BOLLETTINO UNIONE MATEMATICA ITALIANA

A. K. Katsaras, V. Benekas

On weighted inductive limits of non-Archimedean spaces of continuous functions

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **3-B** (2000), n.3, p. 757–774.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_3_757_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2000.

On Weighted Inductive Limits of Non-Archimedean Spaces of Continuous Functions.

A. K. Katsaras - V. Benekas

Sunto. – Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.

Introduction.

Weighted spaces of continuous functions were introduced in the complex scalar case by Nachbin in [24] and in the vector case by Prolla in [25]. Several other authors have continued the investigation of such spaces. Papers [1]-[15], [18]-[20], [24], [25] and many others refer to such spaces. Carneiro introduced in [16] the non-Archimedean weighted spaces. Some problems related to p-adic weighted spaces were studied in [21]-[23].

In this paper, for a decreasing sequence $\mathfrak{V} = (v_n)$ of strictly positive uppersemicontinuous functions on a topological space X, we study the weighted inductive limit $\mathfrak{V}C(X)$ and its projective hull $C\overline{V}(X)$, where \overline{V} is the maximal Nachbin family associated with \mathfrak{V} . It is shown that $\mathfrak{V}C(X)$ is the bornological space associated with $C\overline{V}(X)$ and we examine the question of when these two spaces coincide topologically. If \mathfrak{V} is regularly decreasing, we prove that the topologies of $\mathfrak{V}C(X)$ and $C\overline{V}(X)$ coincide on bounded sets and that the two spaces have the same compactoid sets. In case $\mathfrak{V} \subset |C(X)|$, it is proved that $C\overline{V}(X)$ is bornological iff it is quasibarrelled. We also look at the problem of whether $\mathfrak{V}C(X)$ is complete.

1. – Preliminaries.

Throughout this paper, K will stand for a complete non-Archimedean valued field whose valuation is non-trivial. By a seminorm, on a vector space E over K, we will mean a non-Archimedean seminorm and a locally convex space over K will be a non-Archimedean locally convex space. In case of a vector space G over the field of real numbers R, the notions of seminorm on G and lo-

cally convex topology on *G* are the usual ones. For a subset *A* of a locally convex space *E*, we will denote by A^o the polar of *A*, in the topological dual space *E'* of *E*, and by A^{oo} the bipolar of *A*. The edged hull A^e , of an absolutely convex subset *A* of a locally convex space over *K*, is defined by $A^e = A$, if the valuation of *K* is discrete, and

$$A^{e} = \cap \{ \lambda A : \lambda \in \mathbf{K}, |\lambda| > 1 \}$$

if the valuation is dense (see [26]). As it is shown in [26], A^{oo} coincides with the edged hull of the weak closure of A (if A is absolutely convex). The definition of the inductive limit $\varinjlim E_n$, of a sequence (E_n) of non-Archimedean locally convex spaces, is analogous to the one in the classical case (see [18]). For all unexplained terms, concerning non-Archimedean spaces, we will refer to [26] or [27].

Let now X be a topological space. The space of all continuous **K**-valued functions on X will be denoted by C(X) while |C(X)| will be the set $\{|f| : f \in C(X)\}$. If v is a non-negative real function on X, then for $f \in \mathbf{K}^X$ or $f \in \mathbf{R}^X$ we define $q_v(f)$ by

$$q_v(f) = \sup \{ v(x) | f(x) | : x \in X \}.$$

Recall that a Nachbin family on X is a family V of non-negative upper-semicontinuous (u.s.c.) real functions on X such that: a) V is directed in the sense that if v_1 , v_2 are in V and a > 0, then there exists $v \in V$ with v_1 , v_2 , $av_1 \leq v$ (pointwise on X). b) For each $x \in X$ there exists v in V with v(x) > 0. The weighted space CV(X) is the space of all f in C(X) such that $q_v(f) < \infty$ for all v in V. We will consider on CV(X) the locally convex topology τ_V generated by the seminorms q_v , $v \in V$.

2. – The spaces $C\overline{V}(X)$ and $\Im C(X)$.

Let $\mathfrak{V} = (v_n)$ be a decreasing sequence of strictly positive upper-semicontinuous functions on X. By $\overline{V} = \overline{V}(\mathfrak{V})$ we will denote the set of all non-negative u.s.c. functions w on X for which there exists a sequence (a_n) of positive real numbers such that $w \leq \inf_n a_n v_n$. Clearly \overline{V} is a Nachbin family. We will consider on $C\overline{V}(X)$ the Nachbin topology $\tau_{\overline{V}}$. Also, for each n in the set of natural numbers N, we will let $Cv_n(X)$ denote the space of all f in C(X) such that $q_{v_n}(f) < \infty$. With the norm q_{v_n} , $Cv_n(X)$ becomes a non-Archimedean normed space. We will denote by $\mathfrak{V}C(X)$ the inductive limit $\varinjlim_{\to} Cv_n(X)$. We will only sketch the proof of the next proposition since it is analogous to the one in the classical case. PROPOSITION 2.1. – a) $C\overline{V}(X) = \Im C(X)$ algebraically. b) A subset B of $C\overline{V}(X)$ is bounded iff there exists an n such that B is a bounded subset of $Cv_n(X)$.

PROOF. – Clearly $\mathcal{V}C(X)$ is continuously injected into $C\overline{V}(X)$. Assume that some bounded subset *B* of $C\overline{V}(X)$ is not bounded in any $Cv_n(X)$. Inductively, we may choose a sequence (x_n) of distinct elements of *X* and a sequence (f_n) in *B* such that $v_n(x_n) |f_n(x_n)| > n$, for all *n*. If

$$\beta_n = \max \{ v_j(x_j) / v_n(x_j) : j = 1, 2, ..., n \},\$$

then $\overline{v} = \inf \beta_n v_n$ is in \overline{V} and $\overline{v}(x_n) | f_n(x_n) | \ge n$, for all n, which is a contradiction. It is clear now that the result follows.

Since $\mathcal{V}C(X)$ is bornological (as an inductive limit of bornological spaces), we have the following

COROLLARY 2.2. – 1) $\Im C(X)$ is the bornological space associated with $C\overline{V}(X)$.

2) If $D_n = \{f \in C(X) : q_{v_n}(f) \leq n\}$, then (D_n) is a fundamental sequence of absolutely convex bounded sets for both $C\overline{V}(X)$ and $\Im C(X)$.

PROPOSITION 2.3. – If $h_1, h_2, ..., h_n$ are in C(X), then there are f, g in C(X) such that $|f(x)| = \max_{k} |h_k(x)|$ and $|g(x)| = \min_{k} |h_k(x)|$, for all x in X.

PROOF. – Using induction on n, it suffices to prove our result for n = 2. Assume first that there is no x in X with $h_1(x) = h_2(x) = 0$ and let $A = \{x : |h_1(x)| \le |h_2(x)|\}$. Clearly A is closed. Also, A is open. Indeed, let $x_0 \in A$. The sets

$$A_1 = \left\{ x : |h_1(x)| \le |h_1(x_0)| \right\} \text{ and } A_2 = \left\{ x : |h_2(x) - h_2(x_0)| < |h_2(x_0)| \right\}$$

are open and $x_0 \in A_1 \cap A_2 \subset A$, which shows that A is open. If now $f = h_2$ on A and $f = h_1$ on the complement A^c of A, then f is continuous and $|f| = \max\{|h_1|, |h_2|\}$. Similarly, we may take $g = h_1$ on A and $g = h_2$ on A^c . In the general case, let $Y = \{x \in X : |h_1(x)| + |h_2(x)| \neq 0\}$ and let $g_i = h_i|_Y$, i = 1, 2. By the first part of our proof, there are \tilde{f} , \tilde{g} in C(Y) with $|\tilde{f}| = \max\{|g_1|, |g_2|\}, |\tilde{g}| = \min\{|g_1|, |g_2|\}$. Define f, g on X by taking $f = \tilde{f}$ and $g = \tilde{g}$ on Y while f = g = 0 on Y^c . Since Y is an open subset of X, the functions f, g are continuous at each point of Y. Also, they are continuous at each point $x \in Y^c$. Indeed, let (x_{δ}) be a net in X converging to x. Since h_1, h_2 are continuous, given $\varepsilon > 0$, there exists δ_0 such that $|h_1(x_{\delta})|, |h_2(x_{\delta})| < \varepsilon$, if $\delta \ge \delta_0$, and so $|f(x_{\delta})|, |g(x_{\delta})| < \varepsilon$ if $\delta \ge \delta_0$. This clearly completes the proof.

