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On Weighted Inductive Limits
of Non-Archimedean Spaces of Continuous Functions.

A. K. KATSARAS - V. BENEKAS

Sunto. – Si studiano alcune proprietà di un certo limite induttivo di spazi non-archi-
medei di funzioni continue. In particolare, si esamina la completezza di questo li-
mite induttivo e si indaga il problema di quando lo spazio coincide con il proprio
inviluppo proiettivo.

Introduction.

Weighted spaces of continuous functions were introduced in the complex
scalar case by Nachbin in [24] and in the vector case by Prolla in [25]. Several
other authors have continued the investigation of such spaces. Papers [1]-[15],
[18]-[20], [24], [25] and many others refer to such spaces. Carneiro introduced
in [16] the non-Archimedean weighted spaces. Some problems related to p-
adic weighted spaces were studied in [21]-[23].

In this paper, for a decreasing sequence V 4 (vn ) of strictly positive upper-
semicontinuous functions on a topological space X , we study the weighted in-
ductive limit V C(X ) and its projective hull CV(X ), where V is the maximal
Nachbin family associated with V. It is shown that V C(X ) is the bornological
space associated with CV(X ) and we examine the question of when these two
spaces coincide topologically. If V is regularly decreasing, we prove that the
topologies of V C(X ) and CV(X ) coincide on bounded sets and that the two
spaces have the same compactoid sets. In case V %NC(X )N , it is proved that
CV(X ) is bornological iff it is quasibarrelled. We also look at the problem of
whether V C(X ) is complete.

1. – Preliminaries.

Throughout this paper, K will stand for a complete non-Archimedean
valued field whose valuation is non-trivial. By a seminorm, on a vector space E
over K , we will mean a non-Archimedean seminorm and a locally convex space
over K will be a non-Archimedean locally convex space. In case of a vector
space G over the field of real numbers R , the notions of seminorm on G and lo-
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cally convex topology on G are the usual ones. For a subset A of a locally con-
vex space E , we will denote by A o the polar of A , in the topological dual space
E 8 of E , and by A oo the bipolar of A . The edged hull A e , of an absolutely con-
vex subset A of a locally convex space over K , is defined by A e 4A , if the valu-
ation of K is discrete, and

A e 4O]lA : l�K , NlND1(

if the valuation is dense (see [26]). As it is shown in [26], A oo coincides with the
edged hull of the weak closure of A (if A is absolutely convex). The definition
of the inductive limit lim

K
En , of a sequence (En ) of non-Archimedean locally

convex spaces, is analogous to the one in the classical case (see [18]). For all
unexplained terms, concerning non-Archimedean spaces, we will refer to [26]
or [27].

Let now X be a topological space. The space of all continuous K-valued
functions on X will be denoted by C(X ) while NC(X )N will be the set ]NfN : f�
C(X )(. If v is a non-negative real function on X , then for f�KX or f�RX we
define qv ( f ) by

qv ( f ) 4 sup ]v(x)Nf (x)N : x�X( .

Recall that a Nachbin family on X is a family V of non-negative upper-semicon-
tinuous (u.s.c.) real functions on X such that: a) V is directed in the sense that
if v1 , v2 are in V and aD0, then there exists v�V with v1 , v2 , av1 Gv (point-
wise on X). b) For each x�X there exists v in V with v(x) D0. The weighted
space CV(X ) is the space of all f in C(X ) such that qv ( f ) EQ for all v in V . We
will consider on CV(X ) the locally convex topology t V generated by the semi-
norms qv , v�V .

2. – The spaces CV(X ) and V C(X ).

Let V 4 (vn ) be a decreasing sequence of strictly positive upper-semicon-
tinuous functions on X . By V 4 V(V) we will denote the set of all non-negative
u.s.c. functions w on X for which there exists a sequence (a n ) of positive real
numbers such that wG inf

n
a n vn . Clearly V is a Nachbin family. We will consid-

er on CV(X ) the Nachbin topology t V . Also, for each n in the set of natural
numbers N , we will let Cvn (X ) denote the space of all f in C(X ) such that
qvn

( f ) EQ . With the norm qvn
, Cvn (X ) becomes a non-Archimedean normed

space. We will denote by V C(X ) the inductive limit lim
K

Cvn (X ). We will only
sketch the proof of the next proposition since it is analogous to the one in the
classical case.
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PROPOSITION 2.1. – a) CV(X ) 4 V C(X ) algebraically. b) A subset B of
CV(X ) is bounded iff there exists an n such that B is a bounded subset of
Cvn (X ).

PROOF. – Clearly V C(X ) is continuously injected into CV(X ). Assume that
some bounded subset B of CV(X ) is not bounded in any Cvn (X ). Inductively,
we may choose a sequence (xn ) of distinct elements of X and a sequence ( fn ) in
B such that vn (xn )Nfn (xn )NDn , for all n . If

b n 4 max ]vj (xj ) /vn (xj ) : j41, 2 , R , n( ,

then v 4 inf b n vn is in V and v(xn )Nfn (xn )NFn , for all n , which is a contradic-
tion. It is clear now that the result follows.

Since V C(X ) is bornological (as an inductive limit of bornological spaces),
we have the following

COROLLARY 2.2. – 1) V C(X ) is the bornological space associated with
CV(X ).

