalent (quasi-) norms for some generalised Lorentz-Zygmund
spaces.

In this Section, we are going to consider in the first part the GLZ spaces
LQ , Q ; a (R), with a� R2

m , and in the second part the GLZ spaces L1, 1 ; a (R),
with a� R1

m .

4.1. The GLZ spaces LQ , Q ; a (R).

First we are going to recall a Lemma.

LEMMA 4.1. (cf. [10], Lemma 5.1) – Let m�N and nD0. Then there is a
constant c� (0 , 1Q) such that for all s� (0 , 1 ),

sup
q� [1 , 1Q)

lm21
2n (q)s 1/qGclm

2n (s) .
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With the help of the previous result, it is not difficult to prove the next
Lemma.

LEMMA 4.2. – Let m�N and a� R2
m . Let t0� (0 , 1Q). Then there is a po-

sitive constant c such that v a
m (q)s 1/qGcw a

m (s), for all s� (0 , t0 ) and all
q� [1 , 1Q).

The following result generalises Theorem 3.1 in [6].

THEOREM 4.1. – Let m�N and a� R2
m . Let t0� (0 , 1Q).

(i) Let p� (0 , 1Q]. Then for each f�Lp , Q ; a (R),

(26) V f Vp,Q; a; RB sup
q�[1,1Q)

v a
m(q)V f *V(q/(q/p11)),Q; (0, t0)1 sup

t0GtE1Q
]t 1/pw a

m(t) f *(t)( .

(ii) Then for each f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) .(27)

PROOF. – We follow the proof of Theorem 3.1 in [6], where the case p41
Q , m42, a 140, a 2E0 and m(R)E1Q with t04m(R) was considered.

(i) Let t0� (0 , 1Q) and A »4 B 1C where

B »4 sup
q�[1,1Q)

v a
m(q)V f *V(q/(q/p11)),Q; (0, t0) and C »4 sup

t0GtE1Q
]t 1/pw a

m(t) f *(t)( .

Suppose f�Lp , Q ; a (R). By Lemma 4.2 there is a constant c1D0 such that
for all q� [1 , 1Q),

v a
m (q)V f * V(q/(q/p11) ), Q ; (0 , t0 )Gc1 sup

0EsE t0

]w a
m (s) s 1/p f *(s)( .

Passing to the supremum over all q� [1 , 1Q), we get the inequality

B Gc1 V f Vp , Q ; a ; R .

Hence

A G2 max ]1, c1(V f Vp , Q ; a ; R .(28)

Conversely, suppose the right hand-side of (26) is finite. Fix s� (0 , t0 ) and set
q411Nlog sN . Then B Fv a

m (q)s 1/q11/p f *(s)Fe 21 w a
m (s) s 1/p f *(s). Taking

the supremum over all s� (0 , t0 ), we obtain the inequality

B Fe 21 sup
0E tE t0

]t 1/p w a
m (t) f *(t)( .

So A Fe 21
V f Vp , Q ; a ; R , which together with (28) gives the estimate (26).
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(ii) Let t0� (0 , 1Q). First we prove the following estimate

A 1B B f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) ,(29)

where

A »4 sup
q� [1 , 1Q)

v a
m (q)V f * Vq , Q ; (0 , t0 ) and B »4 sup

t0G tE1Q
]w a

m (t) f *(t)( .

Suppose the right hand-side of (29) is finite. First we verify that

V f * Vq , Q ; (0 , t0 )GV f * Vq ; (0 , t0 ) , for each q� [1 , 1Q) .(30)

Let t� (0 , t0 ). Using the fact that f * is decreasing, we have

t 1/q f *(t)4{s
0

t

[s 1/q f *(t) ]q ds

s
}1/q

G{s
0

t

[s 1/q f *(s) ]q ds

s
}1/q

GV f * Vq ; (0 , t0 ) .

Hence taking the supremum over all t� (0 , t0 ), we obtain (30). Using inequali-
ty (30) and since B G f *(t0 ), we immediately obtain

A 1B G f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) .