PROPOSITION 2.4. – Let $\{f, h_1, h_2, \dots, h_n\} \in C(X)$ be such that

 $|f| \leq \max\{|h_1|, |h_2|, ..., |h_n|\}.$

Then, there exist f_1, \ldots, f_n in C(X) with $|f_k| \leq |h_k|$ and $f = f_1 + \ldots + f_n$.

PROOF. – In view of the preceeding Proposition, there exists g in C(X) with $|g| = \max\{|h_1|, \ldots, |h_{n-1}|\}$. It follows from this that it suffices to prove the result for n = 2. Let $Y = \{x \in X : |h_1(x)| + |h_2(x)| \neq 0\}$. Assume first that Y = X and let A be as in the proof of the preceeding Proposition. If f_2 is defined on X by $f_2 = f$ on A and $f_2 = h_2$ on A^c , then f_2 is continuous and $|f_2| \leq |h_2|$. Also, if $f_1 = f - f_2$, then $|f_1| \leq |h_1|$, which proves the result when Y = X. If $Y \neq X$, let $g_i = h_i|_Y$, $i = 1, 2, g = f|_Y$. By the first case, there are $w_i \in C(Y)$, $|w_i| \leq |g_i|, g = w_1 + w_2$. Extend w_i to a function f_i on all of X by taking $f_i = 0$ on Y^c . Then f_i is continuous on X, $|f_i| \leq |h_i|, f = f_1 + f_2$.

PROPOSITION 2.5. – Assume that X is a zero-dimensional locally compact σ -compact topological space and that $\Im \subset |C(X)|$. Then, for each $\overline{v} \in \overline{V}$ there exists $\overline{w} \in \overline{V} \cap |C(X)|$ strictly positive with $\overline{v} \leq \overline{w}$.

PROOF. – Let (α_n) be a sequence of positive numbers such that $\overline{v} \leq \inf_n \alpha_n v_n$. Assume first that X is compact. Since \overline{v} is u.s.c., there exists a non-zero element μ of K with $|\mu| \geq \sup_{x \in X} \overline{v}(x)$. Let $g \in C(X)$ with $g(x) = \mu$ for all x in X. Then $|g| \in \overline{V}$ since $\inf_{x \in X} v_n(x) > 0$ for all n, which proves the result in this case. Consider next the case when X is not compact. Our hypothesis on X implies that there exists an infinite sequence (Y_n) of clopen compact subsets of X covering X and such that each Y_n is a proper subset of Y_{n+1} . For each n, let $h_n \in C(X)$ with $|h_n| = v_n$. Choose inductively a sequence (μ_n) in K with $|\mu_n| \ge \alpha_n$ and

$$|\mu_n| \inf \{v_n(x) : x \in Y_n\} \ge \sup \{|\mu_j| v_j(x) : x \in Y_{n-1}, j = 1, ..., n-1\}$$

for $n \ge 2$. In view of Proposition 2.3, there exists g_n in C(X) with $|g_n| = \min_{1 \le k \le n} |\mu_k h_k|$. Let ϕ_n be the *K*-characteristic function of $Y_n \setminus Y_{n-1}$, where $Y_0 = \emptyset$, and let $g = \sum_n \phi_n g_n$. Clearly g is continuous. Also, $|g| \le |\mu_n| v_n$ for all n. Indeed, let $x \in X$, $x \in Y_m \setminus Y_{m-1}$. Then $g(x) = g_m(x)$. If $m \ge n$, then $|g_m(x)| \le |\mu_n| v_n(x)$, while for m < n we have $|g_m(x)| \le |\mu_m h_m(x)| \le |\mu_m h_m(x)| \le |\mu_n| v_n(x)$, which proves that $|g| \le |\mu_n| v_n$. Finally, $|g| \ge \overline{v}$. In fact, let $x \in Y_m \setminus Y_{m-1}$. There exists $1 \le k \le m$ such that $|g(x)| = |g_m(x)| = |\mu_k| v_k(x) \ge a_k v_k(x) \ge \overline{v}(x)$. This clearly completes the proof.

LEMMA 2.6. – If v is a strictly positive u.s.c. function on X, then for each $\lambda \in \mathbf{K}$, with $|\lambda| > 1$, there exists $\phi \in \mathbf{K}^X$ such that $|\phi|$ is u.s.c. and $|\phi| \le v < |\lambda\phi|$.

PROOF. – For each integer m, let $D_m = \{x : v(x) \ge |\lambda|^m\}$. Then D_m is closed and $\cup \{D_m : m \text{ integer}\} = X$. Define $\phi : X \to \mathbf{K}$ by taking $\phi(x) = \lambda^m$ if $x \in D_m \setminus D_{m+1}$. Then $|\phi|$ is u.s.c. Indeed, for ε a real number, set $B_{\varepsilon} = \{x : |\phi(x)| \ge \varepsilon\}$. If $\varepsilon \le 0$, then $B_{\varepsilon} = X$. Assume that $\varepsilon > 0$ and let m be such that $|\lambda|^m < \varepsilon \le |\lambda|^{m+1}$. Then $B_{\varepsilon} = D_{m+1}$. Thus B_{ε} is closed, for all ε , and so $|\phi|$ is u.s.c. Also, $|\phi| \le v < |\lambda\phi|$. Indeed, if $x \in D_m \setminus D_{m+1}$, then $|\phi(x)| = |\lambda|^m \le v(x) < |\lambda|^{m+1} = |\lambda\phi(x)|$.

PROPOSITION 2.7. – Assume that the valuation of \mathbf{K} is dense and let $\mathfrak{V} = (v_n)$ be a decreasing sequence of strictly positive functions on X. If λ is any element of \mathbf{K} with $|\lambda| > 1$, then there exists a decreasing sequence $\mathfrak{W} = (w_n)$ of strictly positive u.s.c. functions on X such that:

(a) $w_n(X) \in |\mathbf{K}|$, for all $n \in \mathbf{N}$.

(b) The maximal Nachbin families \overline{V} , \overline{W} , which correspond to \mathfrak{V} and \mathfrak{W} respectively, coincide.

- (c) $w_n \leq v_n < |\lambda| w_n$, for all n.
- (d) $Cv_n(X) = Cw_n(X)$ topologically.

PROOF. – Choose inductively a sequence (λ_n) in K with $|\lambda_n| > 1$ and $|\lambda_1 \lambda_2 \dots \lambda_n| < |\lambda|$, for all n. By the preceeding Lemma, there exists a sequence (ϕ_n) in K^X such that $|\phi_n|$ is u.s.c. and $|\phi_n| \leq v_n < |\lambda_n \phi_n|$ for all n. Let $w_1 = |\phi_1|$ and $w_{n+1} = |\lambda_1 \lambda_2 \dots \lambda_n|^{-1} |\phi_{n+1}|$ for all $n \in N$. Since

$$w_{n+1} \le |\lambda_1 \lambda_2 \dots \lambda_n|^{-1} v_{n+1} \le |\lambda_1 \lambda_2 \dots \lambda_n|^{-1} v_n \le |\lambda_1 \lambda_2 \dots \lambda_{n-1}|^{-1} |\phi_n| = w_n,$$

the sequence (w_n) is decreasing and clearly $w_n(X) \in |\mathbf{K}|$. Also, $w_n \leq v_n \leq |\lambda_1 \lambda_2 \dots \lambda_n| w_n < |\lambda| w_n$.

