BOLLETTINO UNIONE MATEMATICA ITALIANA

A. L. GILOTTI, U. TIBERIO

On the intersection of maximal non-supersoluble subgroups in a finite group

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **3-B** (2000), n.3, p. 691–698.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_3_691_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2000.

On the Intersection of Maximal Non-Supersoluble Subgroups in a Finite Group.

A. L. GILOTTI (*) - U. TIBERIO (**)

Sunto. – Gli autori studiano il sottogruppo $\Sigma(G)$ intersezione dei sottogruppi massimali e non supersolubili di un gruppo finito G e le relazioni tra la struttura di G e quella di $\Sigma(G)$.

Introduction.

Let G be a finite group. Let us denote by Σ the set of all maximal subgroups of G that are non supersoluble and by $\Sigma(G)$ the intersection of G with all members of that set.

 $\Sigma(G)$ coincides with G if and only if Σ is empty, i.e. G is either supersoluble or minimal non supersoluble.

In this paper two kinds of problems are investigated.

The first concerns the characterization of $\Sigma(G)$ in various classes of groups.

The second studies the influence that properties of $\Sigma(G)$ can have on the structure of G.

Of both type are the results obtained by Shidov in 1971 ([1]), that studied the subgroup H(G) intersection of all maximal and non nilpotent subgroups of G and proved that H(G) is nilpotent in a non soluble group, while in the soluble groups it has a normal Sylow *p*-subgroup. Further if H(G) is non nilpotent G = QN, where Q is a normal *q*-subgroup, q a prime, and N is nilpotent.

Of the first type are the results contained in a previous paper of the authors, in which the subgroup $H_p(G)$, intersection of all maximal and non pnilpotent subgroups of G, for a fixed odd prime p, is studied. It is there proved that $H_p(G)$ is $\Phi(G)$ (the Frattini subgroup) in a finite non p-soluble group, while it has properties like Sylow's only if we restrict the attention to a special class of p-soluble groups (see [2]).

Similar results do not hold for $\Sigma(G)$. In particular, if G is non soluble, $\Sigma(G)$ not necessarily coincides with $\Phi(G)$ and it can be simple. For example in the

(**) Research partially supported by ex 40%, 60% MURST funds.

^(*) Member of the G.N.S.A.G.A. of C.N.R.

group G = Aut(SL(3, 2)) there is a unique maximal subgroup non supersoluble which is isomorphic to SL(3, 2) and coincides with $\Sigma(G)$ (see [3]).

Further if G is soluble, $\Sigma(G)$ is neither necessarily supersoluble nor it has a Sylow *p*-subgroup which is normal, as the Example 1 of [2] can show.

Restricting the class of soluble groups examined, the authors obtain the following results about the structure of $\Sigma(G)$

a) If G is a soluble group such that $(|G|, \overline{r}(G)) = 1$ and $\Sigma(G) \neq 1$, then $\Sigma(G)$ has a Sylow p-subgroup which is normal in G.

b) If G is a soluble group and all maximal and supersoluble subgroups are conjugate then $\Sigma(G)$ has a normal p-subgroup Q and the factor group $\Sigma(G)/Q$ is nilpotent.

About the second type of problems we concentrate our attention on the groups in which $\Sigma(G) \neq \Phi(G)$, in fact no particular implications can be expected if these two subgroups coincide.

If S is the saturated formation of supersoluble groups and G_S is the supersoluble residual of G, observe that $\Phi(G) \neq \Sigma(G)$ yields to $G_S \subseteq \Sigma(G)$. This observation motivates the following results:

c) If $\Sigma(G) = G_8$ then G = QN where $Q = \Sigma(G)$ is a normal q-subgroup and N is supersoluble and maximal in G. In particular $\Sigma(G)$ is nilpotent.

Conversely we get

d) If $\Sigma(G)$ is nilpotent (and $\Sigma(G) \neq \Phi(G)$) then $G = \Sigma(G) N$ where N is supersoluble and $\Sigma(G)/\Phi(G)$ is minimal normal subgroup of $G/\Phi(G)$ and $\Sigma(G) = G_{\mathcal{S}} \Phi(G)$.

In particular, if G is primitive, $\Sigma(G)$ is the unique minimal normal subgroup of G.