Now we prove the converse inequality. Suppose that A 1B E1Q . If
1GqEq1 then

V f * Vq ; (0 , t0 )GV f * Vq1 , Q ; (0 , t0 ) t0
1/q21/q1g12 q

q1
h21/q

.(31)

Let q� [1 , 1Q). Since lj (q)G lj (2q)Gelj (q), for all j�N0 we have by (31),
with q142q , the following inequalities

v a
m (q)V f * Vq ; (0 , t0 )Gc1 v a

m (2q)V f * V2q , Q ; (0 , t0 )Gc1 sup
r� [2 , 1Q)

v a
m (r)V f * Vr , Q ; (0 , t0 ) .

Therefore, passing to the supremum over all q� [1 , 1Q), we get the
inequality

sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 )Gc1 A .(32)

Now it easily follows from (32) that

f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 )Gmax ]c1 , w 2a

m (t0 )((A 1B )

and (29) is proved. The estimate (27) follows from (26), with p41Q , and from
(29). r
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When (R , m) is a finite measure space the previous estimates are much
nicer.

COROLLARY 4.1. – Suppose (R , m) is a measure space such that
m(R)E1Q . Let m�N and a� R2

m .

(i) Let p� (0 , 1Q]. Then for each f�Lp , Q ; a (R),

V f Vp , Q ; a ; RB sup
q� [1 , 1Q)

v a
m (q)V f V(qO(q/p11) ), Q ; R .(33)

(ii) Then for each f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB sup
q� [1 , 1Q)

v a
m (q)V f Vq ; R .(34)

PROOF. – The results follow from the theorem with t04m(R) and from the
fact that f *(t)40, tFm(R). For the part (ii) we use also Proposition
2.1. r

From (ii) of Corollary 4.1 we recover the results of Theorem 3.1 in [6] for
the spaces Ea (V) and EEa (V), where V is a measurable subset of Rn with
NVNnE1Q .

COROLLARY 4.2. – Let m�N and a� R2
m . Let t0� (0 , 1Q). If j0�N and

q0F1 then for all f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB f *(t0 )1 sup
j�N , jF j0

v a
m ( j)V f * Vj ; (0 , t0 )(35)

B f *(t0 )1 sup
q� [q0 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) .(36)

PROOF. – We follow the proof of Corollary 3.2 in [6], where the case m42,
a 140, a 2E0 and m(R)E1Q with t04m(R) was proved. For f�LQ , Q ; a (R),
j0�N and q0F1 we denote

S1 ( f )4 f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) ,

S2 ( f )4 f *(t0 )1 sup
q� [1 , 1Q)

v a
m (q) t0

21/q
V f * Vq ; (0 , t0 ) ,

S3 ( f )4 f *(t0 )1 sup
q� [q0 , 1Q)

v a
m (q)V f * Vq ; (0 , t0 ) ,

s 1 ( f )4 f *(t0 )1 sup
j�N , jF j0

v a
m ( j)V f * Vj ; (0 , t0 ) ,
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s 2 ( f )4 f *(t0 )1 sup
j�N , jF j0

v a
m ( j) t0

21/j
V f * Vj ; (0 , t0 ) ,

s 3 ( f )4 f *(t0 )1 sup
j�N , jF [q0 ]11

v a
m ( j)V f * Vj ; (0 , t0 ) ,

where [q0 ] denotes the integer part of q0 .
(i) Let t0� (0 , 1Q), j0�N and f�LQ , Q ; a (R). First we prove that

V f VQ , Q ; a ; RB f *(t0 )1 sup
j�N , jF j0

v a
m ( j)V f * Vj ; (0 , t0 ) .

If q� [1 , 1Q), we put j4max ] j0 , [q]11( and choose n�N such that
e n21F j0 . Then

jG j0 ( [q]11)E j0 qGe n21 (q11)Ge n21 2qGe n q

and hence

lk21 ( j)Ge n lk21 (q), k42, R , m .

