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Bollettino U. M. 1.
(8) 3-B (2000), 757-774

On Weighted Inductive Limits
of Non-Archimedean Spaces of Continuous Functions.

A. K. KATSARAS - V. BENEKAS

Sunto. — St studiano alcune proprieta di un certo limite induttivo di spazi non-archi-
medei di funzioni continue. In particolare, si esamina la completezza di questo li-
mite induttivo e st indaga il problema di quando lo spazio coincide con il proprio
mviluppo proiettivo.

Introduction.

Weighted spaces of continuous functions were introduced in the complex
scalar case by Nachbin in [24] and in the vector case by Prolla in [25]. Several
other authors have continued the investigation of such spaces. Papers [1]-[15],
[18]-[20], [24], [25] and many others refer to such spaces. Carneiro introduced
in [16] the non-Archimedean weighted spaces. Some problems related to p-
adic weighted spaces were studied in [21]-[23].

In this paper, for a decreasing sequence V = (v,,) of strictly positive upper-
semicontinuous functions on a topological space X, we study the weighted in-
ductive limit VC(X) and its projective hull CV(X), where V is the maximal
Nachbin family associated with ©. It is shown that VC(X) is the bornological
space associated with CV(X) and we examine the question of when these two
spaces coincide topologically. If © is regularly decreasing, we prove that the
topologies of VC(X) and CV(X) coincide on bounded sets and that the two
spaces have the same compactoid sets. In case Vc |C(X) |, it is proved that
CV(X) is bornological iff it is quasibarrelled. We also look at the problem of
whether VC(X) is complete.

1. - Preliminaries.

Throughout this paper, K will stand for a complete non-Archimedean
valued field whose valuation is non-trivial. By a seminorm, on a vector space £
over K, we will mean a non-Archimedean seminorm and a locally convex space
over K will be a non-Archimedean locally convex space. In case of a vector
space G over the field of real numbers R, the notions of seminorm on G and lo-
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cally convex topology on G are the usual ones. For a subset A of a locally con-
vex space E, we will denote by A° the polar of 4, in the topological dual space
E'’ of E, and by A the bipolar of A. The edged hull A°, of an absolutely con-
vex subset A of a locally convex space over K, is defined by A° = A, if the valu-
ation of K is discrete, and

A= N{1A: reK, |A] >1}

if the valuation is dense (see [26]). As it is shown in [26], A *° coincides with the
edged hull of the weak closure of A (if A is absolutely convex). The definition
of the inductive limit lim £,, of a sequence (£,) of non-Archimedean locally

convex spaces, is analogous to the one in the classical case (see [18]). For all
unexplained terms, concerning non-Archimedean spaces, we will refer to [26]
or [27].

Let now X be a topological space. The space of all continuous K-valued
functions on X will be denoted by C(X) while |C(X) | will be the set { |f] : fe
C(X)}. If v is a non-negative real function on X, then for fe K* or fe R* we
define q,(f) by

¢,(f) = sup {v(x) |f(x) | : xeX}.

Recall that a Nachbin family on X is a family V of non-negative upper-semicon-
tinuous (u.s.c.) real functions on X such that: a) V is directed in the sense that
if v, v, are in V and a > 0, then there exists v e V with v;, v,, av; < v (point-
wise on X). b) For each x € X there exists v in V with v(x) > 0. The weighted
space CV(X) is the space of all fin C(X) such that ¢,(f) < o for all vin V. We
will consider on CV(X) the locally convex topology 7y generated by the semi-
norms q,, veV.

2. — The spaces CV(X) and 9C(X).

Let © = (v,) be a decreasing sequence of strictly positive upper-semicon-
tinuous functions on X. By V = V(¥) we will denote the set of all non-negative
u.s.c. functions w on X for which there exists a sequence («,,) of positive real
numbers such that w < irgf a,v,. Clearly V is a Nachbin family. We will consid-

er on CV(X) the Nachbin topology 77. Also, for each % in the set of natural
numbers N, we will let Cv,(X) denote the space of all fin C(X) such that
q,,(f) < . With the norm ¢, , Cv,(X) becomes a non-Archimedean normed
space. We will denote by VC(X) the inductive limit h'_n)len(X ). We will only
sketeh the proof of the next proposition since it is analogous to the one in the
classical case.
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PROPOSITION 2.1. — a) CV(X) = VC(X) algebraically. b) A subset B of
CV(X) is bounded iff there exists an m such that B is a bounded subset of
Cv, (X).

PROOF. — Clearly ©C(X) is continuously injected into CV(X). Assume that
some bounded subset B of CV(X) is not bounded in any Cv,(X). Inductively,
we may choose a sequence (x,,) of distinct elements of X and a sequence (f,,) in
B such that v, (x,) |f,(x,) | >n, for all n. If

B, =max {v;(x)/v,(x;): j=1,2,...,n},

then v = inf 8, v, is in V and %(x,,) |/ () | = m, for all n, which is a contradic-
tion. It is clear now that the result follows.