Finally an example verifying c) and d) is exhibited.

Preliminaries.

All groups here considered are finite. The notation is standard (cfr. [4]). Given a finite group G, let us denote by Σ the set of all maximal and non supersoluble subgroups of G and by $\Sigma(G) = G \cap \left(\bigcap_{M_i \in \Sigma} M_i\right)$.

 $\Sigma(G)$ is a characteristic subgroup of G and if Σ is empty, $\Sigma(G) = G$.

Further $\Sigma(G) = G$ happens if and only if G is either supersoluble or minimal non supersoluble and the structure of G is known (see [7]).

Let us recall the following:

DEFINITION 1 (cfr. [5, VI, 8.2]). – Let G be a non identity soluble group and let

 $1 = G_0 \lhd G_1 \lhd \ldots \lhd G_m = G$

be a chief series of G. Suppose that $|G_{i+1}/G_i| = p_i^{n_i}$ where p_i is a prime, i = 1, ..., m.

We define arithmetic rank $\overline{r}(G)$ of G the least common multiple of n_i 's $\forall i = 1, ..., m$. If G = 1 we set $\overline{r}(G) = 0$.

LEMMA 1 (cfr. [5], 8.1, p. 711). – Let G be a p-soluble group. Let V be a faithful irreducible G-module over GF(p) of dimension n where (n, |G|) = 1. Then G is cyclic and |G| divides $p^n - 1$.

Let us observe the following easy general fact:

LEMMA 2. – Let \mathcal{X} be a quotient-closed class of finite groups and G be a finite group. Indicate by C(G) the intersection of all maximal subgroups of G, that do not belong to \mathcal{X} . If none of these subgroups exist, C(G) will be G itself.

Then, if N is a normal subgroup of G

 $C(G) N/N \subseteq C(G/N)$.

PROOF. – If M/N is a maximal subgroup of G/N not in \mathcal{X} , surely M is a maximal subgroup of G not in \mathcal{X} , since \mathcal{X} is quotient-closed. Then the lemma follows.

REMARK 1. – The class \mathcal{X} of soluble groups such that $(|G|, \overline{r}(G)) = 1$ is quotient-closed.

LEMMA 3. – Let G be a finite group and let \mathcal{X} be a class of finite groups subgroup and quotient-closed. Let C(G) be the subgroup defined in Lemma 2. If $\Phi(G) \subseteq C(G)$ then

i) G = C(G)M where M is a maximal subgroup of G belonging to \mathcal{X}

ii) If G is soluble G = QN where Q is a normal q-subgroup of G, q a prime, and N is a maximal subgroup of G belonging to \mathcal{X} .

PROOF. – Since $\Phi(G) \neq C(G)$, there exists a maximal subgroup of *G* belonging to \mathcal{X} such that $M \not\supseteq C(G)$.

It follows G = C(G) M so i) is proved. Now assume G soluble. Denote $G/\Phi(G)$ by \overline{G} and consequently every homomorphic image of a subgroup H of G in the homomorphism from G to \overline{G} by \overline{H} . Hence $\overline{M} = M/\Phi(G)$, $\overline{C(G)} = C(G)/\Phi(G)$.

We have $\overline{G}/\overline{C(G)} \simeq G/C(G) \simeq M/(C(G) \cap M)$ so $\overline{G}/\overline{C(G)} \in \mathcal{X}$. Since $\overline{C(G)}$ is a non-trivial normal subgroup of \overline{G} , it contains a minimal normal subgroup \overline{K} of \overline{G} . Suppose $|\overline{K}| = q^s$.

Further $\overline{G} = \overline{K} \overline{N}$, $\overline{K} \cap \overline{N} = 1$ where \overline{N} is a maximal subgroup of \overline{G} . Since $N \not\supseteq C(G)$, N belongs to \mathcal{X} .

Let K be the complete preimage of \overline{K} in the homomorphism $G \to \overline{G}$, then $K = Q \Phi(G)$, where Q is a Sylow q-subgroup of K.

By Frattini's argument $G = KN_G(Q) = \Phi(G) N_G(Q) = N_G(Q)$, so that Q is normal in G. Since $\overline{G} = \overline{K} \overline{N}$, we have G = QN as wanted.

Results.