This proves (a) and (c), while (b) and (d) follow easily from (c).

PROPOSITION 2.8. – Assume that the valuation of \mathbf{K} is discrete and let $\mathfrak{V} = (v_n)$ be a decreasing sequence of strictly positive u.s.c. functions on X. If $\varrho > 1$ is the generator of the value group of \mathbf{K} , then there exists a decreasing sequence $\mathfrak{W} = (w_n)$ of strictly positive functions on X such that:

- (a) $w_n(X) \in |\mathbf{K}|$ for each n.
- (b) $w_n \leq v_n < \varrho w_n$.

(c) The maximal Nachbin families \overline{V} , \overline{W} which correspond to \mathfrak{V} and \mathfrak{N} , respectively, coincide.

(d) $Cv_n(X) = Cw_n(X)$ topologically.

PROOF. – There exist $\lambda \in \mathbf{K}$ with $|\lambda| = \varrho$. By Lemma 2.6, for each $n \in \mathbf{N}$, there exist $\phi_n \in \mathbf{K}^X$ such that $|\phi_n|$ is u.s.c. and $|\phi_n| \leq v_n < \varrho |\phi_n|$. Take $w_n = |\phi_n|$. The sequence $\mathcal{W} = (w_n)$ is decreasing since $|\phi_{n+1}(x)| \leq v_{n+1}(x) \leq v_n(x) < \varrho |\phi_n(x)|$ and so $|\phi_{n+1}(x)| \leq |\phi_n(x)|$. This proves (a) and (b). It is easy to see that (c) and (d) follow easily from the fact that $w_n \leq v_n < \varrho w_n$ for all n.

3. – Completeness of $\Im C(X)$.

Let $\mathfrak{V} = (v_n)$ and \overline{V} be as in the preceeding section. For each n, let

$$l_{\infty}(v_n, \mathbf{K}) = \{ f \in \mathbf{K}^X : q_{v_n}(f) < \infty \}$$

and

$$l_{\infty}(v_n, \mathbf{R}) = \left\{ u \in \mathbf{R}^X : q_{v_n}(u) < \infty \right\}.$$

If we consider on $l_{\infty}(v_n, \mathbf{R})$ the norm q_{v_n} , then it becomes a Banach space. Similarly, $l_{\infty}(v_n, \mathbf{K})$ with the non-Archimedean norm q_{v_n} is a non-Archimedean Banach space. We will denote by $k_{\infty}(\mathfrak{V}, \mathbf{R})$ the inductive limit $\lim_{n \to \infty} l_{\infty}(v_n, \mathbf{R})$. Similarly, we define

$$k_{\infty}(\mathfrak{V}, \mathbf{K}) = \lim l_{\infty}(v_n, \mathbf{K}).$$

Let

$$K_{\infty}(\overline{V}, \mathbf{K}) = \left\{ f \in \mathbf{K}^X \colon q_{\overline{v}}(f) < \infty \text{ for all } \overline{v} \in \overline{V} \right\}$$

and

$$K_{\infty}(\overline{V}, \mathbf{R}) = \{ u \in \mathbf{R}^X : q_{\overline{v}}(u) < \infty \text{ for all } \overline{v} \in \overline{V} \}.$$

On each of the spaces $K_{\infty}(\overline{V}, \mathbf{K})$ and $K_{\infty}(\overline{V}, \mathbf{R})$ we consider the locally convex topology generated by the seminorms $q_{\overline{v}}, \ \overline{v} \in \overline{V}$. It is well known that $K_{\infty}(\overline{V}, \mathbf{R}) = k_{\infty}(\overline{v}, \mathbf{R})$ algebraically. Also, in view of Proposition 2.1, $K_{\infty}(\overline{V}, \mathbf{K}) = k_{\infty}(\overline{v}, \mathbf{K})$ algebraically and they have the same bounded sets. Also, the topology $\tau_{\overline{V}}$ of $K_{\infty}(\overline{V}, \mathbf{K})$ is coarser than the inductive topology of $k_{\infty}(\overline{v}, \mathbf{K})$.

PROPOSITION 3.1. – Let (f_a) be a net in $k_{\infty}(\mathfrak{V}, \mathbf{K})$. Then: 1) $f_a \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ iff $|f_a| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. 2) If (f_a) is a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{K})$, then $(|f_a|)$ is a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{R})$.

PROOF. – 1) Assume that $f_{\alpha} \rightarrow 0$ and let W be an absolutely convex neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. For each n, there exists a positive number ε_n such that

$$W_n = \left\{ u \in \mathbf{R}^X : q_{v_n}(u) \le \varepsilon_n \right\} \subset W.$$

Set

$$D_k = \left\{ f \in \boldsymbol{K}^X \colon q_{v_k}(f) \leq \varepsilon_k / 2^k \right\}$$

and

$$D = \bigcup_{n} \sum_{k=1}^{n} D_{k}.$$

Since *D* is a convex neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{K})$, there exists α_0 such that $f_a \in D$ if $a \ge \alpha_0$. Let $f = f_1 + \ldots + f_n$ with $f_k \in D_k$, $k = 1, \ldots, n$. Then $|f| \le \max\{|f_1|, \ldots, |f_n|\}$. There are u_1, \ldots, u_n in \mathbf{R}^X , with $0 \le u_i \le |f_i|$, such that $|f| = u_1 + \ldots + u_n$. Since $2^k u_k \in W_k$, it follows that $|f| = \sum_{k=1}^n 2^{-k} (2^k u_k) \in W$ since *W* is absolutely convex. Thus, $|f_a| \in W$, for $a \ge \alpha_0$, which proves that $|f_a| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. Conversely, assume that $|f_a| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$ and let W_0 be a convex neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{K})$. Let $d_n > 0$ be such that

$$Z_n = \{ f \in l_\infty(v_n, \mathbf{K}) \colon q_{v_n}(f) \leq d_n \} \subset W_0.$$

The set $W = \bigcup_{n} \sum_{k=1}^{n} Z_k$ (which is contained in W_0) is a convex neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{K})$.

Claim I: The set W is solid, i.e. if $f \in W$ and if $g \in \mathbf{K}^X$ with $|g| \leq |f|$, then $g \in W$. Indeed, $f = \sum_{k=1}^n f_k$ with $f_k \in Z_k$. In view of Proposition 2.4, there are $g_k \in \mathbf{K}^X$, $|g_k| \leq |f_k|$, $g = g_1 + \ldots + g_n$, and so $g \in W$ since $g_k \in Z_k$.

Claim II: The set

$$D = \{ u \in \mathbf{R}^X : \exists f \in W \text{ with } |u| \leq |f| \}$$

is a neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. Indeed, let $\lambda \in \mathbf{K}$, with $|\lambda| > 1$, and let $u \in \mathbf{R}^X$ with $q_{v_n}(u) \leq |\lambda|^{-1} d_n$. For each $x \in X$, there exists $\mu_x \in \mathbf{K}$ with $|\mu_x| \leq u(x) \leq |\lambda\mu_x|$. If $f \in \mathbf{K}^X$, $f(x) = \lambda\mu_x$, then $f \in Z_n$ and so $u \in D$ since $|u| \leq |f|$. Since we can prove that, for any f, g in W, there exists h in W with $|h| = \max\{|f|, |g|\}$, it follows easily that is absolutely convex and so D is a neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{R})$.