Since VC(X) is bornological (as an inductive limit of bornological spaces),
we have the following

COROLLARY 2.2. — 1) VC(X) s the bornological space associated with
CV(X).

2) If D, = {feC(X): q, (f) <n}, then (D,) is a fundamental sequence
of absolutely convex bounded sets for both CV(X) and VC(X).

PropoSITION 2.3. = If hy, hs, ..., h, are in C(X), then there are f, g in C(X)
such that |f(x)| = ml?.X |y () | and |g(x) | = mkin |l () |, for all @ in X.

Proor. — Using induction on 7, it suffices to prove our result for n = 2.
Assume first that there is no x in X with h;(x) =hy(x) =0 and let
A={x: |h(x)|<|ha(x)]|}. Clearly A is closed. Also, A is open. Indeed, let
xgeA. The sets

A1= {90: |h1(9€)| < |h1(900)|} and A2= {90: |h2(ﬂ7)_h2(900) | < |h2(9€0)|}

are open and x,e A; N A,C A, which shows that A is open. If now f=h, on A
and f=h; on the complement A¢ of A, then f is continuous and |f| =
max { |h; ]|, |he]|}. Similarly, we may take g =, on A and g = hy on A°. In the
general case, let Y= {xeX: |hi(x)| + |he(x)| #0} and let g;=h; |y, i =
1,2. By the first part of our proof, there are f, § in C(Y) with | f | =
max{|g:|, |g2]}, | 9| =min{|g:]|, |g2| }. Define f, g on X by taking f= f and
g=g¢gonY while f=¢g=0o0n Y°. Since Y is an open subset of X, the functions
f, g are continuous at each point of Y. Also, they are continuous at each point
xe Y‘. Indeed, let (xs) be a net in X converging to x. Since %, &, are continu-
ous, given ¢ >0, there exists d, such that |h;(xs) |, |he(2s) | <e, if 0=,
and so |f(xs) |, |g(xs)| <& if 0 =0,. This clearly completes the proof.
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ProOPOSITION 2.4. — Let {f, hy, hs, ..., h,} cC(X) be such that
|f] < max{|hy|, 2|, ---s |Pa]}-

Then, there exist fi, ..., f, tn C(X) with |fi| < |h| and f=f+ ... +f,.

ProoF. — In view of the preceeding Proposition, there exists g in C(X) with
lg| =max{|h]|, ..., |hy—1]}. It follows from this that it suffices to prove the
result for n =2. Let Y= {xeX: |hi(x)| + |he(x)| #0}. Assume first that
Y = X and let A be as in the proof of the preceeding Proposition. If f; is defined
on X by f; = fon A and f;, = hy on A, then f; is continuous and |f3| < |kz| . Also,
if fi=f—1/z, then |fi| < |k |, which proves the result when Y=X. If Y = X,
let g;=h;|y, 1=1, 2, g=f|y. By the first case, there are w;e C(Y), |w;| <
|9i|, g = w; + w,. Extend w; to a function f; on all of X by taking f; =0 on Y.
Then f; is continuous on X, |f;| < |k;i|, f=A +fo.

PROPOSITION 2.5. — Assume that X is a zero-dimensional locally compact
a-compact topological space and that Vc |C(X) |. Then, for each VeV there
exists we VN |CX)| strictly positive with v < 7.

Proor. — Let (a,) be a sequence of positive numbers such that v <
irn1f a,v,. Assume first that X is compact. Since ¥ is u.s.c., there exists a non-

zero element u of K with |u| = sup v(x). Let g € C(X) with g(x) = u for all x in
reX
X. Then |g| eV since in§ v, (x) >0 for all n, which proves the result in this

case. Consider next the case when X is not compact. Our hypothesis on X im-
plies that there exists an infinite sequence (Y,,) of clopen compact subsets of X
covering X and such that each Y, is a proper subset of Y, , ;. For each », let
h, € C(X) with |k, | =v,. Choose inductively a sequence («,,) in K with |u, | =a,
and

|u, |inf{v,(@): xeY,} Zsup{|u;|v;(x): x€Y,_1, j=1,...,n—1}

for n=2. In view of Proposition 2.3, there exists g, in C(X) with |g,| =
min |u,h;|. Let ¢, be the K-characteristic function of Y, \Y,_;, where
(2

1<ks<n

Yy=0, and let g = En: @ .9y, Clearly g is continuous. Also, |g| < |u,|v, for all
n. Indeed, let xeX, xeY,\Y, _:. Then g(x) =g, (x). If m=mn, then
|gm (@) | < |y |v, (), while for m<mn we have |g,(@)]| < |wyh,(®)]| <
|t | v, (), which proves that |g| < |u,|v,. Finally, |g| = 7. In fact, let x e
Y, \Y,,_1. There exists 1 <k <m such that |g(x)| = |9, () | = |ur|vi(2x) =
a,vp(x) = v(x). This clearly completes the proof.
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LEMMA 2.6. — If v is a strictly positive u.s.c. function on X, then for each
reK, with |A|>1, there exists ¢ € KX such that |¢| is w.s.c. and |p|<v<|Ag|.