Therefore

e n(a 11R1a m ) v a
m (q)Gv a

m ( j) .(37)

Since jF [q]11Dq , we get by Hölder’s inequality together with (37) the
inequality

v a
m (q) t0

21/q
V f * Vq ; (0 , t0 )Gcv a

m ( j) t0
21/j

V f * Vj ; (0 , t0 ) ,

where c4e 2n(a 11R1a m )D1, and hence

S2 ( f )Gcs 2 ( f ) .(38)

It is easy to see that S1 ( f )BS2 ( f ), s 1 ( f )Bs 2 ( f ), and since s 1 ( f )GS1 ( f )
we have, together with (38), the estimates

s 1 ( f )GS1 ( f )BS2 ( f )Gcs 2 ( f )Bs 1 ( f ) .(39)

So (35) it follows from (27) and (39).
(ii) Let t0� (0 , 1Q), q0F1 and f�LQ , Q ; a (R). From (27) it follows

that

S3 ( f )GS1 ( f )BV f VQ , Q ; a ; R .(40)

Since s 3 ( f )4s 1 ( f ) if j04 [q0 ]11, we have by (35)

V f VQ , Q ; a ; RBs 3 ( f )GS3 ( f ) .(41)

Therefore, by (40) and (41) we get (36) and the proof is finished. r

When (R , m) is a measure space of finite measure we obtain simple equiva-
lent norms.
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COROLLARY 4.3. – Suppose (R , m) is a measure space such that
m(R)E1Q . Let m�N and a� R2

m . If j0�N and q0F1 then for all
f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB sup
j�N , jF j0

v a
m ( j)V f Vj ; R(42)

B sup
q� [q0 , 1Q)

v a
m (q)V f Vq ; R .(43)

PROOF. – The results follow from Corollary 4.2 with t04m(R) and Proposi-
tion 2.1. r

If we consider m41, a 1E0 and V a measurable subset of Rn with
NVNnE1Q in the above Corollary we recover part (i) of Corollary 3.2 in [6].

COROLLARY 4.4. – Let m�N , mF2 and a� R2
m . Let t0� (0 , 1Q). If

j0�N , j0F [expm22 ]11 and q0Dexpm22 then for all f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB f *(t0 )1 sup
j�N , jF j0

g a
m ( j)V f * Vj ; (0 , t0 )(44)

B f *(t0 )1 sup
q� [q0 , 1Q)

g a
m (q)V f * Vq ; (0 , t0 ) .(45)

PROOF. – (i) Let j0�N , j0F [expm22 ]11. Since j0Dexpm22 , it follows from
(i) and (iii) of Lemma 2.2 that, for each k� ]1, R , m21(, l k ( j)B lk ( j), for all
jF j0 . Therefore, the estimate (44) follows from (35).

(ii) Let q0Dexpm22 . Then for k41, R , m21, the estimate l k (q)B lk (q),
for all qFq0 , follows from (i) and (iii) of Lemma 2.2. Therefore, the estimate
(45) follows from (36). r

COROLLARY 4.5. – Suppose (R , m) is a measure space such that
m(R)E1Q . Let m�N , mF2 and a� R2

m . If j0�N , j0F [expm22 ]11 and
q0Dexpm22 then for all f�LQ , Q ; a (R),

V f VQ , Q ; a ; RB sup
j�N , jF j0

g a
m ( j)V f Vj ; R(46)

B sup
q� [q0 , 1Q)

g a
m (q)V f Vq ; R .(47)

PROOF. – The results follow from Corollary 4.4 with t04m(R) and Proposi-
tion 2.1. r
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If we consider m42, a 140, a 2E0, and V a measurable subset of Rn with
NVNnE1Q in the above Corollary we recover part (ii) of Corollary 3.2 in
[6].

4.2. The GLZ spaces L1, 1 ; a (R).

Let us assume, in this Subsection, that (R , m) is a finite measure space. Let
m�N and a� R1

m . Let us consider the spaces L1, 1 ; a (R) and LQ , Q ; 2a (R) en-
dowed with V . V1, 1 ; a ; R and V . VQ , Q ; 2a ; R , respectively.

Again, without loss of generality we suppose that m(R)41, because if
(R , m) is a finite measure space with measure m(R), after a change of variables,
we have by Remark 3.1

V f V1, 1 ; a ; RBs
0

1

w a
m (s) f1*(s) ds ,

for each f�L1, 1 ; a (R), and

V f VQ , Q ; 2a ; RB sup
0EsE1

w 2a
m (s) f1*(s) ds ,

for each f�LQ , Q ; 2a (R), where f1*(s)4 f * (sm(R) ) , for each s� (0 , 1 ), which is
the non-increasing rearrangement with respect to the measure m 14mOm(R).