THEOREM 1. – Let G be a soluble group such that $(|G|, \overline{r}(G)) = 1$. If $\Sigma(G) \neq 1$ then $\Sigma(G)$ has a Sylow q-subgroup which is normal.

PROOF. – We can assume $\Phi(G) \stackrel{\mathsf{C}}{\neq} \Sigma(G) \stackrel{\mathsf{C}}{\neq} G$. In fact if $\Sigma(G) = \Phi(G)$ the theorem is trivially true. If $\Sigma(G) = G$, then G is either supersoluble or minimal non supersoluble and in both cases the theorem is also true (cfr. [7]).

Suppose G is a minimal counterexample to the theorem.

Claim: $\Phi(G) = 1$.

If $\Phi(G) \neq 1$, by Remark 1 and by minimality of G, $\Sigma(G/\Phi(G))$ has a normal Sylow *p*-subgroup. Let $\Delta/\Phi(G)$ be $\Sigma(G/\Phi(G))$. Then there exists a Sylow *p*-subgroup P of Δ such that $P\Phi(G) \lhd G$. By Frattini's argument, P is normal in G and $P \cap \Sigma(G)$ is normal in $\Sigma(G)$ and also in G. Let us prove that $P \cap \Sigma(G) \neq 1$.

If p divides $|\Sigma(G)|$ then surely $P \cap \Sigma(G) \neq 1$. So assume that p does not divide $|\Sigma(G)|$. Since $P \notin \Phi(G)$, P has a supplement H in G and we can assume that H is a maximal subgroup.

If *H* were supersoluble, we would obtain G/P supersoluble and since $G/\Sigma(G)$ is supersoluble by Lemma 3, we would get $G/P \cap \Sigma(G) \simeq G$ supersoluble, contradiction. It follows that *H* is a maximal non supersoluble subgroup of *G*. By G = PH we have

$$G/\Phi(G) = (P/\Phi(G)/\Phi(G))(H/\Phi(G)) = (\Delta/\Phi(G))(H/\Phi(G))$$

By Lemma 3, $H/\Phi(G)$ is supersoluble, and hence so is $(G/\Phi(G))/(P\Phi(G)/\Phi(G))$. Since also $(G/\Phi(G))/(\Sigma(G)/\Phi(G))$ is supersoluble, we have $G/(P\Phi(G) \cap \Sigma(G))$ supersoluble.

But $P\Phi(G) \cap \Sigma(G) = (P \cap \Sigma(G))\Phi(G) = \Phi(G)$ since $P \cap \Sigma(G) = 1$. Thus $G/\Phi(G)$ is supersoluble and G supersoluble, a contradiction.

So we may assume that $\Phi(G) = 1$ and $1 \neq \Sigma(G) \stackrel{\mathsf{C}}{\neq} G$.

Let Q^* be a minimal normal subgroup of G contained in $\Sigma(G)$ and let H ba

a maximal subgroup of G complementing Q^* . Then $G = Q^*H$, $Q^* \cap H = 1$. If we call $G^* = G/\text{Core}_G H$ we have G^* primitive (cfr. [6] p. 54).

So Q^* is a faithful and irreducible GF(q)- H^* -module (where $|Q^*| = q^*$). Since $(|G|, \bar{r}(G)) = 1$ the dimension of Q^* as a module is coprime with $|H^*|$. So by [5. Hilfsatz 8.1] H^* is cyclic and $|H^*|$ divides $|Q^*| - 1$. It follows that $(|Q^*|, |H^*|) = 1$.

But $\operatorname{Core}_G(H) \cap \Sigma(G) = 1$; in fact, Q^* is the unique minimal normal subgroup of G contained in $\Sigma(G)$, otherwise G would be supersoluble.

So, since $Q^* \cap (\operatorname{Core}_G(H) \cap \Sigma(G)) \subseteq Q^* \cap H = 1$ and $\operatorname{Core}_G(H) \cap \Sigma(G) \trianglelefteq G$, we have

$$\operatorname{Core}_G(H) \cap \Sigma(G) = 1$$
.

Then we have $\Sigma(G) \cap H \simeq (\Sigma(G) \cap H) \operatorname{Core}_G H/\operatorname{Core}_G(H)$ and so $|\Sigma(G) \cap H|$ coprime with $|Q^*|$.