Proor. — For each integer m, let D,, = {x:v(x) = |A|™}. Then D,, is
closed and U{D,,: m integer} = X. Define ¢ : X— K by taking ¢(x) =1" if
xeD,\D,,,;. Then |¢| is wus.c. Indeed, for ¢ a real number, set B, =
{x: |¢px)| =¢e}. If e<0, then B, = X. Assume that £ >0 and let m be such
that |[A|™ <e< |A|™*'. Then B,=D,, ;. Thus B, is closed, for all ¢, and so
|| is us.c. Also, |¢| <v<|A¢|. Indeed, if xeD,,\D,, .1, then |p(x)| =
A" <o) < [A]"F = |Ag(x) |-

PROPOSITION 2.7. — Assume that the valuation of K is dense and let V=
(v,) be a decreasing sequence of strictly positive functions on X. If A is any
element of K with |A| > 1, then there exists a decreasing sequence W = (w,)
of strictly positive u.s.c. functions on X such that:

(@ w,(X)c |K|, for all neN.

(b) The maximal Nachbin families V, W, which correspond to © and &
respectively, coincide.

(@) w, <v, < |A|w,, for all n.

(d) Cv,(X) =Cw,(X) topologically.

Proor. — Choose inductively a sequence (4,) in K with |1,|>1 and
[A1ds...4, | <|4], for all n. By the preceeding Lemma, there exists a se-
quence (¢,) in KX such that |¢.| is us.c and |¢p,| <v,<|1,¢,]| for all n.
Let wy, = |¢:| and w, 1= |A1A2...4,| ' |$pn+1]| for all neN. Since

wnJrlS |/‘L1/‘L2---/1n|_lvn+lS |]~1}~2“~}~n|_lvns |/‘L1/’L2---/11271|_1 |¢n| = Wy,

the sequence (w,) is decreasing and clearly w,(X)c |K|. Also, w,<v, <
|/11/12 }'n |?/Un < |/1|wn.
This proves (a) and (c), while (b) and (d) follow easily from (c).

PROPOSITION 2.8. — Assume that the valuation of K is discrete and let © =
(v,) be a decreasing sequence of strictly positive u.s.c. functions on X. If 0 > 1
18 the generator of the value group of K, then there exists a decreasing se-
quence W = (w,) of strictly positive functions on X such that:

(@) w,(X)c |K| for each n.

(©) w, <v, <ow,.
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(e) The maximal Nachbin families V, W which correspond to ) and 9,
respectively, coincide.

(d) Cv,(X) =Cw,(X) topologically.

ProOF. — There exist A K with |1| =9¢. By Lemma 2.6, for each neN,
there exist ¢, € K* such that |¢, | is u.s.c. and |¢, | Sv,<0|¢,|. Take w, =
|¢.|. The sequence W= (w,) is decreasing since |¢, ()| <v,.1(x) <
v,(x) <o|¢p,(x)| and so |@,.1(x)| < |¢,(x)|. This proves (a) and (b).
It is easy to see that (c) and (d) follow easily from the fact that w, < v, <ow,
for all n.

3. — Completeness of VC(X).

Let V= (v,) and V be as in the preceeding section. For each n, let
lo(v,, K)={feK*: q, (f) <}
and
lo(v,, R) ={ueR*: q, (u) < »}.

If we consider on ., (v,, R) the norm g, , then it becomes a Banach space. Sim-
ilarly, [, (v,, K) with the non-Archimedean norm ¢, is a non-Archimedean
Banach space. We will denote by k. (V, R) the inductive limit lim/.. (v,, R).
Similarly, we define

ko (9, K) =liml.. (v,, K).
Let
K.(V,K)={feK": q;(f) < o for all 9V}
and
K..(V,R)={uecR¥: g;(u) < » for all veV}.

On each of the spaces K., (V, K) and K., (V, R) we consider the locally convex
topology generated by the seminorms ¢;, veV. It is well known that
K.(V,R)=k,(¥,R) algebraically. Also, in view of Proposition 2.1,
K.V,K)=k,(9 K) algebraically and they have the same bounded sets.
Also, the topology 77 of K., (V, K) is coarser than the inductive topology of
ko (9, K).

ProrosiTION 3.1. — Let (f,) be a net in k.(V, K). Then: 1) f,—0
ko (0, K) tf |f,| =0 k.. (O, R). 2) If (f,) ts a Cauchy net in k., (), K), then
(1f2]) s @ Cauchy net in k.(9, R).
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PrOOF. — 1) Assume that f,— 0 and let W be an absolutely convex neighbor-
hood of zero in k., (V, R). For each n, there exists a positive number ¢,, such that
W,={ueR*: q, (u)<e,}cW.