2) If Dn 4 ] f�C(X ) : qvn
( f ) Gn(, then (Dn ) is a fundamental sequence

of absolutely convex bounded sets for both CV(X ) and V C(X ).

PROPOSITION 2.3. – If h1 , h2 , R , hn are in C(X ), then there are f , g in C(X )
such that Nf (x)N4 max

k
Nhk (x)N and Ng(x)N4 min

k
Nhk (x)N , for all x in X .

PROOF. – Using induction on n , it suffices to prove our result for n42.
Assume first that there is no x in X with h1 (x) 4h2 (x) 40 and let
A4 ]x : Nh1 (x)NGNh2 (x)N(. Clearly A is closed. Also, A is open. Indeed, let
x0 �A . The sets

A1 4 ]x : Nh1 (x)NGNh1 (x0 )N( and A2 4 ]x : Nh2 (x)2h2 (x0 )NENh2 (x0 )N(

are open and x0 �A1 OA2 %A , which shows that A is open. If now f4h2 on A
and f4h1 on the complement A c of A , then f is continuous and NfN4

max ]Nh1N , Nh2N(. Similarly, we may take g4h1 on A and g4h2 on A c . In the
general case, let Y4 ]x�X : Nh1 (x)N1Nh2 (x)Nc0( and let gi 4hi NY , i4

1, 2 . By the first part of our proof, there are fA, gA in C(Y ) with N fAN4

max ]Ng1N , Ng2N(, NgA N4 min ]Ng1N , Ng2N(. Define f , g on X by taking f4 fA and
g4 gA on Y while f4g40 on Y c . Since Y is an open subset of X , the functions
f , g are continuous at each point of Y . Also, they are continuous at each point
x�Y c . Indeed, let (xd ) be a net in X converging to x . Since h1 , h2 are continu-
ous, given eD0, there exists d 0 such that Nh1 (xd )N , Nh2 (xd )NEe , if dFd 0 ,
and so Nf (xd )N , Ng(xd )NEe if dFd 0 . This clearly completes the proof.
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PROPOSITION 2.4. – Let ] f , h1 , h2 , R , hn ( %C(X ) be such that

NfNG max ]Nh1N , Nh2N , R , NhnN( .

Then, there exist f1 , R , fn in C(X ) with NfkNGNhkN and f4 f1 1R1 fn .

PROOF. – In view of the preceeding Proposition, there exists g in C(X ) with
NgN4 max ]Nh1N , R , Nhn21N(. It follows from this that it suffices to prove the
result for n42. Let Y4 ]x�X : Nh1 (x)N1Nh2 (x)Nc0(. Assume first that
Y4X and let A be as in the proof of the preceeding Proposition. If f2 is defined
on X by f2 4 f on A and f2 4h2 on A c , then f2 is continuous and Nf2NGNh2N . Also,
if f1 4 f2 f2 , then Nf1NGNh1N , which proves the result when Y4X . If YcX ,
let gi 4hiNY , i41, 2 , g4 fNY . By the first case, there are wi �C(Y ), NwiNG

NgiN , g4w1 1w2 . Extend wi to a function fi on all of X by taking fi 40 on Y c .
Then fi is continuous on X , NfiNGNhiN , f4 f1 1 f2 .

PROPOSITION 2.5. – Assume that X is a zero-dimensional locally compact
s-compact topological space and that V %NC(X )N . Then, for each v � V there
exists w � VONC(X )N strictly positive with v G w.

PROOF. – Let (a n ) be a sequence of positive numbers such that v G

inf
n

a n vn . Assume first that X is compact. Since v is u.s.c., there exists a non-

zero element m of K with NmNF sup
x�X

v(x). Let g�C(X ) with g(x) 4m for all x in

X . Then NgN� V since inf
x�X

vn (x) D0 for all n , which proves the result in this

case. Consider next the case when X is not compact. Our hypothesis on X im-
plies that there exists an infinite sequence (Yn ) of clopen compact subsets of X
covering X and such that each Yn is a proper subset of Yn11 . For each n , let
hn�C(X ) with NhnN4vn . Choose inductively a sequence (m n) in K with Nm nNFa n

and

Nm nN inf ]vn (x) : x�Yn ( F sup ]Nm jNvj (x) : x�Yn21 , j41, R , n21(

for nF2. In view of Proposition 2.3, there exists gn in C(X ) with NgnN4

min
1 GkGn

Nm k hkN . Let f n be the K-characteristic function of Yn 0Yn21 , where

Y0 4¯ , and let g4!
n

f n gn . Clearly g is continuous. Also, NgNGNm nNvn for all

n . Indeed, let x�X , x�Ym 0Ym21 . Then g(x) 4gm (x). If mFn , then
Ngm (x)NGNm nNvn (x), while for mEn we have Ngm (x)NGNm m hm (x)NG

Nm nNvn (x), which proves that NgNGNm nNvn . Finally, NgNF v. In fact, let x�
Ym 0Ym21 . There exists 1 GkGm such that Ng(x)N4Ngm (x)N4Nm kNvk (x) F

a k vk (x) F v(x). This clearly completes the proof.
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LEMMA 2.6. – If v is a strictly positive u.s.c. function on X , then for each
l�K , with NlND1, there exists f�KX such that NfN is u.s.c. and NfNGvENlfN .