Since $\Sigma(G) = \Sigma(G) \cap Q^*H = Q^*(\Sigma(G) \cap H)$ we obtain that Q^* is a Sylow *q*-subgroup of $\Sigma(G)$, as we wanted.

Note that the hypothesis $(|G|, \overline{r}(G)) = 1$ can't be removed, as the example 1 of [2] shows.

By the same example, we can see the necessity of the hypothesis in the following:

THEOREM 2. – Let G be a soluble group such that $\Phi(G) \subseteq \Sigma(G) \subseteq G$. Suppose that all maximal supersoluble subgroups of G are conjugate. Then $\Sigma(G) = QT$ where Q is a normal q-subgroup and T is nilpotent. In particular the Sylow q-subgroup of $\Sigma(G)$ is normal.

PROOF. – By Lemma 3, G = QM where M is a maximal supersoluble subgroup of G and Q is a q-subgroup of $\Sigma(G)$, normal in G. Let M_0 be a subgroup of M minimal w.r. to the condition that $G = QM_0$. Then $Q \cap M_0 \subseteq \Phi(M_0)$, as it is easily seen.

But then, by Dedekind's relation,

$$\Sigma(G) = \Sigma(G) \cap QM_0 = Q(\Sigma(G) \cap M_0) .$$

If $T = \Sigma(G) \cap M_0 \notin \Phi(M_0)$ there would exist a maximal subgroup H of M_0 such that $T \notin H$ and $M_0 = TH$. But then QH is a maximal subgroup of G. In fact if $QH \subseteq S \subseteq G$, we have $S = QM_0 \cap S = Q(M_0 \cap S)$. Since $M_0 \cap S \supseteq H$ and H is maximal in M_0 , it follows that either $M_0 \cap S = H$ or $M_0 \cap S = M_0$. In the first case S = QH and in the second case S = G. Therefore, QH is a maximal subgroup of G that cannot be conjugate to M, since M doesn't contain Q. Hence QH is not supersoluble and so $QH \supseteq \Sigma(G) \supseteq T$.

It would follow $G = QM_0 = QTH = QH$ a contradiction. Thus $T \subseteq \Phi(M_0)$ and T is nilpotent.

COROLLARY 1. – If G satisfies the same hypotheses of Theorem 2 then $\Sigma(G) = Q\Phi(M)$ where Q is a normal p-subgroup of G and M is a maximal supersoluble group G such that G = QM.

PROOF. – By Lemma 3, G = QM and by the same argument of Theorem 2 we have $\Sigma(G) \cap M \subseteq \Phi(M)$.

Obviously then $\Sigma(G) \subseteq Q\Phi(M)$, so it is enough to prove the reverse inclusion.

By the assumptions, if N is a maximal subgroup of G not conjugate to M, N is non supersoluble so $N \supseteq \Sigma(G) \supseteq Q$. By Dedekind's relation, $N = Q(N \cap M)$ and $N \cap M$ is maximal in M. Hence $N \cap M$ contains $\Phi(M)$. In particular $\Phi(M) \subseteq N$, for all maximal subgroups N of G which are not conjugate to M. Thus $\Phi(M) \subseteq \Sigma(G), Q\Phi(M) \subseteq \Sigma(G)$ and so the equality.

Let S be the saturated formation of supersoluble groups and let G_S be the supersoluble residual of the group G.

Then by Lemma 3, we easily obtain that if $\Phi(G) \stackrel{\mathsf{C}}{\neq} \Sigma(G)$ and so it follows $G_{\mathfrak{S}} \subseteq \Sigma(G)$.

This observation motivates hypothesis of the following:

THEOREM 3. – Let G ba a soluble group such that $G_8 = \Sigma(G)$. Then G = QNwhere Q is a normal q-subgroup, $Q = \Sigma(G)$ and N is a maximal and supersoluble subgroup of G. In particular $\Sigma(G)$ is nilpotent.

PROOF. – We can assume $G_8 \neq 1$, otherwise G would be supersoluble and so $G = \Sigma(G) = 1$. It follows then $\Sigma(G) \stackrel{\supset}{\neq} \Phi(G)$ otherwise $G/\Phi(G)$ supersoluble would imply G supersoluble, a contradiction.