Set

Dy = {feK*: q,(f) <e&,/2"}
and
D=U > D,.
noE=1
Since D is a convex neighborhood of zero in k. (Y, K), there exists a, such
that f,eDif a=a,. Let f=f +... +f, with fre Dy, k=1, ..., n. Then |f| <
max { |fi], ..., |f,|}. There are u,, ..., u, in R, with 0 <wu; < |f;|, such that
|[f| =w; +... +u,. Since 25w, e W,,, it follows that lf] = > 2782k ) e W
k=1

since W is absolutely convex. Thus, |f,| € W, for a = a,, which proves that
|fi| = 01in k. (O, R). Conversely, assume that |f,| —01in k.. (0, R) and let W,
be a convex neighborhood of zero in k. (Y, K). Let d, >0 be such that

Z,={fele(,, K): q, () <d,}cW,.

The set W=U > Z,, (which is contained in Wy) is a convex neighborhood of
" k=1
zero in k. (0, K).

Claim I: The set W is solid, ie. if fe W and if g K* with |g| < |f|, then
geW. Indeed, f= 2 f, with f, € Z,. In view of Proposition 2.4, there are g, e
k=1
K% |ge| < |fil, 9=91+ ... + gu, and so ge W since g€ Z;.

Claim II: The set

D= {ueR*: 3fe W with |u| < |f]}

is a neighborhood of zero in k., (¥, R). Indeed, let 1 € K, with |A| > 1, and let
uweR* with ¢, (u) < |A| "'d,. For each x € X, there exists u,e K with |u,| <
w(@) < |Au,|. If fe K, f(x) = Au,, then fe Z, and so ueD since |u| < |f].
Since we can prove that, for any f, g in W, there exists » in W with |k| =
max {|f|, |g|}, it follows easily that is absolutely convex and so D is a neigh-
borhood of zero in k. (9, R).

Since now |f,| = 01in k. (¥, R), there exists a such that |f,| e D if a = a,.
For each such «a, there exists fe W with |f,| < |f| and so f, € W by claim I.
This completes the proof of 1).

2) Let (f,)qca be a Cauchy net in k., (V, K) and order 4 =A X A by
(ay, B1) = (a, p) iff ay=Za and B, =p. For 6 =(a, p) ed, set g, =1, — f;.
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Then g,—0 in k.. (¥, K) and so |gs| —0 in k. (0, R). Since || f,]| — |fz] | <
|9s| and since k., (V, R) has a base at zero consisting of solid sets, it follows
that the net (|f,|) is Cauchy in k. (¥, R).

THEOREM 3.2. — The space k., (O, K) is complete.

PRrOOF. — Since for each x e X there exists ¥ in V with v(x) > 0, it follows
easily that K., (V, K) is complete. Let now (f,) be a Cauchy net in k., (0, K).
Then (f,) is 77~Cauchy and hence (f,) is 77-convergent to some fe KX since
K. (V, K) is complete. Let g, =f, — f. Then (g,) is a Cauchy net in k., (9, K)
and so (|g,|) is a Cauchy net in k., (¥, R) by the preceeding Proposition. But
k. (9, R) is complete (see [10]). Thus, there exists u e R* such that |9, = u
in k., (U, R). Since the topology of k.. (V, R) is finer than the topology of sim-
ple convergence, we have that |g,(x) | = u(x) for all x € X. Also, since for each
xeX there exists v e V with B(x) =1, the topology 7y of K., (¥, K) is finer
than the topology of pointwise convergence. Since (g,) is Ty-convergent to
zero, we have that g,(x) — 0 for each x. It follows that = 0. Thus |g,| —0 in
ko (Y, R) and so g,—0 in k., (U, K) by Proposition 3.1. This completes the
proof.

PROPOSITION 3.3. - If k.. (¥, R) = K., (V, R) topologically, then k.. (9, K) =
K. (V, K) topologically.

PRrROOF. — Let (f,) be a net in K, (V, K) which converges to zero. Then
|f.| = 0in K., (V, R). By our hypothesis, |f,| —=0in k. (¥, R) and so f,—0 in
k. (¥, K) in view of Proposition 3.1. Since the topology of K., (V, K) is always
coarser than the one of k. (Y, K), the result follows.

PrOPOSITION 3.4. — If each v, is continuous, then VC(X) is a closed subset
of k. (9, K).