PROOF. – For each integer m , let Dm 4 ]x : v(x) FNlNm (. Then Dm is
closed and N]Dm : m integer( 4X . Define f : XKK by taking f(x) 4l m if
x�Dm 0Dm11 . Then NfN is u.s.c. Indeed, for e a real number, set Be4

]x : Nf(x)NFe(. If eG0, then Be4X . Assume that eD0 and let m be such
that NlNm EeGNlNm11 . Then Be4Dm11 . Thus Be is closed, for all e , and so
NfN is u.s.c. Also, NfNGvENlfN . Indeed, if x�Dm 0Dm11 , then Nf(x)N4

NlNm Gv(x) ENlNm11 4Nlf(x)N .

PROPOSITION 2.7. – Assume that the valuation of K is dense and let V 4

(vn ) be a decreasing sequence of strictly positive functions on X . If l is any
element of K with NlND1, then there exists a decreasing sequence W 4 (wn )
of strictly positive u.s.c. functions on X such that:

(a) wn (X ) %NKN , for all n�N .

(b) The maximal Nachbin families V, W, which correspond to V and W

respectively, coincide.

(c) wn Gvn ENlNwn , for all n .

(d) Cvn (X ) 4Cwn (X ) topologically.

PROOF. – Choose inductively a sequence (l n ) in K with Nl nND1 and
Nl 1 l 2 R l n NENlN , for all n . By the preceeding Lemma, there exists a se-
quence (f n ) in KX such that Nf nN is u.s.c. and Nf nNGvn ENl n f nN for all n .
Let w1 4Nf 1N and wn11 4Nl 1 l 2 R l nN21 Nf n11N for all n�N . Since

wn11 GNl 1 l 2 R l nN21 vn11 GNl 1 l 2 Rl nN21 vn GNl 1 l 2 R l n21N
21 Nf nN4wn ,

the sequence (wn ) is decreasing and clearly wn (X ) %NKN . Also, wn Gvn G

Nl 1 l 2 Rl nNwn ENlNwn .
This proves (a) and (c), while (b) and (d) follow easily from (c).

PROPOSITION 2.8. – Assume that the valuation of K is discrete and let V 4

(vn ) be a decreasing sequence of strictly positive u.s.c. functions on X . If rD1
is the generator of the value group of K , then there exists a decreasing se-
quence W 4 (wn ) of strictly positive functions on X such that:

(a) wn (X ) %NKN for each n .

(b) wn Gvn Erwn .
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(c) The maximal Nachbin families V, W which correspond to V and W,
respectively, coincide.

(d) Cvn (X ) 4Cwn (X ) topologically.

PROOF. – There exist l�K with NlN4r . By Lemma 2.6, for each n�N ,
there exist f n �KX such that Nf nN is u.s.c. and Nf nNGvn ErNf nN . Take wn 4

Nf nN . The sequence W 4 (wn ) is decreasing since Nf n11 (x)NGvn11 (x) G

vn (x) ErNf n (x)N and so Nf n11 (x)NGNf n (x)N . This proves (a) and (b).
It is easy to see that (c) and (d) follow easily from the fact that wn Gvn Erwn

for all n .

3. – Completeness of V C(X ).

Let V 4 (vn ) and V be as in the preceeding section. For each n , let

lQ (vn , K ) 4 ] f�KX : qvn
( f ) EQ(

and

lQ (vn , R) 4 ]u�RX : qvn
(u) EQ( .

If we consider on lQ (vn , R) the norm qvn
, then it becomes a Banach space. Sim-

ilarly, lQ (vn , K ) with the non-Archimedean norm qvn
is a non-Archimedean

Banach space. We will denote by kQ (V, R) the inductive limit lim
K

lQ (vn , R).
Similarly, we define

kQ (V, K ) 4 lim
K

lQ (vn , K ) .

Let

KQ (V, K ) 4 ] f�KX : qv ( f ) EQ for all v � V(

and

KQ (V, R) 4 ]u�RX : qv (u) EQ for all v � V( .

On each of the spaces KQ (V, K ) and KQ (V, R) we consider the locally convex
topology generated by the seminorms qv , v � V. It is well known that
KQ (V, R) 4kQ (V, R) algebraically. Also, in view of Proposition 2.1,
KQ (V, K ) 4kQ (V, K ) algebraically and they have the same bounded sets.
Also, the topology t V of KQ (V, K ) is coarser than the inductive topology of
kQ (V, K ).

PROPOSITION 3.1. – Let ( fa ) be a net in kQ (V, K ). Then: 1) faK0 in
kQ (V, K ) iff NfaNK0 in kQ (V, R). 2) If ( fa ) is a Cauchy net in kQ (V, K ), then
(NfaN) is a Cauchy net in kQ (V, R).
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PROOF. – 1) Assume that faK0 and let W be an absolutely convex neighbor-
hood of zero in kQ(V, R). For each n , there exists a positive number e n such that

Wn 4 ]u�RX : qvn
(u) Ge n ( %W .

Set

Dk 4 ] f�KX : qvk
( f ) Ge k /2k (

and

D40
n

!
k41

n

Dk .