The triangle inequality for V . V1, 1; a ; R follows immediately by the property,

s
0

t

W(s)( f1g)*(s) dsGs
0

t

W(s) f *(s) ds1s
0

t

W(s) g *(s) ds , 0E tE1 ,

whenever W is a non-negative decreasing function on (0 , 1 ), cf. [13, p. 38] or [2,
p. 23].

Let us introduce the functional V f V(Q , Q ; 2a ; R)4 sup
0E tE1

w 2a
m (t) f **(t). Then

by Lemma 3.2 in [5], we have

V f VQ , Q ; 2a ; RGV f V(Q , Q ; 2a ; R) ZV f VQ , Q ; 2a ; R ,

for all f�LQ , Q ; 2a (R). The triangle inequality for V . V(Q , Q ; 2a ; R) it follows
from the sub-additivity of fOf **, cf. Theorem II.3.4 in [3].

LEMMA 4.3. – Let m�N and a� R1
m . If (R , m) is a resonant measure

space, then

X4 (L1, 1 ; a (R), V . V1, 1 ; a ; R )

and

Y4 (LQ , Q ; 2a (R), V . V(Q , Q ; 2a ; R) )
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are rearrangement-invariant Banach function spaces and they are mu-
tually associate (up to equivalence of norms).

PROOF. – There is no difficulty in verifying that X and Y are Banach func-
tion spaces and the rearrangement invariance is obvious, since two equimea-
surable functions have the same non-increasing rearrangement.

Now we are going to prove that X and Y are mutually associate. We follow
the proof of Theorem IV.6.5 in [3] and the proof of Lemma 3.4 in [5].

Suppose g�Y . Then for any f�X with V f VXG1, we have by the Hardy-Lit-
tlewood inequality, cf. Theorem II.2.2 in [3],

s
R

NfgNdmGs
0

1

f *(t) g *(t) dtG sup
0E tE1

] g **(t) w 2a
m (t)(V f VX4VgVY V f VX .

Hence taking the supremum over all f�X with V f VXG1, we get

VgVX 84 supms
R

NfgNdm : f�X , V f VXG1nGVgVY .(48)

To establish an inequality reverse to (48), it is sufficient by the Luxemburg
representation Theorem, cf. Theorem 2.2, to do so for the measure space
(R1 , m 1 ) and functions g in R1 for which g4g *. Suppose g belongs to the as-
sociate space X 8 of X , and also under the previous conditions, then by Hölder’s
inequality, cf. Corollary II.4.5 in [3], for 0E tE1,

tg **(t)4s
0

1

x [0 , t] (s) g *(s) dsGVx [0 , t] VX VgVX 8 .

Since

Vx [0 , t] VX4s
0

1

x [0 , t] (s) w a
m (s) ds4s

0

t

w a
m (s) dsB tw a

m (t) ,

we get

VgVY ZVgVX 8 .(49)

The estimates (48) and (49) together show that Y is equivalent to the associate
of X . Hence, it follows immediately from Remark 2.1 that the spaces X and Y
are mutually associate. r
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PROPOSITION 4.1. – Suppose (R , m) is a non-atomic measure space. Let
m�N and a� R2

m . Then, up to equivalence of norms,

(LQ , Q ; a
0 (R) )*4L1, 1 ; 2a (R) ,(50)

where LQ , Q ; a
0 (R) is the completion of LQ (R) in LQ , Q ; a (R).