Since now $|f_{\alpha}| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$, there exists α_0 such that $|f_{\alpha}| \in D$ if $\alpha \ge \alpha_0$. For each such α , there exists $f \in W$ with $|f_{\alpha}| \le |f|$ and so $f_{\alpha} \in W$ by claim I. This completes the proof of 1).

2) Let $(f_a)_{a \in A}$ be a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ and order $\Delta = A \times A$ by $(\alpha_1, \beta_1) \ge (\alpha, \beta)$ iff $\alpha_1 \ge \alpha$ and $\beta_1 \ge \beta$. For $\delta = (\alpha, \beta) \in \Delta$, set $g_{\delta} = f_a - f_{\beta}$.

Then $g_{\delta} \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ and so $|g_{\delta}| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. Since $||f_{\alpha}| - |f_{\beta}|| \leq |g_{\delta}|$ and since $k_{\infty}(\mathfrak{V}, \mathbf{R})$ has a base at zero consisting of solid sets, it follows that the net $(|f_{\alpha}|)$ is Cauchy in $k_{\infty}(\mathfrak{V}, \mathbf{R})$.

THEOREM 3.2. – The space $k_{\infty}(\mathfrak{V}, \mathbf{K})$ is complete.

PROOF. – Since for each $x \in X$ there exists \overline{v} in \overline{V} with $\overline{v}(x) > 0$, it follows easily that $K_{\infty}(\overline{V}, \mathbf{K})$ is complete. Let now (f_a) be a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{K})$. Then (f_a) is $\tau_{\overline{V}}$ -Cauchy and hence (f_a) is $\tau_{\overline{V}}$ -convergent to some $f \in \mathbf{K}^X$ since $K_{\infty}(\overline{V}, \mathbf{K})$ is complete. Let $g_a = f_a - f$. Then (g_a) is a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ and so $(|g_a|)$ is a Cauchy net in $k_{\infty}(\mathfrak{V}, \mathbf{R})$ by the preceeding Proposition. But $k_{\infty}(\mathfrak{V}, \mathbf{R})$ is complete (see [10]). Thus, there exists $u \in \mathbf{R}^X$ such that $|g_a| \to u$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$. Since the topology of $k_{\infty}(\mathfrak{V}, \mathbf{R})$ is finer than the topology of simple convergence, we have that $|g_a(x)| \to u(x)$ for all $x \in X$. Also, since for each $x \in X$ there exists $\overline{v} \in \overline{V}$ with $\overline{v}(x) \ge 1$, the topology $\tau_{\overline{V}}$ of $K_{\infty}(\mathfrak{V}, \mathbf{K})$ is finer than the topology of pointwise convergence. Since (g_a) is $\tau_{\overline{V}}$ -convergent to zero, we have that $g_a(x) \to 0$ for each x. It follows that u = 0. Thus $|g_a| \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{R})$ and so $g_a \to 0$ in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ by Proposition 3.1. This completes the proof.

PROPOSITION 3.3. – If $k_{\infty}(\mathfrak{V}, \mathbf{R}) = K_{\infty}(\overline{\mathcal{V}}, \mathbf{R})$ topologically, then $k_{\infty}(\mathfrak{V}, \mathbf{K}) = K_{\infty}(\overline{\mathcal{V}}, \mathbf{K})$ topologically.

PROOF. – Let (f_a) be a net in $K_{\infty}(\overline{V}, K)$ which converges to zero. Then $|f_a| \to 0$ in $K_{\infty}(\overline{V}, R)$. By our hypothesis, $|f_a| \to 0$ in $k_{\infty}(\mathfrak{V}, R)$ and so $f_a \to 0$ in $k_{\infty}(\mathfrak{V}, K)$ in view of Proposition 3.1. Since the topology of $K_{\infty}(\overline{V}, K)$ is always coarser than the one of $k_{\infty}(\mathfrak{V}, K)$, the result follows.

PROPOSITION 3.4. – If each v_n is continuous, then $\mathcal{V}C(X)$ is a closed subset of $k_{\infty}(\mathcal{V}, \mathbf{K})$.

PROOF. – Let f be in the closure of $\Im C(X)$ in $k_{\infty}(\Im, \mathbf{K})$ and let $x_0 \in X$. We will prove that f is continuous at x_0 . Let $\varepsilon > 0$ be given and set

$$D_n = \left\{ g \in \mathbf{K}^X \colon q_{v_n}(g) \le \varepsilon v_n(x_0)/2 \right\}$$
$$D = \bigcup_m \sum_{k=1}^m D_k.$$

Since *D* is a neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{K})$, there exists $g \in \mathfrak{V}C(X)$ with $f - g \in D$ and so $f - g \in \sum_{k=1}^{m} D_k$ for some *m*. Let

$$Z = \left[\bigcap_{k=1}^{m} \left\{ x \in X : v_k(x) > v_k(x_0)/2 \right\} \right] \cap \left\{ x : |g(x) - g(x_0)| < \varepsilon \right\}$$

Then, Z is a neighborhood of x_0 in X. Let $h_k \in D_k$, $f - g = h_1 + \ldots + h_m$. Since $|h_k| \leq \varepsilon v_k(x_0)/(2v_k)$, we have that $|h_k(x)| < \varepsilon$ for each $x \in Z$ and so $|f(x) - g(x)| < \varepsilon$ for $x \in Z$. Thus

$$|f(x) - f(x_0)| \le \max\{|f(x) - g(x)|, |g(x) - g(x_0)|, |g(x_0) - f(x_0)|\} < \varepsilon$$

at every point of Z. This clearly completes the proof.

Recall that a topological space X is said to be ultranormal if any two disjoint closed subsets of X can be separated by disjoint clopen sets.

LEMMA 3.5. – Let X be ultranormal and let $\{A_1, ..., A_n\}$ be a finite open cover of X. Then, there are pointwise disjoint clopen subsets $D_1, ..., D_n$ of X with $D_k \in A_k$ and $\bigcup_{k=1}^n D_k = X$.

PROOF. – We will use induction on n. For n = 2, the result follows directly from the definition of ultranormality. Assume that the result holds for n = mand let n = m + 1. There are disjoint clopen sets D_{m+1} , D with $D_{m+1} \in A_{m+1}$, $D \in \bigcup_{k=1}^{m} A_k$, $D_{m+1} \cup D = X$. Set

$$B_k = (D \cap A_k) \cup D_{m+1}, \quad k = 1, 2, ..., m.$$

By our induction hypothesis, there are pairwise disjoint clopen sets C_1, \ldots, C_m with $C_k \in B_k$ and $\bigcup_{1}^{m} C_k = X$. Now it suffices to take $D_k = C_k \cap D_{m+1}^c$ for $k = 1, \ldots, m$.

PROPOSITION 3.6. – Assume that one of the following two conditions holds

- (a) For each n, there exists $h_n \in C(X)$ with $v_n = |h_n|$.
- (b) X is ultranormal.

Then: 1) The family of all subsets of $\mathcal{V}C(X)$ of the form

$$W_{\alpha} = \bigcup_{m} \left\{ f \in C(X) : \sup_{x} \min_{1 \leq k \leq m} \alpha_{k} v_{k}(x) \left| f(x) \right| \leq 1 \right\},$$

where a runs through the family of all sequences $a = (a_n)$ of positive numbers, is a base at zero in $\Im C(X)$.

2) $\mathfrak{V}C(X)$ is a topological subspace of $k_{\infty}(\mathfrak{V}, \mathbf{K})$.