Since D is a convex neighborhood of zero in kQ (V, K ), there exists a 0 such
that fa�D if aFa 0 . Let f4 f1 1R1 fn with fk �Dk , k41, R , n . Then NfNG

max ]Nf1N , R , NfnN(. There are u1 , R , un in RX , with 0 Gui GNfiN , such that

NfN4u1 1R1un . Since 2k uk �Wk , it follows that NfN4 !
k41

n

22k (2k uk ) �W

since W is absolutely convex. Thus, NfaN�W , for aFa 0 , which proves that
NfaNK0 in kQ (V, R). Conversely, assume that NfaNK0 in kQ (V, R) and let W0

be a convex neighborhood of zero in kQ (V, K ). Let dn D0 be such that

Zn 4 ] f� lQ (vn , K ) : qvn
( f ) Gdn ( %W0 .

The set W40
n

!
k41

n

Zk (which is contained in W0) is a convex neighborhood of

zero in kQ (V, K ).

Claim I: The set W is solid, i.e. if f�W and if g�KX with NgNGNfN , then

g�W . Indeed, f4 !
k41

n

fk with fk �Zk . In view of Proposition 2.4, there are gk �

KX , NgkNGNfkN , g4g1 1R1gn , and so g�W since gk �Zk .

Claim II: The set

D4 ]u�RX : )f�W with NuNGNfN(

is a neighborhood of zero in kQ (V, R). Indeed, let l�K , with NlND1, and let
u�RX with qvn

(u) GNlN21 dn . For each x�X , there exists m x �K with Nm xNG

u(x) GNlm xN . If f�KX , f (x) 4lm x , then f�Zn and so u�D since NuNGNfN .
Since we can prove that, for any f , g in W, there exists h in W with NhN4

max ]N fN , NgN(, it follows easily that is absolutely convex and so D is a neigh-
borhood of zero in kQ (V, R).

Since now NfaNK0 in kQ (V, R), there exists a 0 such that NfaN�D if aFa 0 .
For each such a , there exists f�W with NfaNGNfN and so fa�W by claim I.
This completes the proof of 1).

2) Let ( fa )a�A be a Cauchy net in kQ (V, K ) and order D4A3A by
(a 1 , b 1 ) F (a , b) iff a 1 Fa and b 1 Fb . For d4 (a , b) �D , set gd4 fa2 fb .
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Then gdK0 in kQ (V, K ) and so NgdNK0 in kQ (V, R). Since NN faN2NfbNNG

NgdN and since kQ (V, R) has a base at zero consisting of solid sets, it follows
that the net (NfaN) is Cauchy in kQ (V, R).

THEOREM 3.2. – The space kQ (V, K ) is complete.

PROOF. – Since for each x�X there exists v in V with v(x) D0, it follows
easily that KQ (V, K ) is complete. Let now ( fa ) be a Cauchy net in kQ (V, K ).
Then ( fa ) is t V-Cauchy and hence ( fa ) is t V-convergent to some f�KX since
KQ (V, K ) is complete. Let ga4 fa2 f . Then ( ga ) is a Cauchy net in kQ (V, K )
and so (NgaN) is a Cauchy net in kQ (V, R) by the preceeding Proposition. But
kQ (V, R) is complete (see [10]). Thus, there exists u�RX such that NgaNKu
in kQ (V, R). Since the topology of kQ (V, R) is finer than the topology of sim-
ple convergence, we have that Nga (x)NKu(x) for all x�X . Also, since for each
x�X there exists v � V with v(x) F1, the topology t V of KQ (V, K ) is finer
than the topology of pointwise convergence. Since ( ga ) is t V-convergent to
zero, we have that ga (x) K0 for each x . It follows that u40. Thus NgaNK0 in
kQ (V, R) and so gaK0 in kQ (V, K ) by Proposition 3.1. This completes the
proof.

PROPOSITION 3.3. – If kQ (V, R) 4KQ (V, R) topologically, then kQ (V, K ) 4

KQ (V, K ) topologically.

PROOF. – Let ( fa ) be a net in KQ (V, K ) which converges to zero. Then
NfaNK0 in KQ (V, R). By our hypothesis, NfaNK0 in kQ (V, R) and so faK0 in
kQ (V, K ) in view of Proposition 3.1. Since the topology of KQ (V, K ) is always
coarser than the one of kQ (V, K ), the result follows.

PROPOSITION 3.4. – If each vn is continuous, then V C(X ) is a closed subset
of kQ (V, K ).

PROOF. – Let f be in the closure of V C(X ) in kQ (V, K ) and let x0 �X . We
will prove that f is continuous at x0 . Let eD0 be given and set

Dn 4 ] g�KX : qvn
( g) Gevn (x0 ) /2(

D40
m

!
k41

m

Dk .

Since D is a neighborhood of zero in kQ (V, K ), there exists g� V C(X ) with

f2g�D and so f2g� !
k41

m

Dk for some m . Let

Z4 k 1
k41

m

]x�X : vk (x) Dvk (x0 ) /2(lO ]x : Ng(x)2g(x0 )NEe( .
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Then, Z is a neighborhood of x0 in X . Let hk �Dk , f2g4h1 1R1hm . Since
NhkNGevk (x0 ) /(2vk ), we have that Nhk (x)NEe for each x�Z and so Nf (x)2

g(x)NEe for x�Z . Thus

Nf (x)2 f (x0 )NG max ]Nf (x)2g(x)N , Ng(x)2g(x0 )N , Ng(x0 )2 f (x0 )N( Ee

at every point of Z . This clearly completes the proof.
Recall that a topological space X is said to be ultranormal if any two dis-

joint closed subsets of X can be separated by disjoint clopen sets.