PROOF. – We apply Theorem 2.3 to the space X4LQ , Q ; a (R). It is easy to
see that lim

tK01
W X (t)40, where W X is the fundamental function of X . Therefore,

by Theorem 2.3, (Xb )*4X 8 . But by Lemma 4.3, X 8 coincides with L1, 1 ; 2a (R),
up to equivalence of norms, and, by Proposition 2.2, Xb coincides with the space
LQ , Q ; a

0 (R). r

Let j0 , m�N and a� R2
m . We denote by c0

s (Lj (R) ) the subspace of
c0 (Lj (R) ) which consists of all elements ]Fj(jF j0

of c0 (Lj (R) ) with
Fj4v a

m( j) f , for all jFj0 , where f�LQ , Q ; a(R). In what follows, and according
to Corollary 4.3, we consider the space LQ , Q ; a (R) endowed with the norm

V . VQ , Q ; a ; R
d 4 sup

j�N , jF j0

v a
m ( j)V . Vj ; R .

PROPOSITION 4.2. – Let j0 , m�N and a� R2
m . Then

LQ , Q ; a
0 (R)4 m f�LQ , Q ; a (R): lim

jK1Q
v a

m ( j)V f Vj ; R40n
and (LQ , Q ; a

0 (R), V . Vd ) is isometric to (c0
s (Lj (R) ) , V . VlQ (Lj (R) ) ) .

PROOF. – If f�LQ , Q ; a
0 (R), the results follow easily.

Conversely, suppose f�LQ , Q ; a (R) with lim
jK1Q

v a
m ( j)V f Vj ; R40. Let eD0.

Then there is j1�N , with j1F j0 , such that for all jF j1 we have the
inequality

v a
m ( j)V f Vj ; RE

e

2
.(51)

Since f�LQ , Q ; a (R), f is finite m2a.e. For each n�N let us consider the set
Rn4]x�R : Nf (x)NDn(. Now we introduce a sequence ] fn(n�N in LQ (R) by
fn (x)4 f (x) if x�R0Rn , and fn (x)40 otherwise. Then, for each n�N , we
have by (51)

V f2 fn VQ , Q ; a ; R
d G max

j�N , j0G jG j1
v a

m ( j)V f Vj ; Rn
1

e

2
4v a

m (k)V f Vk ; Rn
1

e

2
.(52)
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Now

Vv a
m (k) f Vk ; Rn

k 4V(v a
m (k) f)k x Rn

V1; R .

Let us consider, for each n�N , a function defined m2a.e. on R by

gn4 (v a
m (k)NfN)k x Rn

.

We note that for all n�N , NgnNGh , m2a.e. on R , where h4(v a
m(k)NfN)k , m2a.e.

on R , is a function in L1 (R). Since lim
nK1Q

x Rn
40 m2a.e. it follows from the

Lebesgue dominated convergence Theorem that lim
nK1Q

Vv a
m (k) f Vk ; Rn

k 40.

Hence, there is n0�N such that

v a
m (k)V f Vk ; Rn

E
e

2
, for each nFn0 .(53)

Therefore, from (52) and (53), we get lim
nK1Q

V f2 fn VQ , Q ; a ; R
d 40, which shows

that f�LQ , Q ; a
0 (R).

Now we can define a linear mapping H from LQ , Q ; a
0 (R) onto c0

s (Lj(R)) by

H( f )4]v a
m ( j) f(jF j0

, for all f�LQ , Q ; a
0 (R) .

We also have VH( f )Vc0
s (Lj (R) )4V f VQ , Q ; a ; R

d , for all f�LQ , Q ; a
0 (R), and the proof

is finished. r

The next result gives an equivalent norm for the GLZ spaces L1, 1 ; a (R),
with a� R1

m , in terms of decompositions.

THEOREM 4.2. – Suppose (R , m) is a non-atomic measure space. Let m�N
and a� R1

m . Let j0�N with j0F2. Then L1, 1 ; a (R) is the set of all measurable
functions g : RKC which can be represented as

g4 !
j4 j0

1Q

gj ,(54)

with gj a measurable function on R that belongs to Lj 8 (R), for each jF j0 , such
that

!
j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; RE1Q .(55)

The infimum of the expression (55) taken over all admissible representations
(54) is an equivalent norm on L1, 1 ; a (R) and it will be denoted by
NgN1, 1 ; a ; R .
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PROOF. – Let j0�N . Let us consider a measurable function h : RKC that
can be represented as

h4 !
j4 j0

1Q

gj ,(56)

with gj a measurable function on R that belongs to Lj 8 (R), for each jF j0 , such
that