ProOF. — Let f be in the closure of VC(X) in &k, (0, K) and let ;e X. We
will prove that f is continuous at x,. Let ¢ >0 be given and set

D,={geK*: q,(9) <ev,(29)/2}

D = U E Dk.
m =1
Since D is a neighborhood of zero in k. (V, K), there exists g e VC(X) with

f—geD and so f—ge >, D, for some m. Let
k=1

7 = [kﬂl {reX: vy (x)> vk(acg)/Z}] N{a: |gx) —glxy) | <e}.
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Then, Z is a neighborhood of x, in X. Let h,eD,, f—g=h + ... + h,,. Since
|y | < evip()/(2v)), we have that |k, (x)| <e for each xeZ and so |f(x) —
g(x)| <e for xeZ. Thus

[f(@) = f(ao) | < max {|f(@) —g(@) |, |g(x)—g(@o)|, |gxo) —flwo) |} <e

at every point of Z. This clearly completes the proof.
Recall that a topological space X is said to be ultranormal if any two dis-
joint closed subsets of X can be separated by disjoint clopen sets.

LEMMA 3.5. — Let X be ultranormal and let {4, ..., A, } be a finite open
cover of X. Then, tl%m*e are pointwise disjoint clopen subsets Dy, ..., D, of X

with DkCAk and kL—Jle =X.

Proor. — We will use induction on . For n = 2, the result follows directly
from the definition of ultranormality. Assume that the result holds for n =m
and 7}@et n=m + 1. There are disjoint clopen sets D,,,, D with D,, , ,CA,, ; 1,

Dc LlJAk, D,,.1UD=X. Set
B,=DNA)UD, ., k=1,2,...,m.
By our induction hypothesis, there are pairwise disjoint clopen sets Ci, ..., C,,
with C,cB, and G C,=X. Now it suffices to take D,=C,ND} ., for
k=1,...,m. !
PropPoSITION 3.6. — Assume that one of the following two conditions

holds
(a) For each n, there exists h,e C(X) with v, = |h,|.

(b) X is ultranormal.
Then: 1) The family of all subsets of VC(X) of the form

W,=U{feCX):sup min ayv.(o)|f)| <1,

where a runs through the family of all sequences o = (a,) of positive num-
bers, 1s a base at zero i VC(X).

2) VC(X) is a topological subspace of k. (V, K).

Proor. — 1) We first observe that W, is a neighborhood of zero in VC(X).
On the other hand, let W be a convex neighborhood of zero in VC(X). For each
n, there exists a non-zero u, in K such that

W, ={feCX): q, (f) < |u,| '}cW.
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Let |[A| >1, a, = |Au,]|, a=(a,) and fe W,. There exists m such that

sup min o, v, (@) [fx)| <1.

If xeX, then there exists k, 1<k=<m, with a,v,(x)|f(x)| <1 and so
|wr |ve|f(®) | < |4] 7' <1. Each of the sets

Ap={a: |up|v(@) |f(x)] <1}
is open and LlJAk = X. In case (a) each A4, is clopen vynhile in case (b) there are
pairwise disjoint clopen sets By, ..., B,,, B,CA4,, LlJBk =X. In both cases,

there are pairwise disjoint clopen sets Dy, ..., D,, covering X with D, c A;. Let
fi. =@ f, where ¢ is the K-characteristic function of D,. Then f;, e W, and so
f=fi+... +f,eW, which proves that W,cW.

2) It follows easily from 1).
Combining Theorem 3.2 with Propositions 3.4 and 3.6, we get the
following

THEOREM 3.7. — Assume that one of the following two conditions
holds:

(a) For each n, there exists h,e C(X) with |h, | =v,.

(b) X is ultranormal and each v, is continuous.
Then: 1) VC(X) is a closed topological subspace of k., (V, K).

2) VC(X) is complete.

4. — Bornological CV(X) spaces.

Let © = (v,) and V be as in section 2. By Corollary 2.2, ©C(X) is the
bornological space associated with CV(X). In this section, we will look at the
question of when CV(X) is bornological, i.e. when VC(X) = CV(X) topologi-
cally. We recall the following

DEFINITION ([11]). — The sequence V satisfies condition (D) if there exists
an increasing sequence J = (X,,) of non-empty subsets of X such that:

(NJ) For each mneN, there exists m=mn in N such that
in}f(‘ v, () /v, () >0 for all k>m.

T ey

(MJ) For each n' e N and each subset Y of X which is not contained in
any X,,, there exists m’'=m'(n’, Y) such that /ingvmr(x)/vﬂf(ac) =0.
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PROPOSITION 4.1 (see [1]). — The following are equivalent:
1) © satisfies condition (D).

2) For each sequence (A,) of non-zero elements of K, there exists v in V
such that, for each non-zero u in K and each meN, there exists n such
that

() min{|u|/vy, 1/1_)}$1g1]?§ | Ak |/Vk.

ProOF. — In view of Proposition 2.7, we may assume that, for each n, v, =
|¢,| for some ¢,eK*. Assume that © satisfies condition (D), then
K.(V,R)=k,(¥, R) topologically, by the main Theorem in [1], and so
K. (V,K) =k, (9, K) topologically by Proposition 3.3. Let now (1,) be a se-
quence of non-zero elements of K. Set

Dn:{fezoo(vmlf):qvﬂ,(f)S |}~n|}7 VVn:kZle'

The set W = 9 W, is a convex neighborhood of zero in k., (¥, K) and thus it is
also a neighborhood of zero in K, (V, K). Let v eV be such that

{feK.V,K): q;(f)<1}cW.