LEMMA 3.5. – Let X be ultranormal and let ]A1 , R , An ( be a finite open
cover of X . Then, there are pointwise disjoint clopen subsets D1 , R , Dn of X

with Dk %Ak and 0
k41

n

Dk 4X .

PROOF. – We will use induction on n . For n42, the result follows directly
from the definition of ultranormality. Assume that the result holds for n4m
and let n4m11. There are disjoint clopen sets Dm11 , D with Dm11 %Am11 ,

D%0
1

m

Ak , Dm11 ND4X . Set

Bk 4 (DOAk )NDm11 , k41, 2 , R , m .

By our induction hypothesis, there are pairwise disjoint clopen sets C1 , R , Cm

with Ck %Bk and 0
1

m

Ck 4X . Now it suffices to take Dk 4Ck ODm11
c for

k41, R , m .

PROPOSITION 3.6. – Assume that one of the following two conditions
holds

(a) For each n , there exists hn �C(X ) with vn 4NhnN .

(b) X is ultranormal.
Then: 1) The family of all subsets of V C(X ) of the form

Wa40
m
m f�C(X ) : sup

x
min

1 GkGm
a k vk (x)Nf (x)NG1n ,

where a runs through the family of all sequences a4 (a n ) of positive num-
bers, is a base at zero in V C(X ).

2) V C(X ) is a topological subspace of kQ (V, K ).

PROOF. – 1) We first observe that Wa is a neighborhood of zero in V C(X ).
On the other hand, let W be a convex neighborhood of zero in V C(X ). For each
n , there exists a non-zero m n in K such that

Wn 4 ] f�C(X ) : qvn
( f ) GNm nN21 ( %W .
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Let NlND1, a n 4Nlm nN , a4 (a n ) and f�Wa . There exists m such that

sup
x

min
1 GkGm

a k vk (x)Nf (x)NG1 .

If x�X , then there exists k , 1 GkGm , with a k vk (x)Nf (x)NG1 and so
Nm kNvkNf (x)NGNlN21 E1. Each of the sets

Ak 4 ]x : Nm kNvk (x)Nf (x)NE1(

is open and 0
1

m

Ak 4X . In case (a) each Ak is clopen while in case (b) there are

pairwise disjoint clopen sets B1 , R , Bm , Bk %Ak , 0
1

m

Bk 4X . In both cases,

there are pairwise disjoint clopen sets D1 , R , Dm covering X with Dk %Ak . Let
fk 4f k f , where f k is the K-characteristic function of Dk . Then fk �Wk and so
f4 f1 1R1 fm �W , which proves that Wa%W .

2) It follows easily from 1).
Combining Theorem 3.2 with Propositions 3.4 and 3.6, we get the

following

THEOREM 3.7. – Assume that one of the following two conditions
holds:

(a) For each n , there exists hn �C(X ) with NhnN4vn .

(b) X is ultranormal and each vn is continuous.
Then: 1) V C(X ) is a closed topological subspace of kQ (V, K ).

2) V C(X ) is complete.

4. – Bornological CV(X ) spaces.

Let V 4 (vn ) and V be as in section 2. By Corollary 2.2, V C(X ) is the
bornological space associated with CV(X ). In this section, we will look at the
question of when CV(X ) is bornological, i.e. when V C(X ) 4CV(X ) topologi-
cally. We recall the following

DEFINITION ([11]). – The sequence V satisfies condition (D) if there exists
an increasing sequence J4 (Xn ) of non-empty subsets of X such that:

(NJ) For each n�N , there exists mFn in N such that
inf

x�Xn
vk (x) /vm (x) D0 for all kDm .

(MJ) For each n 8�N and each subset Y of X which is not contained in
any Xm , there exists m 84m 8 (n 8 , Y ) such that inf

x�Y
vm 8 (x) /vn 8 (x) 40.
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PROPOSITION 4.1 (see [1]). – The following are equivalent:

1) V satisfies condition (D).

2) For each sequence (l n ) of non-zero elements of K , there exists v in V
such that, for each non-zero m in K and each m�N , there exists n such
that

(˜) min ]NmN/vm , 1 /v( G max
1 GkGn

Nl kN/vk .

PROOF. – In view of Proposition 2.7, we may assume that, for each n , vn 4

Nf nN for some f n �KX . Assume that V satisfies condition (D), then
KQ (V, R) 4kQ (V, R) topologically, by the main Theorem in [1], and so
KQ (V, K ) 4kQ (V, K ) topologically by Proposition 3.3. Let now (l n ) be a se-
quence of non-zero elements of K . Set

Dn 4 ] f� lQ (vn , K ) : qvn
( f ) GNl nN( , Wn 4 !

k41

n

Dk .

The set W40
n

Wn is a convex neighborhood of zero in kQ (V, K ) and thus it is

also a neighborhood of zero in KQ (V, K ). Let v � V be such that

] f�KQ (V, K ) : qv ( f ) G1( %W .