!
j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; RE1Q

and let us define

F h ( f )4s
R

hf dm , for all f�LQ , Q ; 2a
0 (R) .(57)

Then F h� (LQ , Q ; 2a
0 (R) )* and

VF h N(LQ , Q ; 2a
0 (R) )* VG inf !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; R ,(58)

where the infimum is taken over all admissible representations (56). In fact,
for all f�LQ , Q ; 2a

0 (R), we have by Theorem 1.27 in [15, p. 22] and by Hölder’s
inequality, the following

NF h ( f )NG !
j4 j0

1Q

Vgj Vj 8 ; R V f Vj ; RGV f VQ , Q ; 2a ; R
d !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; R .

Thus, F h is a bounded linear functional on LQ , Q ; a
0 (R) (the linearity of F h is

obvious) such that

VF h N(LQ , Q ; 2a
0 (R) )* VG !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; R

and we get (58).
Now we follow the reasoning in the proof of Theorem 2.6.2/2 in [8, pp. 72-

74]. Let G� (LQ , Q ; 2a
0 (R) )* . Since LQ , Q ; 2a

0 (R) is isometric to c0
s (Lj (R) ) , cf.

Proposition 4.2, G i H 21�(c0
s (Lj (R) ))* , where H is the isometry considered in

the referred proposition. By Hahn-Banach theorem, there exists a bounded
linear functional G i H 21A

on c0 (Lj (R) ) , which is an extension of G i H 21 to
c0 (Lj (R) ) and has the same norm

VG i H 21A
N(c0 (Lj (R) ))* V4VG i H 21 N(c0

s (Lj (R) ))* V .

But by (9), G i H 21A
can be identified with an element ]GAj(jF j0

� l1 ((Lj (R) )* )
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such that

(59) VG i H21 N(c0
s (Lj (R) ))* V4VG i H21A

N(c0 (Lj (R) ))* V4 !
j4j0

1Q

VGAj N(Lj (R) )* V .

Since each Gj
A can be identified with a gAj�Lj 8 (R) by

GAj ( f )4s
R

gAj fdm , for all f�Lj (R) ,

with VGAj N(Lj (R) )* V4V gAj Vj 8 , R , it follows from (59) that

VGN(LQ , Q ; 2a
0 (R) )* V4VG i H 21 N(c0

s (Lj (R) ))* V4 !
j4 j0

1Q

V gAj Vj 8 , R .(60)

Using Theorem 1.38 in [15, p. 29] we get

G( f )4 !
j4 j0

1Q

GAj (v 2a
m ( j) f )4s

R

hf dm , for all f�LQ , Q ; 2a
0 (R) ,

with

h4 !
j4 j0

1Q

gj and gj4 gAj v 2a
m ( j) , jF j0 ,

because, for each f�LQ , Q ; 2a
0 (R),

!
j4 j0

1Q

s
R

Nfv 2a
m ( j) gAj NdmGV f VQ , Q ; 2a ; R

d !
j4 j0

1Q

V gAj Vj 8 ; RE1Q .

From (60), we get

VGN(LQ , Q ; 2a
0 (R) )* VF inf !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 , R ,(61)

where the infimum is taken over all admissible representations of h that satis-
fy (55). But since G4F h , we have from (58) and (61) that

VGN(LQ , Q ; 2a
0 (R) )* V4 inf !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 , R ,

where the infimum is taken over all admissible representations of h that satis-
fy (55).

Now given a function h represented as (54) and satisfying (55), we infer by
(50) that there is a g�L1, 1 ; a (R) such that

F h ( f )4s
R

fg dm , for all f�LQ , Q ; 2a
0 (R) ,
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with

VgV1, 1 ; a ; RBVF hN(LQ , Q ; 2a
0 (R) )* V .

Then it follows, by Theorem 1.39 in [15, p. 30], that g4h m2a.e., because it is
easy to see that g , h�L1 (R), and

VgV1, 1 ; a ; RBNgN1, 1 ; a ; R .