Given A€ K with |1| > 1, there exists ¢ € K* such that |¢| is ws.c. and
|| <v<|A¢| (by Lemma 2.6). Taking |A¢| in place of 7, we may assume
that v=|A¢|. Let A= {x:v(x)<v,(x)/|u|} and take heK*, hx)=
e, (x) if e A and h(x) = [Ap(x)] ' if x ¢ A. Then |h| = min { |u|/v,,, 1/7}.
(Note that, if v(x) = 0, we take 1/v(x) = »). Now ¢;(k) <1 and so he W, for
some n. Let f,e D, be such that h= > f.. Then |h| < max |4k |/vp since

k=1 <ksmn
[fis| < [4x|/vx. Conversely, assume that (2) is satisfied. Since  nax | A |/v <

> | Ak |/v, it follows that © satisfies condition (D) by the main Theorem in [1].
k=1

THEOREM 4.2. — Assume that Vc |C(X)|. Then:
(a) If © satisfies condition (D), then CV(X) is bornological.

(b) If; for each © € V, there exists v e VN |C(X) | with © = o, then CV(X)
s bornological iff © satisfies condition (D). In particular, if X is a zero-di-
mensional locally compact o-compact space, then CV(X) is bornological iff
condition (D) is satisfied.

Proor. — (a) Assume that O satisfies condition (D) and let W be a convex
neighborhood of zero in VC(X). For each n, there exists a non-zero element
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A, of K such that A,A,cW, where
A, ={feCv,(X):q,(f)<1}.

Set A= U E Az A,. By the preceeding Proposition, there exists ¥ € V such
that, for each non zero u in K and each m, there exists » such that ( #) holds.
We claim that

{feCVX): q(f)S1}cW.

Indeed, let ¢z (f) < 1. Since A is absorbing, there exist a positive integer m
and u # 0 such that feuA,,. Let n be such that () holds. Then

|f| gmin{lﬂvvm’ 1/5} S 11’<nI?§ |/lk|/vk'

Since Vc |C(X) |, there are (by Proposition 24), f,eA,, k=1, ..., n, such
that f=1,fi+... + 1, f, and so fe Ac W. This clearly completes the proof of
(a).

(b) Assume that each ¥ € V is dominated by some element of V' N |C(X) |
and that CV(X) is bornological. Let (1,) be a sequence of non-zero elements of
K and set

Z=U X 1,4,
" k=1

where A, is as above. Since A is a convex neighborhood of zero in VC(X), our
hypothesis implies that there exists 7€V N |C(X)| such that

H={feCVX): ¢z(f)<1}cZ.

Let now u # 0 and let m be a positive integer. By Proposition 2.3, there exists
feC(X) such that |f| = min{|u|/v,, 1/v}. Then, fe H and so fe Z. Let n be

such that f= X A, f; with f, € A;. Since |4, fi| < |Ax|/v, we have that
k=1
Il <

S max | Ak | /v

Now the result follows from the preceeding Proposition.

PRrOPOSITION 4.3. — Let V be a Nachbin family on the zero-dimensional
topological space X and assume that, for each xeX, there exists fe CV(X)
with f(x) 0. If u, v are non-negative u.s.c. functions on X such that

{feCVX): q,(f) s1}c{feCVX): q.(f) <1},
then, for each €K with |A| >1, we have u < |A|v.
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ProOF. — Assume that u(xy) > |A|v(xg). Choose u e K with |u| <u(xy) <
|Au| and so v(xg) < |u| <u(xy). Since v is u.s.c. and X zero-dimensional, there
exists a clopen neighborhood Z of x, in X such that v(x) < |u| if x e Z. By our
hypothesis, there exists fe CV(X) with f(x;) # 0. The set

A={x:|f@)] = |flx)]|}

is clopen. Define g on X by g(x) =u ' if xeZNA, g(x) = [uf(xy)] 1f if
reZNA°and g(x) =0 if x¢Z. Then ¢ is continuous and ge CV(X) since
lg| < |uf(xo)| " |f]. Moreover, ¢,(¢) <1, which is a contradiction since
u(xg) |9(900) | >1.

_LEMMA 4.4. -] 'f X is zero-dimensional, then for each x in X there exists fin
CV(X) with f(x) =0.
ProOF. — For x,e X, the set
D={xeX:v(x)<2v(xy)}
is open. Let Z be a clopen neighborhood of «x, contained in D. Now it sufficies

to take as f the K-characteristic function of Z in X.

PROPOSITION 4.5. — If X is zero-dimensional, then V satisfies condition (D)
iff bounded subsets of CV(X) are metrizable.

ProoF. — By [2, Corollary 1.2.6], condition (D) is equivalent to the following
condition:

(1) There exists an increasing sequence (v,) in V such that, for every
neN and every D eV, there exists m such that ¥ < sup {7,,, v, }.