PROOF. - 1) We first observe that W_{α} is a neighborhood of zero in $\mathcal{V}C(X)$. On the other hand, let W be a convex neighborhood of zero in $\mathcal{V}C(X)$. For each n, there exists a non-zero μ_n in **K** such that

$$W_n = \{ f \in C(X) : q_{v_n}(f) \leq |\mu_n|^{-1} \} \subset W.$$

Let $|\lambda| > 1$, $\alpha_n = |\lambda \mu_n|$, $\alpha = (\alpha_n)$ and $f \in W_a$. There exists *m* such that

$$\sup_{x} \min_{1 \leq k \leq m} \alpha_{k} v_{k}(x) \left| f(x) \right| \leq 1$$

If $x \in X$, then there exists k, $1 \le k \le m$, with $a_k v_k(x) |f(x)| \le 1$ and so $|\mu_k|v_k|f(x)| \le |\lambda|^{-1} < 1$. Each of the sets

$$A_{k} = \{x : |\mu_{k}| v_{k}(x) | f(x) | < 1\}$$

is open and $\bigcup_{1}^{m} A_{k} = X$. In case (a) each A_{k} is clopen while in case (b) there are pairwise disjoint clopen sets $B_{1}, \ldots, B_{m}, B_{k} \in A_{k}, \bigcup_{1}^{m} B_{k} = X$. In both cases, there are pairwise disjoint clopen sets D_{1}, \ldots, D_{m} covering X with $D_{k} \in A_{k}$. Let $f_{k} = \phi_{k} f$, where ϕ_{k} is the **K**-characteristic function of D_{k} . Then $f_{k} \in W_{k}$ and so $f = f_{1} + \ldots + f_{m} \in W$, which proves that $W_{a} \in W$.

2) It follows easily from 1).

Combining Theorem 3.2 with Propositions 3.4 and 3.6, we get the following

THEOREM 3.7. – Assume that one of the following two conditions holds:

(a) For each n, there exists $h_n \in C(X)$ with $|h_n| = v_n$.

(b) X is ultranormal and each v_n is continuous. Then: 1) $\mathcal{V}C(X)$ is a closed topological subspace of $k_{\infty}(\mathcal{V}, \mathbf{K})$.

2) $\mathcal{V}C(X)$ is complete.

4. – Bornological $C\overline{V}(X)$ spaces.

Let $\mathfrak{V} = (v_n)$ and \overline{V} be as in section 2. By Corollary 2.2, $\mathfrak{V}C(X)$ is the bornological space associated with $C\overline{V}(X)$. In this section, we will look at the question of when $C\overline{V}(X)$ is bornological, i.e. when $\mathfrak{V}C(X) = C\overline{V}(X)$ topologically. We recall the following

DEFINITION ([11]). – The sequence \mathfrak{V} satisfies condition (D) if there exists an increasing sequence $J = (X_n)$ of non-empty subsets of X such that:

(NJ) For each $n \in N$, there exists $m \ge n$ in N such that $\inf_{x \in Y} v_k(x)/v_m(x) > 0$ for all k > m.

(MJ) For each $n' \in N$ and each subset Y of X which is not contained in any X_m , there exists m' = m'(n', Y) such that $\inf_{x \in Y} v_{m'}(x)/v_{n'}(x) = 0$.

PROPOSITION 4.1 (see [1]). – The following are equivalent:

1) \mathfrak{V} satisfies condition (D).

2) For each sequence (λ_n) of non-zero elements of K, there exists \overline{v} in \overline{V} such that, for each non-zero μ in K and each $m \in N$, there exists n such that

$$(*) \quad \min\{|\mu|/v_m, 1/\overline{v}\} \leq \max_{1 \leq k \leq n} |\lambda_k|/v_k\}$$

PROOF. – In view of Proposition 2.7, we may assume that, for each n, $v_n = |\phi_n|$ for some $\phi_n \in \mathbf{K}^X$. Assume that \mathfrak{V} satisfies condition (D), then $K_{\infty}(\overline{V}, \mathbf{R}) = k_{\infty}(\mathfrak{V}, \mathbf{R})$ topologically, by the main Theorem in [1], and so $\mathbf{K}_{\infty}(\overline{V}, \mathbf{K}) = k_{\infty}(\mathfrak{V}, \mathbf{K})$ topologically by Proposition 3.3. Let now (λ_n) be a sequence of non-zero elements of \mathbf{K} . Set

$$D_{n} = \{ f \in l_{\infty}(v_{n}, \mathbf{K}) : q_{v_{n}}(f) \leq |\lambda_{n}| \}, \quad W_{n} = \sum_{k=1}^{n} D_{k}.$$

The set $W = \bigcup_{n} W_{n}$ is a convex neighborhood of zero in $k_{\infty}(\mathfrak{V}, \mathbf{K})$ and thus it is also a neighborhood of zero in $K_{\infty}(\overline{V}, \mathbf{K})$. Let $\overline{v} \in \overline{V}$ be such that

$$\{f \in K_{\infty}(\overline{V}, K) : q_{\overline{v}}(f) \leq 1\} \subset W.$$

Given $\lambda \in \mathbf{K}$ with $|\lambda| > 1$, there exists $\phi \in \mathbf{K}^X$ such that $|\phi|$ is u.s.c. and $|\phi| \leq \overline{v} \leq |\lambda\phi|$ (by Lemma 2.6). Taking $|\lambda\phi|$ in place of \overline{v} , we may assume that $\overline{v} = |\lambda\phi|$. Let $A = \{x : \overline{v}(x) \leq v_m(x)/|\mu|\}$ and take $h \in \mathbf{K}^X$, $h(x) = \mu/\phi_m(x)$ if $x \in A$ and $h(x) = [\lambda\phi(x)]^{-1}$ if $x \notin A$. Then $|h| = \min\{|\mu|/v_m, 1/\overline{v}\}$. (Note that, if $\overline{v}(x) = 0$, we take $1/\overline{v}(x) = \infty$). Now $q_{\overline{v}}(h) \leq 1$ and so $h \in W_n$ for some n. Let $f_k \in D_k$ be such that $h = \sum_{k=1}^n f_k$. Then $|h| \leq \max_{1 \leq k \leq n} |\lambda_k|/v_k$ since $|f_k| \leq |\lambda_k|/v_k$. Conversely, assume that (2) is satisfied. Since $\max_{1 \leq k \leq n} |\lambda_k|/v_k \leq \sum_{k=1}^n |\lambda_k|/v_k$, it follows that \Im satisfies condition (D) by the main Theorem in [1].

THEOREM 4.2. – Assume that $\mathfrak{V} \subset |C(X)|$. Then:

(a) If \mathfrak{V} satisfies condition (D), then $C\overline{V}(X)$ is bornological.

(b) If, for each $\overline{v} \in \overline{V}$, there exists $\tilde{v} \in \overline{V} \cap |C(X)|$ with $\tilde{v} \ge \overline{v}$, then $C\overline{V}(X)$ is bornological iff \mathfrak{V} satisfies condition (D). In particular, if X is a zero-dimensional locally compact σ -compact space, then $C\overline{V}(X)$ is bornological iff condition (D) is satisfied.

PROOF. – (a) Assume that \mathfrak{V} satisfies condition (D) and let W be a convex neighborhood of zero in $\mathfrak{V}C(X)$. For each n, there exists a non-zero element

 λ_n of **K** such that $\lambda_n A_n \subset W$, where

$$A_n = \left\{ f \in Cv_n(X) \colon q_{v_n}(f) \leq 1 \right\}.$$

Set $A = \bigcup_{n} \sum_{k=1}^{m} \lambda_k A_k$. By the preceeding Proposition, there exists $\overline{v} \in \overline{V}$ such that, for each non-zero μ in K and each m, there exists n such that (*) holds. We claim that

$$\{f \in C\overline{V}(X): q_{\overline{v}}(f) \leq 1\} \subset W.$$

Indeed, let $q_{\overline{v}}(f) \leq 1$. Since A is absorbing, there exist a positive integer m and $\mu \neq 0$ such that $f \in \mu A_m$. Let n be such that (*) holds. Then

$$|f| \leq \min\{ |\mu|/v_m, 1/\overline{v} \} \leq \max_{1 \leq k \leq n} |\lambda_k|/v_k.$$

Since $\mathfrak{V} \subset |C(X)|$, there are (by Proposition 2.4), $f_k \in A_k$, k = 1, ..., n, such that $f = \lambda_1 f_1 + ... + \lambda_n f_n$ and so $f \in A \subset W$. This clearly completes the proof of (a).