Conversely, let g�L1, 1 ; a (R). By (50), g defines a linear functional L g on
LQ , Q ; 2a

0 (R) such that

L g ( f )4s
R

fg dm , for all f�LQ , Q ; 2a
0 (R) ,

with

VgV1, 1 ; a ; RBVL g N(LQ , Q ; 2a
0 (R) )* V .

Since there is a function h that can be represented as (54) and satisfying (55)
for which L g4F h , it follows as above that g4h m2a.e. and

VgV1, 1 ; a ; RBNgN1, 1 ; a ; R .

In order to verify that N . N1, 1 ; a ; R is a norm on L1, 1 ; a (R), we just prove the
triangle inequality, because the other conditions are not difficult to prove. Let
f , g�L1, 1 ; a (R). Let us consider representations of f and g as (54),

f4 !
j4 j0

1Q

fj and g4 !
j4 j0

1Q

gj ,

and satisfying (55), respectively. Then f1g can be represented as

f1g4 !
j4 j0

1Q

( fj1gj )(62)

and, by Minkowski’s inequality,

(63) !
j4 j0

1Q

v a
m ( j)V fj1gj Vj 8 ; RG !

j4 j0

1Q

v a
m ( j)V fj Vj 8 ; R1 !

j4 j0

1Q

v a
m ( j)Vgj Vj 8 ; RE1Q .

Now, it follows from (62) and (63) that

Nf1gN1, 1 ; a ; R4 inf
f1g4!j4 j0

1Q zj

v a
m ( j)Vzj Vj 8 ; R

G inf
f4!j4 j0

1Q fj

g4!j4 j0
1Q gj

v a
m ( j)V fj1gj Vj 8 ; R

GNfN1, 1 ; a ; R1NgN1, 1 ; a ; R ,

and the triangle inequality is verified. r
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5. – Applications.

As was referred in the Introduction, there is a version of the extrapolation
result in [22, Theorem XII.4.11 (i), p. 119] for sublinear operators. Therefore
we start this section by defining sublinear operator and by recalling that ex-
trapolation result; see [17, Theorem V.3.3, p. 124] or [9, Theorem 4.1] for
instance.

DEFINITION 5.1. – Let (R0 , m 0 ) and (R1 , m 1 ) be measure spaces. Let T be an
operator whose domain is some linear subspace of M 0 (R0 , m 0 ) and whose
range is contained in M (R1 , m 1 ). Then T is said to be sublinear if the
relations

NT( f1g)NGNTfN1NTgN and NT(lf )N4NlNNTfN

hold m 12a.e. on R1 for all f and g in the domain of T and for all scalars l .

THEOREM 5.1. – Suppose V is a measurable subset of Rn with finite vol-
ume. Let aD0 and q0� [1 , 1Q). If A is a bounded sublinear operator in
Lq (V), q0GqE1Q , such that

VAf VqGcq 1/a
V f Vq , qFq0F1 ,

then

VAf VEa (V)GcV f VQ , for all f�LQ (V) .

Now, by the results of Section 4, the following Theorem is an obvious gen-
eralisation of the previous one.

THEOREM 5.2. – Let m�N and a� R2
m . Suppose (R0 , m 0 ) and (R1 , m 1 ) are

finite measure spaces.

(i) Suppose A is a bounded sublinear operator from Lq (R0 ) into Lq (R1 )
such that either

VAf Vq ; R1
Gcv 2a

m (q)V f Vq ; R0
, for all f�Lq (R0 ) ,

for each q� [q0 , 1Q) with q0F1, or

VAf Vq ; R1
Gcg 2a

m (q)V f Vq ; R0
, for all f�Lq (R0 ) ,

for each q� [q0 , 1Q) with q0Dexpm22 and mF2. Then

A : LQ (R0 )KLQ , Q ; a (R1 ) ,

and

VAf VQ , Q ; a ; R1
GcV f VQ ; R0

, for all f�LQ (R0 ) .
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(ii) Suppose A is a bounded sublinear operator from Lq (R0 ) into
Lq (R1 ) such that either

VAf Vq ; R1
Gcv a

m (q)V f Vq ; R0
, for all f�Lq (R0 ) ,

for each q� [q0 , 1Q) with q0F1, or

VAf Vq ; R1
Gcg a

m (q)V f Vq ; R0
, for all f�Lq (R0 ) ,

for each q� [q0 , 1Q) with q0Dexpm22 and mF2. Then

A : LQ , Q ; a (R0 )KLQ (R1 ) ,

and

VAf VQ ; R1
GcV f VQ , Q ; a ; R0

, for all f�LQ , Q ; a (R0 ) .