Assume now that (D) is satisfied and let (v,,) be as in (1). If B is a bounded
absolutely convex subset of CV(X), then there exists # such that

BcD={feCX):q,(f)<n}.
Given v e V let m be such that nv < sup{v,,, v,}. Now
W={feCV(X): q;,(f)S1}NBc{f:q(f)<1}.

This clearly proves that B is a metrizable subset of CV(X). Conversely, as-
sume that each bounded subset of CV(X) is metrizable. For each %, the set
B,={feCX):q, (f) <1} is bounded in CV(X) and thus there exists a se-
quence (Vy, y)men in V such that the sets

D, ,.=B,N{feCV(X): %, . (f)<1}, meN,

is a base at zero in B,. Let (w;) be any arrangement of the double sequence
@y, m)n, m» and set v,, = max {w,, ..., w,, }. Then (¥,,) is an increasing sequence
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in V. Given ne N and 7 €V, there exists m such that

B,N {fECV(X): %m(f)SI}C{f: ¢ (f) < |/1|_1}7

where |A|>1. If w=max{v,, v, }, then

{FeCVX): qu(H) <1Ic{f: ()< |2] '}

In view of Lemma 4.4 and Proposition 4.3, we have that ¥ < w. Thus condition
(1) is satisfied and so © satisfies condition (D). This completes the proof.

ProposITION 4.6. — If Vc |C(X) ]|, then CV(X) is bornological iff it is
quasi-barrelled.

PROOF. — Assume that CV(X) is quasi-barrelled and let W be an absolutely
convex bornivorous subset of CV(X). Let B, = { fe C(X): q,,(f) <1}. Each
B, is bounded in CV(X) and so u, B, c W for some non-zero u, in K. Let D, =

kl:Jl,u kB Since Vc |C(X) |, using Proposition 2.4 we get that
D, = {feCOO: |f| < max |ug|/u}.

Since, for each x € X, there exists ¥ in V with v(x) > 0, it follows that the weak
topology of CV(X) is finer than the topology of pointwise convergence and so

D, is weakly closed in CV(X). If D = !1 D,, then D is a neighborhood of zero
in CV(X) since CV(X) is quasi-barrelled. We claim that

Dc U Dicib,

for |A| > 1. Indeed, assume that some fe D is not in any D/. Since D} =D,
there exists ¢, eD, with |¢,(f)| >1. The set H= {¢,: neN} is strongly
bounded in the dual space of CV(X). Indeed, let B be a bounded subset of
CV(X). There exist meN and u# 0 such that BcuB,,. If fe B and n=m,
then feu,'D, and so |¢,(f)| < |un'|. This clearly proves that H is ab-
sorbed by B° and so H is strongly bounded. Since CV(X) is quasi-barrelled, it
follows that H is equicontinuous and so its polar H° in CV(X) is a neighbor-
hood of zero. Since fe D, there exists #n and g € D,, such that f — g € H°, which
is a contradiction since |¢,(¢g)| <1 and |¢,(f)|>1. This contradiction
proves that AD (and hence D) is a neighborhood of zero in CV(X) and so W is
also a neighborhood of zero. Hence the result follows.

For a locally convex topology on a vector space E over K, we will denote by
7’ the associated barrelled topology.

ProrosITION 4.7. — If ©c |C(X) |, then VC(X) coincides with the barrelled
space associated with CV(X).
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PROOF. — Let 7 = 77 be the topology of CV(X) and let 7,,; be the inductive
topology of VC(X). Since v, is continuous, it follows easily that Cv, (X) is a Ba-
nach space and VC(X) is barrelled. Since r < Ty, it follows that 7 < t° < 7,,.

If B,={feCX): q,,(f) <1} then each Z A By, is weakly closed in CV(X)

and hence it is weakly closed in (CV(X), b) = (7. With the same argument as
in the proof of Proposition 4.6, it follows that G is bornological and so 7° = 7;,4.
Thus the result follows.

Recall that an inductive limit £ = hgl E, is called strongly boundedly re-
tractive if: a) It is regular, i.e. each bounded subset of E' is a bounded subset of
some E,,.

b) For each n, there exists m = n such that for each bounded subset B of
E, we have that t|g = 7,, |5, where 7 is the inductive topology of £ and 7,, the
topology of E,,.
We also recall the following definition:
The sequence © = (v,) is regularly decreasing (see [12], Definition 2.1) if,
given n € IV, there exists m = n such that, for every ¢ > 0 and every k = m, we
can find 0 =d(k, ¢) >0 with v,(x) = ov,(x) whenever v,,(x) = ev, (x).

PropoSITION 4.8 ([12], Proposition 2.2). — The sequence © = (v,) 1S requ-
larly decreasing iff the following condition is satisfied:

(wV) For every ne N, there exists m = n so that, for every ¢ > 0, there is
some VeV such that v,,(x) < ev,(x) whenever v(x) <v,,(x).