Given l�K with NlND1, there exists f�KX such that NfN is u.s.c. and
NfNG v GNlfN (by Lemma 2.6). Taking NlfN in place of v, we may assume
that v 4NlfN . Let A4 ]x : v(x) Gvm (x) /NmN( and take h�KX , h(x) 4

m/f m (x) if x�A and h(x) 4 [lf(x) ]21 if x�A . Then NhN4 min ]NmN/vm , 1 /v(.
(Note that, if v(x) 40, we take 1 /v(x) 4Q). Now qv (h) G1 and so h�Wn for

some n . Let fk �Dk be such that h4 !
k41

n

fk . Then NhNG max
1 GkGn

Nl kN/vk since

NfkNGNl kN/vk . Conversely, assume that (2) is satisfied. Since max
1 GkGn

Nl kN/vk G

!
k41

n

Nl kN/vk , it follows that V satisfies condition (D) by the main Theorem in [1].

THEOREM 4.2. – Assume that V %NC(X )N . Then:

(a) If V satisfies condition (D), then CV(X ) is bornological.

(b) If, for each v � V, there exists vA � VONC(X )N with vA F v, then CV(X )
is bornological iff V satisfies condition (D). In particular, if X is a zero-di-
mensional locally compact s-compact space, then CV(X ) is bornological iff
condition (D) is satisfied.

PROOF. – (a) Assume that V satisfies condition (D) and let W be a convex
neighborhood of zero in V C(X ). For each n , there exists a non-zero element
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l n of K such that l n An %W , where

An 4 ] f�Cvn (X ) : qvn
( f ) G1( .

Set A40
n

!
k41

m

l k Ak . By the preceeding Proposition, there exists v � V such

that, for each non-zero m in K and each m , there exists n such that (˜) holds.
We claim that

] f�CV(X ) : qv ( f ) G1( %W .

Indeed, let qv ( f ) G1. Since A is absorbing, there exist a positive integer m
and mc0 such that f�mAm . Let n be such that (˜) holds. Then

NfNG min ]NmN/vm , 1 /v( G max
1 GkGn

Nl kN/vk .

Since V %NC(X )N , there are (by Proposition 2.4), fk �Ak , k41, R , n , such
that f4l 1 f1 1R1l n fn and so f�A%W . This clearly completes the proof of
(a).

(b) Assume that each v � V is dominated by some element of VONC(X )N

and that CV(X ) is bornological. Let (l n ) be a sequence of non-zero elements of
K and set

Z40
n

!
k41

n

l k Ak ,

where Ak is as above. Since A is a convex neighborhood of zero in V C(X ), our
hypothesis implies that there exists v � VONC(X )N such that

H4 ] f�CV(X ) : qv ( f ) G1( %Z .

Let now mc0 and let m be a positive integer. By Proposition 2.3, there exists
f�C(X ) such that NfN4 min ]NmN/vm , 1 /v(. Then, f�H and so f�Z . Let n be

such that f4 !
k41

n

l k fk with fk �Ak . Since Nl k fkNGNl kN/vk , we have that

NfNG max
1 GkGn

Nl kN/vk .

Now the result follows from the preceeding Proposition.

PROPOSITION 4.3. – Let V be a Nachbin family on the zero-dimensional
topological space X and assume that, for each x�X , there exists f�CV(X )
with f (x) c0. If u , v are non-negative u.s.c. functions on X such that

] f�CV(X ) : qv ( f ) G1( % ] f�CV(X ) : qu ( f ) G1( ,

then, for each l�K with NlND1, we have uGNlNv .
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PROOF. – Assume that u(x0 ) DNlNv(x0 ). Choose m�K with NmNEu(x0 ) G

NlmN and so v(x0 ) ENmNEu(x0 ). Since v is u.s.c. and X zero-dimensional, there
exists a clopen neighborhood Z of x0 in X such that v(x) ENmN if x�Z . By our
hypothesis, there exists f�CV(X ) with f (x0 ) c0. The set

A4 ]x : Nf (x)NFNf (x0 )N(

is clopen. Define g on X by g(x) 4m21 if x�ZOA , g(x) 4 [ mf (x0 ) ]21 f if
x�ZOA c and g(x) 40 if x�Z . Then g is continuous and g�CV(X ) since
NgNGNmf (x0 )N21 NfN . Moreover, qv ( g) G1, which is a contradiction since
u(x0 )Ng(x0 )ND1.

LEMMA 4.4. – If X is zero-dimensional, then for each x in X there exists f in
CV(X ) with f (x) c0.

PROOF. – For x0 �X , the set

D4 ]x�X : v1 (x) E2v1 (x0 )(

is open. Let Z be a clopen neighborhood of x0 contained in D . Now it sufficies
to take as f the K-characteristic function of Z in X .

PROPOSITION 4.5. – If X is zero-dimensional, then V satisfies condition (D)
iff bounded subsets of CV(X ) are metrizable.

PROOF. – By [2, Corollary I.2.6], condition (D) is equivalent to the following
condition:

(1) There exists an increasing sequence (vn ) in V such that, for every
n�N and every v � V, there exists m such that v G sup ]vm , vn (.