PROOF. – The proof is a consequence of Corollaries 4.3, 4.5 and [12, Theo-
rem 2.11.4, p. 84]. r

If we take m41, a421/a , with aD0 in part (i) of the previous Theorem,
we recover Theorem 5.1.

Now we present an extrapolation result involving the GLZ spaces
L1, 1 ; a (R), with a� R1

m , the proof of which is similar to that of Theorem 4.2
in [9].

THEOREM 5.3. – Let (R0 , m 0 ) and (R1 , m 1 ) be non-atomic finite measure
spaces. Let m�N , j0F2 and a , b� R1

m . Suppose A is an operator whose do-
main is M 0 (R0 , m 0 ) and whose range is contained in M (R1 , m 1 ) such
that:

(i) for every possible representation of f� M 0 (R0 , m 0 ) by f4 !
j4 j0

1Q

fj (con-

vergent m 0-a.e. on R0 ), with ] fj(j% M 0 (R0 , m 0 ), we have !
j4 j0

1Q

Afj convergent

m 12a.e. on R1 and the inequality

NAfNGN !
j4 j0

1Q

Afj N m 12a.e. on R1 ;(64)

(ii) for all p� (1 , 1Q) and all f�Lp (R0 ),

VAf Vp ; R1
Gcv b

mg 1

p21
h V f Vp ; R0

,(65)

where c is independent of f , p and b.
Then

VAf V1, 1 ; a ; R1
Gc 8 V f V1, 1 ; a1b ; R0

,(66)
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for all f�L1, 1 ; a1b (R0 ), for some constant c 8 independent of f , a and b.

PROOF. – Let j0F2. Fix f�L1, 1 ; a1b (R0 ) and f4 !
j4 j0

1Q

fj , with

!
j4 j0

1Q

v a1b
m ( j)V fj Vj 8 , R0

E1Q .(67)

We remark that !
j4 j0

1Q

Afj converges m 12a.e. on R1 , because by Hölder’s in-

equality and (65) we get

!
j4 j0

1Q

s
R1

NAfj Ndm 1Gc !
j4 j0

1Q

v a1b
m ( j)V fj Vj 8 , R0

,

and the rest it follows from (67) and from Theorem 1.38 in [15, p. 29].
Now, by (64), (65) and Theorem 4.2, we have

VAf V1, 1 ; a ; R1
G V !

j4 j0

1Q

AfjV
1, 1 ; a ; R1

Gc1 !
j4 j0

1Q

v a
m ( j)VAfj Vj 8 , R1

Gc2 !
j4 j0

1Q

v a
m ( j) v b

mg 1

j 821
h V fj Vj 8 , R0

Gc2 !
j4 j0

1Q

v a1b
m ( j)V fj Vj 8 , R0

.

Taking the infimum over all the decompositions of f we get (66). r

REMARK 5.1. – In the Theorem above we only need the condition (65) be
satisfied for all p such that 1EpGp0 , for some p0� (1 , 1Q), because in that
case we can consider j0 large enough. We could also replace (65) by the
condition

VAf Vp ; R1
Gcv b

mg p

p21
h V f Vp ; R0

,

for all p� (1 , 1Q) (or p� (1 , p0 ]) and for all f�Lp (R0 ), where c is a positive
constant independent of f , p and b .

Since the Hardy-Littlewood maximal operator satisfies part (i) of the pre-
vious Theorem trivially and condition (65) with m41 and b41, we recover
the result already known for the maximal operator, i.e.

M : L 1 ( log L)a11 (V)KL 1 ( log L)a (V) ,



J. S. NEVES266

and

VMfNL 1 ( log L)a (V)VGc2 V fNL 1 ( log L)a11 (V)V ,

for all f�L 1 ( log L)a11 (V), where aD0; see the literature mentioned in the
Introduction.
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