(b) Assume that each $\overline{v} \in \overline{V}$ is dominated by some element of $\overline{V} \cap |C(X)|$ and that $C\overline{V}(X)$ is bornological. Let (λ_n) be a sequence of non-zero elements of K and set

$$Z = \bigcup_{n} \sum_{k=1}^{n} \lambda_{k} A_{k},$$

where A_k is as above. Since A is a convex neighborhood of zero in $\mathcal{V}C(X)$, our hypothesis implies that there exists $\overline{v} \in \overline{V} \cap |C(X)|$ such that

$$H = \{ f \in C\overline{V}(X) : q_{\overline{v}}(f) \leq 1 \} \subset Z.$$

Let now $\mu \neq 0$ and let *m* be a positive integer. By Proposition 2.3, there exists $f \in C(X)$ such that $|f| = \min \{ |\mu|/v_m, 1/\overline{v} \}$. Then, $f \in H$ and so $f \in Z$. Let *n* be such that $f = \sum_{k=1}^{n} \lambda_k f_k$ with $f_k \in A_k$. Since $|\lambda_k f_k| \leq |\lambda_k|/v_k$, we have that $|f| \leq \max_{1 \leq k \leq n} |\lambda_k|/v_k$.

PROPOSITION 4.3. – Let V be a Nachbin family on the zero-dimensional topological space X and assume that, for each $x \in X$, there exists $f \in CV(X)$ with $f(x) \neq 0$. If u, v are non-negative u.s.c. functions on X such that

$$\{f \in CV(X): q_v(f) \leq 1\} \subset \{f \in CV(X): q_u(f) \leq 1\},\$$

then, for each $\lambda \in \mathbf{K}$ with $|\lambda| > 1$, we have $u \leq |\lambda| v$.

PROOF. – Assume that $u(x_0) > |\lambda| v(x_0)$. Choose $\mu \in \mathbf{K}$ with $|\mu| < u(x_0) \leq |\lambda\mu|$ and so $v(x_0) < |\mu| < u(x_0)$. Since v is u.s.c. and X zero-dimensional, there exists a clopen neighborhood Z of x_0 in X such that $v(x) < |\mu|$ if $x \in Z$. By our hypothesis, there exists $f \in CV(X)$ with $f(x_0) \neq 0$. The set

$$A = \{ x : |f(x)| \ge |f(x_0)| \}$$

is clopen. Define g on X by $g(x) = \mu^{-1}$ if $x \in Z \cap A$, $g(x) = [\mu f(x_0)]^{-1} f$ if $x \in Z \cap A^c$ and g(x) = 0 if $x \notin Z$. Then g is continuous and $g \in CV(X)$ since $|g| \leq |\mu f(x_0)|^{-1} |f|$. Moreover, $q_v(g) \leq 1$, which is a contradiction since $u(x_0) |g(x_0)| > 1$.

LEMMA 4.4. – If X is zero-dimensional, then for each x in X there exists f in $C\overline{V}(X)$ with $f(x) \neq 0$.

PROOF. – For $x_0 \in X$, the set

$$D = \{x \in X : v_1(x) < 2v_1(x_0)\}$$

is open. Let Z be a clopen neighborhood of x_0 contained in D. Now it sufficies to take as f the **K**-characteristic function of Z in X.

PROPOSITION 4.5. – If X is zero-dimensional, then \mathfrak{V} satisfies condition (D) iff bounded subsets of $C\overline{V}(X)$ are metrizable.

PROOF. – By [2, Corollary I.2.6], condition (D) is equivalent to the following condition:

(1) There exists an increasing sequence (\overline{v}_n) in \overline{V} such that, for every $n \in \mathbb{N}$ and every $\overline{v} \in \overline{V}$, there exists m such that $\overline{v} \leq \sup \{\overline{v}_m, v_n\}$.

Assume now that (D) is satisfied and let (\overline{v}_m) be as in (1). If B is a bounded absolutely convex subset of $C\overline{V}(X)$, then there exists n such that

$$B \in D = \{ f \in C(X) \colon q_{v_n}(f) \leq n \}.$$

Given $\overline{v} \in \overline{V}$ let *m* be such that $n\overline{v} \leq \sup\{\overline{v}_m, v_n\}$. Now

$$W = \{ f \in C\overline{V}(X) : q_{\overline{v}_m}(f) \leq 1 \} \cap B \subset \{ f : q_{\overline{v}}(f) \leq 1 \}.$$

This clearly proves that *B* is a metrizable subset of $C\overline{V}(X)$. Conversely, assume that each bounded subset of $C\overline{V}(X)$ is metrizable. For each *n*, the set $B_n = \{f \in C(X) : q_{v_n}(f) \leq 1\}$ is bounded in $C\overline{V}(X)$ and thus there exists a sequence $(\overline{v}_{n,m})_{m \in N}$ in \overline{V} such that the sets

$$D_{n,m} = B_n \cap \{f \in CV(X) : q_{\overline{v}_n}(f) \leq 1\}, \quad m \in \mathbb{N},$$

is a base at zero in B_n . Let (\overline{w}_k) be any arrangement of the double sequence $(\overline{v}_{n,m})_{n,m}$, and set $\overline{v}_m = \max{\{\overline{w}_1, \ldots, \overline{w}_m\}}$. Then (\overline{v}_m) is an increasing sequence

in \overline{V} . Given $n \in \mathbb{N}$ and $\overline{v} \in \overline{V}$, there exists m such that

 $B_n \cap \{f \in C\overline{V}(X) \colon q_{\overline{v}_m}(f) \leq 1\} \subset \{f \colon q_{\overline{v}}(f) \leq |\lambda|^{-1}\},\$

where $|\lambda| > 1$. If $w = \max\{v_n, \overline{v}_m\}$, then

$$\left\{f \in C\overline{V}(X) : q_w(f) \leq 1\right\} \subset \left\{f : q_{\overline{v}}(f) \leq |\lambda|^{-1}\right\}.$$

In view of Lemma 4.4 and Proposition 4.3, we have that $\overline{v} \leq w$. Thus condition (1) is satisfied and so \mathfrak{V} satisfies condition (D). This completes the proof.

PROPOSITION 4.6. – If $\mathfrak{V} \subset |C(X)|$, then $C\overline{V}(X)$ is bornological iff it is quasi-barrelled.

PROOF. – Assume that $C\overline{V}(X)$ is quasi-barrelled and let W be an absolutely convex bornivorous subset of $C\overline{V}(X)$. Let $B_n = \{f \in C(X) : q_{v_n}(f) \leq 1\}$. Each B_n is bounded in $C\overline{V}(X)$ and so $\mu_n B_n \subset W$ for some non-zero μ_n in K. Let $D_n = \bigcup_{k=1}^n \mu_k B_k$. Since $\Im \subset |C(X)|$, using Proposition 2.4 we get that $D_n = \{f \in C(X) : |f| \leq \max_{1 \leq k \leq n} |\mu_k| / v_k\}$.