Assume now that (D) is satisfied and let (vm ) be as in (1). If B is a bounded
absolutely convex subset of CV(X ), then there exists n such that

B%D4 ] f�C(X ) : qvn
( f ) Gn( .

Given v � V let m be such that nv G sup]vm , vn (. Now

W4 ] f�CV(X ) : qvm
( f ) G1(OB% ] f : qv ( f ) G1( .

This clearly proves that B is a metrizable subset of CV(X ). Conversely, as-
sume that each bounded subset of CV(X ) is metrizable. For each n , the set
Bn 4 ] f�C(X ) : qvn

( f ) G1( is bounded in CV(X ) and thus there exists a se-
quence (vn , m )m�N in V such that the sets

Dn , m 4Bn O ] f�CV(X ) : qvn , m
( f ) G1( , m�N ,

is a base at zero in Bn . Let (wk ) be any arrangement of the double sequence
(vn , m )n , m , and set vm 4 max ]w1 , R , wm (. Then (vm ) is an increasing sequence
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in V. Given n�N and v � V, there exists m such that

Bn O ] f�CV(X ) : qvm
( f ) G1( % ] f : qv ( f ) GNlN21 ( ,

where NlND1. If w4 max ]vn , vm (, then

] f�CV(X ) : qw ( f ) G1( % ] f : qv ( f ) GNlN21 ( .

In view of Lemma 4.4 and Proposition 4.3, we have that v Gw . Thus condition
(1) is satisfied and so V satisfies condition (D). This completes the proof.

PROPOSITION 4.6. – If V %NC(X )N , then CV(X ) is bornological iff it is
quasi-barrelled.

PROOF. – Assume that CV(X ) is quasi-barrelled and let W be an absolutely
convex bornivorous subset of CV(X ). Let Bn 4 ] f�C(X ) : qvn

( f ) G1(. Each
Bn is bounded in CV(X ) and so m n Bn %W for some non-zero m n in K . Let Dn 4

0
k41

n

m k Bk . Since V %NC(X )N , using Proposition 2.4 we get that

Dn 4 ] f�C(X ) : NfNG max
1 GkGn

Nm kNOvk ( .

Since, for each x�X , there exists v in V with v(x) D0, it follows that the weak
topology of CV(X ) is finer than the topology of pointwise convergence and so

Dn is weakly closed in CV(X ). If D4 0
n41

Q

Dn , then D is a neighborhood of zero

in CV(X ) since CV(X ) is quasi-barrelled. We claim that

D % 0
n41

Q

Dn
e %lD ,

for NlND1. Indeed, assume that some f� D is not in any Dn
e . Since Dn

e 4Dn
oo ,

there exists f n �Dn
o with Nf n ( f )ND1. The set H4 ]f n : n�N( is strongly

bounded in the dual space of CV(X ). Indeed, let B be a bounded subset of
CV(X ). There exist m�N and mc0 such that B%mBm . If f�B and nFm ,
then f�m m

21 Dn and so Nf n ( f )NGNm m
21N . This clearly proves that H is ab-

sorbed by B o and so H is strongly bounded. Since CV(X ) is quasi-barrelled, it
follows that H is equicontinuous and so its polar H o in CV(X ) is a neighbor-
hood of zero. Since f� D, there exists n and g�Dn such that f2g�H o , which
is a contradiction since Nf n ( g)NG1 and Nf n ( f )ND1. This contradiction
proves that lD (and hence D) is a neighborhood of zero in CV(X ) and so W is
also a neighborhood of zero. Hence the result follows.

For a locally convex topology on a vector space E over K , we will denote by
t b the associated barrelled topology.

PROPOSITION 4.7. – If V %NC(X )N , then V C(X ) coincides with the barrelled
space associated with CV(X ).
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PROOF. – Let t4t V be the topology of CV(X ) and let t ind be the inductive
topology of V C(X ). Since vn is continuous, it follows easily that Cvn (X ) is a Ba-
nach space and V C(X ) is barrelled. Since tGt ind , it follows that tGt b Gt ind .

If Bn 4 ] f�C(X ) : qvn
( f ) G1( then each !

k41

n

l k Bk is weakly closed in CV(X )

and hence it is weakly closed in (CV(X ), t b )4G . With the same argument as
in the proof of Proposition 4.6, it follows that G is bornological and so t b 4t ind .
Thus the result follows.

Recall that an inductive limit E4 lim
K

En is called strongly boundedly re-
tractive if: a) It is regular, i.e. each bounded subset of E is a bounded subset of
some En .

b) For each n , there exists mFn such that for each bounded subset B of
En we have that tNB 4t mNB , where t is the inductive topology of E and t m the
topology of Em .

We also recall the following definition:
The sequence V 4 (vn ) is regularly decreasing (see [12], Definition 2.1) if,

given n�N , there exists mFn such that, for every eD0 and every kFm , we
can find d4d(k , e) D0 with vk (x) Fdvn (x) whenever vm (x) Fevn (x).

PROPOSITION 4.8 ([12], Proposition 2.2). – The sequence V 4 (vn ) is regu-
larly decreasing iff the following condition is satisfied:

(wV) For every n�N , there exists mFn so that, for every eD0, there is
some v � V such that vm (x) Gevn (x) whenever v(x) Evm (x).