PROPOSITION 4.9. — If © = (v,) is reqularly decreasing, then for each neNN,
there exists m =n so that, on each bounded subset A of Cv,(X), the topology
mduced on A by the topology t,, of Cv,,(X) coincides with the topology in-
duced on A by the topology tv of CV(X) and by the topology Tia of
VC(X).

ProoF. — Let n e N and let m = n be as in the condition (wV). Let A be an
absolutely convex bounded subset of Cv,(X). Let 7,, be the topology of
Cv,,(X), Ty the topology of CV(X) and 7., the inductive topology of VC(X).
Clearly Ty |4 <7 |a=<7m|a. On the other hand, let e >0 and let

W= {feCX):q,, (f)<e}.
Let d = sup g, (f). By condition (wV), there exists v e V such that v, (x) <
feA
(e/d) v, (x) if v(x) <v,,(x). Set

D={feCV(X): qo(f) <e}.

We will finish the proof by showing that D N Ac W. Indeed, let fe D N A and
assume that f¢ W. Then, there exists xeX with |f(x)|v,(x) >e. Since
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|f(@) | v(x) < ¢ (f) < e, we have that ¥(x) <v,,(x) and so v,,(x) < (&/d) v, ().
Thus

&

&
V(@) |f(2) | < Evn(x) |f(x) | < dqvn(f) <e,
a contradiction. This completes the proof.

ProPOSITION 4.10. — Assume that V= (v,) is regularly decreasing.
Then:

1) On each bounded subset of VC(X) the topologies of CV(X) and
VC(X) coincide.

2) VO(X) and CV(X) have the same compactoid sets.

3) The inductive limit VC(X) = h_r)nCvn(X ) is compactoid regular.

4) The inductive limit h_r)n Cv,(X) s strongly boundedly retractive.

Proor. — 1) It follows from the preceeding Proposition in view of Proposi-
tion 2.1.

2) Let A be a compactoid subset of CV(X). We may assume that A is ab-
solutely convex. There exists % such that A is a bounded subset of Cv,(X). By
the preceeding Proposition, we have that Ty = 7,4 on A. Since A is absolutely
convex and ty-compactoid, it follows that it is also 7,,4,-compactoid.

3) Let A be an absolutely convex 7,q-compactoid. There exists » such
that A is a compactoid subset of Cv,(X). By the preceeding Proposition, there
exists m =n such that 7,, = 75,4 on A. It follows that A is a compactoid subset
of Cv,,(X).

4) It follows from the preceeding Proposition.

ProposITION 4.11. — If X s zero-dimensional, then © = (v,) is reqularly
decreasing iff the following condition is satisfied: For each ne N, there exists
m =n such that ty=1,, on each bounded subset of Cv,(X).

ProOOF. — In view of Proposition 2.8, we may assume that, in case the valua-
tion of K is discrete, we have that v, (X) c |K| for all n. Suppose now that the
condition is satisfied and let n e N. Choose m = n as in the condition. Given
e >0, there exists 7 e V such that

(=) {feCVX): (N <1}N{f:q,(f)sVe}c{f:q, () <1}.
Assume now that, for some x, in X, we have v(x,) <v,,(x;) and ev,(x;) <
v, (). Choose ueK such that v(x) < |u| <v,,(x) and ev,(x) < |u| <
v,,(y). The set

O={xeX:0(x) <|u|}Nn{x:ev,(®) <|ul}
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is open. There is a clopen neighborhood A of x, contained in O. Let f=u "'¢,
where ¢ is the K-characteristic function of A. Then ¢;(f) <1 and g, (f) <1/e
while g, (f) =v,,(x)/|u| =1, which contradicts (*). Thus © satisfies condi-
tion (wV) and so it is regularly decreasing by Proposition 4.8. This and Propo-
sition 4.9 complete the proof.

PRrOPOSITION 4.12. — Let X be locally compact and assume that in£ v, () >0,

for each n e N and each non-empty compact subset Y of X. If © = (v,,) is regu-
larly decreasing, then CV(X) and VC(X) are quasi-complete.

PRrOOF. — Since every point of X has a compact neighborhood and since
in£ v, (x) > 0 for each non-empty compact subset Y of X, it follows easily that
xre

each Cv,(X) is a Banach space. Let now A be a closed absolutely convex
bounded subset of CV(X). There exists n such that A is a bounded subset of
Cv,(X). Since V is regularly decreasing, there exists (by Proposition 4.4) an
m = n such that v, 75,4 and 7,, induce the same topology on A. Let now (f) be
a ty-Cauchy net in A. Then, (fs) is 7,,-Cauchy and so f; —f, with respect to
T, for some fe Cv,,(X). Then fs— f with respect to 7y and fe A since A is 7y~
closed. This proves that CV(X) is quasi-complete. The proof of VC(X) is
analogous.
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