Since, for each $x \in X$, there exists \overline{v} in \overline{V} with $\overline{v}(x) > 0$, it follows that the weak topology of $C\overline{V}(X)$ is finer than the topology of pointwise convergence and so D_n is weakly closed in $C\overline{V}(X)$. If $D = \bigcup_{n=1}^{\infty} D_n$, then \overline{D} is a neighborhood of zero in $C\overline{V}(X)$ since $C\overline{V}(X)$ is quasi-barrelled. We claim that

$$\overline{D} \subset \bigcup_{n=1}^{\infty} D_n^e \subset \lambda D ,$$

for $|\lambda| > 1$. Indeed, assume that some $f \in \overline{D}$ is not in any D_n^e . Since $D_n^e = D_n^{oo}$, there exists $\phi_n \in D_n^o$ with $|\phi_n(f)| > 1$. The set $H = \{\phi_n : n \in N\}$ is strongly bounded in the dual space of $C\overline{V}(X)$. Indeed, let B be a bounded subset of $C\overline{V}(X)$. There exist $m \in N$ and $\mu \neq 0$ such that $B \subset \mu B_m$. If $f \in B$ and $n \ge m$, then $f \in \mu_m^{-1} D_n$ and so $|\phi_n(f)| \le |\mu_m^{-1}|$. This clearly proves that H is absorbed by B^o and so H is strongly bounded. Since $C\overline{V}(X)$ is quasi-barrelled, it follows that H is equicontinuous and so its polar H^o in $C\overline{V}(X)$ is a neighborhood of zero. Since $f \in \overline{D}$, there exists n and $g \in D_n$ such that $f - g \in H^o$, which is a contradiction since $|\phi_n(g)| \le 1$ and $|\phi_n(f)| > 1$. This contradiction proves that λD (and hence D) is a neighborhood of zero in $C\overline{V}(X)$ and so W is also a neighborhood of zero. Hence the result follows.

For a locally convex topology on a vector space E over K, we will denote by τ^{b} the associated barrelled topology.

PROPOSITION 4.7. – If $\mathfrak{V} \subset |C(X)|$, then $\mathfrak{V}C(X)$ coincides with the barrelled space associated with $C\overline{V}(X)$.

PROOF. – Let $\tau = \tau_{\overline{V}}$ be the topology of $C\overline{V}(X)$ and let τ_{ind} be the inductive topology of $\nabla C(X)$. Since v_n is continuous, it follows easily that $Cv_n(X)$ is a Banach space and $\nabla C(X)$ is barrelled. Since $\tau \leq \tau_{ind}$, it follows that $\tau \leq \tau^b \leq \tau_{ind}$. If $B_n = \{f \in C(X) : q_{v_n}(f) \leq 1\}$ then each $\sum_{k=1}^n \lambda_k B_k$ is weakly closed in $C\overline{V}(X)$ and hence it is weakly closed in $(C\overline{V}(X), \tau^b) = G$. With the same argument as in the proof of Proposition 4.6, it follows that G is bornological and so $\tau^b = \tau_{ind}$. Thus the result follows.

Recall that an inductive limit $E = \varinjlim E_n$ is called strongly boundedly retractive if: *a*) It is regular, i.e. each bounded subset of *E* is a bounded subset of some E_n .

b) For each n, there exists $m \ge n$ such that for each bounded subset B of E_n we have that $\tau|_B = \tau_m|_B$, where τ is the inductive topology of E and τ_m the topology of E_m .

We also recall the following definition:

The sequence $\mathfrak{V} = (v_n)$ is regularly decreasing (see [12], Definition 2.1) if, given $n \in \mathbb{N}$, there exists $m \ge n$ such that, for every $\varepsilon > 0$ and every $k \ge m$, we can find $\delta = \delta(k, \varepsilon) > 0$ with $v_k(x) \ge \delta v_n(x)$ whenever $v_m(x) \ge \varepsilon v_n(x)$.

PROPOSITION 4.8 ([12], Proposition 2.2). – The sequence $\mathfrak{V} = (v_n)$ is regularly decreasing iff the following condition is satisfied:

(wV) For every $n \in \mathbb{N}$, there exists $m \ge n$ so that, for every $\varepsilon > 0$, there is some $\overline{v} \in \overline{V}$ such that $v_m(x) \le \varepsilon v_n(x)$ whenever $\overline{v}(x) < v_m(x)$.

PROPOSITION 4.9. – If $\mathfrak{V} = (v_n)$ is regularly decreasing, then for each $n \in \mathbf{N}$, there exists $m \ge n$ so that, on each bounded subset A of $Cv_n(X)$, the topology induced on A by the topology τ_m of $Cv_m(X)$ coincides with the topology induced on A by the topology τ_{∇} of $C\overline{V}(X)$ and by the topology τ_{ind} of $\mathfrak{V}C(X)$.

PROOF. – Let $n \in \mathbb{N}$ and let $m \ge n$ be as in the condition (wV). Let A be an absolutely convex bounded subset of $Cv_n(X)$. Let τ_m be the topology of $Cv_m(X)$, $\tau_{\overline{V}}$ the topology of $C\overline{V}(X)$ and τ_{ind} the inductive topology of $\Im C(X)$. Clearly $\tau_{\overline{V}}|_A \le \tau_{\text{ind}}|_A \le \tau_m|_A$. On the other hand, let $\varepsilon > 0$ and let

$$W = \{ f \in C(X) \colon q_{v_m}(f) \leq \varepsilon \}.$$

Let $d \ge \sup_{\substack{f \in A \\ (\varepsilon/d)}} q_{v_n}(f)$. By condition (wV), there exists $\overline{v} \in \overline{V}$ such that $v_m(x) \le (\varepsilon/d) v_n(x)$ if $\overline{v}(x) < v_m(x)$. Set

$$D = \{ f \in C\overline{V}(X) \colon q_{\overline{V}}(f) \leq \varepsilon \}.$$

We will finish the proof by showing that $D \cap A \subset W$. Indeed, let $f \in D \cap A$ and assume that $f \notin W$. Then, there exists $x \in X$ with $|f(x)| v_m(x) > \varepsilon$. Since

 $|f(x)| \overline{v}(x) \leq q_{\overline{v}}(f) \leq \varepsilon$, we have that $\overline{v}(x) < v_m(x)$ and so $v_m(x) \leq (\varepsilon/d) v_n(x)$. Thus

$$v_m(x) |f(x)| \leq \frac{\varepsilon}{d} v_n(x) |f(x)| \leq \frac{\varepsilon}{d} q_{v_n}(f) \leq \varepsilon$$
,

a contradiction. This completes the proof.

PROPOSITION 4.10. – Assume that $\mathfrak{V} = (v_n)$ is regularly decreasing. Then:

1) On each bounded subset of $\nabla C(X)$ the topologies of $C\overline{V}(X)$ and $\nabla C(X)$ coincide.

2) $\Im C(X)$ and $C\overline{V}(X)$ have the same compactoid sets.

3) The inductive limit $\mathfrak{V}C(X) = \lim_{n \to \infty} Cv_n(X)$ is compactoid regular.

4) The inductive limit $\lim Cv_n(X)$ is strongly boundedly retractive.

PROOF. -1) It follows from the preceeding Proposition in view of Proposition 2.1.

2) Let A be a compactoid subset of CV(X). We may assume that A is absolutely convex. There exists n such that A is a bounded subset of $Cv_n(X)$. By the preceeding Proposition, we have that $\tau_{\overline{V}} = \tau_{\text{ind}}$ on A. Since A is absolutely convex and $\tau_{\overline{V}}$ -compactoid, it follows that it is also τ_{ind} -compactoid.