PROPOSITION 4.9. – If V 4 (vn ) is regularly decreasing, then for each n�N ,
there exists mFn so that, on each bounded subset A of Cvn (X ), the topology
induced on A by the topology t m of Cvm (X ) coincides with the topology in-
duced on A by the topology t V of CV(X ) and by the topology t ind of
V C(X ).

PROOF. – Let n�N and let mFn be as in the condition (wV). Let A be an
absolutely convex bounded subset of Cvn (X ). Let t m be the topology of
Cvm (X ), t V the topology of CV(X ) and t ind the inductive topology of V C(X ).
Clearly t VNA Gt ind NA Gt mNA . On the other hand, let eD0 and let

W4 ] f�C(X ) : qvm
( f ) Ge( .

Let dF sup
f�A

qvn
( f ). By condition (wV), there exists v � V such that vm (x) G

(e/d) vn (x) if v(x) Evm (x). Set

D4 ] f�CV(X ) : qV ( f ) Ge( .

We will finish the proof by showing that DOA%W . Indeed, let f�DOA and
assume that f�W . Then, there exists x�X with Nf (x)Nvm (x) De . Since
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Nf (x)Nv(x) Gqv ( f ) Ge , we have that v(x) Evm (x) and so vm (x) G (e/d) vn (x).
Thus

vm (x)Nf (x)NG
e

d
vn (x)Nf (x)NG

e

d
qvn

( f ) Ge ,

a contradiction. This completes the proof.

PROPOSITION 4.10. – Assume that V 4 (vn ) is regularly decreasing.
Then:

1) On each bounded subset of V C(X ) the topologies of CV(X ) and
V C(X ) coincide.

2) V C(X ) and CV(X ) have the same compactoid sets.
3) The inductive limit V C(X ) 4 lim

K
Cvn (X ) is compactoid regular.

4) The inductive limit lim
K

Cvn (X ) is strongly boundedly retractive.

PROOF. – 1) It follows from the preceeding Proposition in view of Proposi-
tion 2.1.

2) Let A be a compactoid subset of CV(X ). We may assume that A is ab-
solutely convex. There exists n such that A is a bounded subset of Cvn (X ). By
the preceeding Proposition, we have that t V 4t ind on A . Since A is absolutely
convex and t V-compactoid, it follows that it is also t ind-compactoid.

3) Let A be an absolutely convex t ind-compactoid. There exists n such
that A is a compactoid subset of Cvn (X ). By the preceeding Proposition, there
exists mFn such that t m 4t ind on A . It follows that A is a compactoid subset
of Cvm (X ).

4) It follows from the preceeding Proposition.

PROPOSITION 4.11. – If X is zero-dimensional, then V 4 (vn ) is regularly
decreasing iff the following condition is satisfied: For each n�N , there exists
mFn such that t V 4t m on each bounded subset of Cvn (X ).

PROOF. – In view of Proposition 2.8, we may assume that, in case the valua-
tion of K is discrete, we have that vn (X ) %NKN for all n . Suppose now that the
condition is satisfied and let n�N . Choose mFn as in the condition. Given
eD0, there exists v � V such that

(˜) ] f�CV(X ) : qv ( f ) G1(O ] f : qvn
( f ) G1/e( % ] f : qvm

( f ) E1( .

Assume now that, for some x0 in X , we have v(x0 ) Evm (x0 ) and evn (x0 ) E

vm (x0 ). Choose m�K such that v(x0 ) ENmNGvm (x0 ) and evn (x0 ) ENmNG

vm (x0 ). The set

O4 ]x�X : v(x) ENmN(O ]x : evn (x) ENmN(



ON WEIGHTED INDUCTIVE LIMITS OF NON-ARCHIMEDEAN SPACES ETC. 773

is open. There is a clopen neighborhood A of x0 contained in O . Let f4m21 f ,
where f is the K-characteristic function of A . Then qv ( f ) G1 and qvn

( f ) G1/e
while qvm

( f ) Fvm (x0 ) /NmNF1, which contradicts (˜). Thus V satisfies condi-
tion (wV) and so it is regularly decreasing by Proposition 4.8. This and Propo-
sition 4.9 complete the proof.

PROPOSITION 4.12. – Let X be locally compact and assume that inf
x�Y

vn(x)D0,

for each n�N and each non-empty compact subset Y of X . If V 4 (vn ) is regu-
larly decreasing, then CV(X ) and V C(X ) are quasi-complete.

PROOF. – Since every point of X has a compact neighborhood and since
inf
x�Y

vn (x) D0 for each non-empty compact subset Y of X , it follows easily that

each Cvn (X ) is a Banach space. Let now A be a closed absolutely convex
bounded subset of CV(X ). There exists n such that A is a bounded subset of
Cvn (X ). Since V is regularly decreasing, there exists (by Proposition 4.4) an
mFn such that t V , t ind and t m induce the same topology on A . Let now ( fd ) be
a t V-Cauchy net in A . Then, ( fd ) is t m-Cauchy and so fdK f , with respect to
t m , for some f�Cvm (X ). Then fdK f with respect to t V and f�A since A is t V-
closed. This proves that CV(X ) is quasi-complete. The proof of V C(X ) is
analogous.
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