3) Let *A* be an absolutely convex τ_{ind} -compactoid. There exists *n* such that *A* is a compactoid subset of $Cv_n(X)$. By the preceeding Proposition, there exists $m \ge n$ such that $\tau_m = \tau_{\text{ind}}$ on *A*. It follows that *A* is a compactoid subset of $Cv_m(X)$.

4) It follows from the preceeding Proposition.

PROPOSITION 4.11. – If X is zero-dimensional, then $\mathfrak{V} = (v_n)$ is regularly decreasing iff the following condition is satisfied: For each $n \in \mathbb{N}$, there exists $m \ge n$ such that $\tau_{\overline{V}} = \tau_m$ on each bounded subset of $Cv_n(X)$.

PROOF. – In view of Proposition 2.8, we may assume that, in case the valuation of \mathbf{K} is discrete, we have that $v_n(X) \in |\mathbf{K}|$ for all n. Suppose now that the condition is satisfied and let $n \in \mathbf{N}$. Choose $m \ge n$ as in the condition. Given $\varepsilon > 0$, there exists $\overline{v} \in \overline{V}$ such that

$$(*) \quad \{f \in CV(X) : q_{\overline{v}}(f) \leq 1\} \cap \{f : q_{v_n}(f) \leq 1/\varepsilon\} \subset \{f : q_{v_m}(f) < 1\}.$$

Assume now that, for some x_0 in X, we have $\overline{v}(x_0) < v_m(x_0)$ and $\varepsilon v_n(x_0) < v_m(x_0)$. Choose $\mu \in \mathbf{K}$ such that $\overline{v}(x_0) < |\mu| \leq v_m(x_0)$ and $\varepsilon v_n(x_0) < |\mu| \leq v_m(x_0)$. The set

$$O = \{x \in X : \overline{v}(x) < |\mu|\} \cap \{x : \varepsilon v_n(x) < |\mu|\}$$

is open. There is a clopen neighborhood A of x_0 contained in O. Let $f = \mu^{-1}\phi$, where ϕ is the **K**-characteristic function of A. Then $q_{\overline{v}}(f) \leq 1$ and $q_{v_n}(f) \leq 1/\varepsilon$ while $q_{v_m}(f) \geq v_m(x_0)/|\mu| \geq 1$, which contradicts (*). Thus \mathfrak{V} satisfies condition (*wV*) and so it is regularly decreasing by Proposition 4.8. This and Proposition 4.9 complete the proof.

PROPOSITION 4.12. – Let X be locally compact and assume that $\inf_{x \in Y} v_n(x) > 0$, for each $n \in \mathbb{N}$ and each non-empty compact subset Y of X. If $\mathfrak{V} = (v_n)$ is regularly decreasing, then $C\overline{V}(X)$ and $\mathfrak{V}C(X)$ are quasi-complete.

PROOF. – Since every point of X has a compact neighborhood and since $\inf_{x \in Y} v_n(x) > 0 \text{ for each non-empty compact subset } Y \text{ of } X, \text{ it follows easily that}$ each $Cv_n(X)$ is a Banach space. Let now A be a closed absolutely convex bounded subset of $C\overline{V}(X)$. There exists n such that A is a bounded subset of $Cv_n(X)$. Since ∇ is regularly decreasing, there exists (by Proposition 4.4) an $m \ge n$ such that τ_{∇} , $\tau_{\text{ ind}}$ and τ_m induce the same topology on A. Let now (f_{δ}) be a τ_{∇} -Cauchy net in A. Then, (f_{δ}) is τ_m -Cauchy and so $f_{\delta} \rightarrow f$, with respect to τ_m , for some $f \in Cv_m(X)$. Then $f_{\delta} \rightarrow f$ with respect to τ_{∇} and $f \in A$ since A is τ_{∇} closed. This proves that $C\overline{V}(X)$ is quasi-complete. The proof of $\nabla C(X)$ is analogous.

REFERENCES

- [1] F. BASTIN, On bornological $C\overline{V}(X)$ spaces, Arch. Math., 53 (1989), 394-398.
- [2] F. BASTIN, Weighted spaces of continuous functions, Bull. Soc. Roy. Sc. Liège, 1 (1990), 1-81.
- [3] F. BASTIN B. ERNST, A criterion for CV(X) to be quasinormable, Results in Math., 14 (1988), 223-230.
- [4] K. D. BIERSTEDT, The approximation property for weighted function spaces, Bonner Math. Schriften, 81 (1975), 3-25.
- [5] K. D. BIERSTEDT, Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 26-58.
- [6] K. D. BIERSTEDT J. BONET, Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach., 135 (1988), 149-180.
- [7] K. D. BIERSTEDT J. BONET, Dual density conditions in (DF)-spaces I, Results in Math., 14 (1988), 242-274.
- [8] K. D. BIERSTEDT J. BONET, Dual density conditions in (DF)-spaces, Bull. Soc. Roy. Sc. Liège, 57 (1988), 567-589.
- [9] K. D. BIERSTEDT J. BONET, Some results on VC(X), pp. 181-194 in: T. Terzioglu (Ed.), Advances in the theory of Fréchet spaces, Kluwer Academic Publishers, 1989.

- [10] K. D. BIERSTEDT J. BONET, Completeness of the (LB)-space VC(X), Arch. Math. (Basel), 56 (1991), 281-288.
- [11] K. D. BIERSTEDT R. MEISE, Distinguished echelon spaces and the projective description of weighted inductive limits of type $V_d C(X)$, pp. 169-226 in: Aspects in Mathematics and its Applications, Elsevier Science Publ. B. V., North-Holland Math. Library, 1986.
- [12] K. D. BIERSTEDT R.MEISE W. H. SUMMERS, A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160.
- [13] K. D. BIERSTEDT R. MEISE W. H. SUMMERS, Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, 1982.
- [14] J. BONET, A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math., 34 (1983), 115-125.
- [15] J. BONET, On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20.
- [16] J. P. Q. CARNEIRO, Non-Archimedean weighted approximation (in Portuguese), An. Acad. Bras. Ci., 50 (1) (1978), 1-34.
- [17] J. P. Q. CARNEIRO, Non-Archimedean weighted approximation, pp. 121-131 in: Approximation Theory and Functional Analysis (J. B. Prolla, editor), North-Holland Publ. Co. (Amsterdam), 1979.
- [18] N. DE GRANDE-DE KIMPE J. KAKOL C. PEREZ-GARCIA W. H. SCHIKHOF, *p-adic locally convex inductive limits*, pp. 159-222 in: *p-adic Functional Analysis*, Marcel Dekker, Inc., Lecture Notes in Pure and Applied Mathematics, **192**, 1997.
- [19] B. ERNST, On the uniqueness of weighted (DF)-topologies, Bull. Soc. Roy. Sc. de Liège, 5-6 (1987), 451-461.
- [20] B. ERNST P. SCHETTLER, On weighted spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559.
- [21] A. K. KATSARAS A. BELOYIANNIS, Non-Archimedean weighted spaces of continuous functions, Rendiconti di Mat. Serie VII, vol. 16 (1996), 545-562.
- [22] A. K. KATSARAS A. BELOYIANNIS, On non-Archimedean weighted spaces of continuous functions, pp. 237-252 in: p-adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics 192, Marcel Dekker, 1997.
- [23] A. K. KATSARAS A. BELOYIANNIS, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math., Vol. 6, No 1 (1999), 33-44.
- [24] L. NACHBIN, Elements of Approximation Theory, Van Nostrand Math. Studies, 14, 1967.
- [25] J. B. PROLLA, Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-158.
- [26] W. H. SCHIKHOF, Locally convex spaces over non-spherically complete valued fields I, II, Bul. Soc. Math. Belg., serie B XXXVIII (1986), 187-224.
- [27] A. C. M. VAN ROOIJ, Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, Inc., 1978.

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

Pervenuta in Redazione il 20 marzo 2000