Distinguish two cases: $\Sigma(G)$ nilpotent and $\Sigma(G)$ non nilpotent.

In the first case, there exists a Sylow q-subgroup Q of $\Sigma(G)$ such that $Q \not\subseteq \Phi(G)$. So by an argument used before we have G = QM where M is maximal and supersoluble and Q is normal in G.

It follows $Q \supseteq G_8 = \Sigma(G)$ and the theorem is proved in this case.

So we may assume that $\Sigma(G)$ is not nilpotent. Choose a Sylow *p*-subgroup P_1 not normal in $\Sigma(G)$.

By Frattini's argument

$$G = \Sigma(G) N_G(P_1).$$

If *P* is a Sylow *p*-subgroup of *G* such that $P_1 = P \cap \Sigma(G)$ we have $N_G(P) \subseteq N_G(P_1)$. So, if *N* is a maximal subgroup containing $N_G(P_1)$, *N* contains $N_G(P)$ and so $|G:N| = q^s$ where $q \neq p$ (*s* some integer).

Also $G = \Sigma(G) N$ so that N is supersoluble. Since q divides $|\Sigma(G)|$, $\Sigma(G)$ has a non trivial Sylow q-subgroup, Q. If Q is not normal in G,

 $N_G(Q)$ is contained in a maximal subgroup H and, since $G = \Sigma(G) N_G(Q) = \Sigma(G) H$, H is supersoluble.

Since $\Sigma(G) = G_8$, *H* and *N* are maximal supersoluble subgroups supplementing G_8 , so *H* and *N* are *S*-projectors, therefore they are conjugate. But this contradicts the fact that $q \neq p$.

It follows $Q \trianglelefteq G$. Further G = QN. But, since N is supersoluble, this implies $Q \supseteq G_8$ and since $\Sigma(G) \supseteq Q$ we obtain $\Sigma(G) = Q$ and the theorem is proved.

Observe that the hypothesis in Theorem 3 leads to the nilpotency of $\Sigma(G)$. Now we invert such a situation and study soluble groups in which $\Sigma(G)$ is nilpotent, but not equal to $\Phi(G)$. Let us indicate by F(G) the Fitting subgroup of G.

THEOREM 4. – If $\Phi(G) \underset{\neq}{\subset} \Sigma(G) \subseteq F(G) \underset{\neq}{\subset} G$, then $\Sigma(G)/\Phi(G)$ is a chief factor of G complemented by a maximal supersoluble subgroup. In particular $\Sigma(G) = G_S \Phi(G)$.

PROOF. – Let $H/\Phi(G)$ be a minimal normal subgroup of $G/\Phi(G)$ contained in $\Sigma(G/\Phi(G))$. Then there exists a maximal subgroup M of G such that G = HM and $H \cap M = \Phi(G)$. Since $G = \Sigma(G)M$, M is supersoluble, and G/H too.

If $K/\Phi(G)$ is a minimal normal subgroup of $G/\Phi(G)$ such that $K \neq H$ and $K \subseteq \Sigma(G)$, with the same reasoning we have G/K supersoluble. Then it would follow $G/(H \cap K)$ supersoluble and so $G/\Phi(G)$ supersoluble, contradiction since $\Sigma(G) \neq G$.

So $\Sigma(G)/\Phi(G)$ contains a unique minimal normal subgroup $H/\Phi(G)$ of $G/\Phi(G)$. Since $\Sigma(G)$ is nilpotent, this implies $\Sigma(G)/\Phi(G)$ a *p*-group, where *p* is a prime, and since $F(G)/\Phi(G)$ is a product of minimal normal subgroups of $G/\Phi(G)$, $\Sigma(G)/\Phi(G)$ is an elementary abelian *p*-group.

By this observation we note that

$$(\Sigma(G)/\Phi(G)) \cap (M/\Phi(G)) = (\Sigma(G) \cap M)/\Phi(G)$$

is normal in $G/\Phi(G)$.

Since $H \not\in \Sigma(G) \cap M$ we have $\Sigma(G) \cap M = \Phi(G)$. So

$$\frac{\Sigma(G)}{\Phi(G)} = \frac{H}{\Phi(G)} \left(\frac{\Sigma(G) \cap M}{\Phi(G)} \right) = \frac{H}{\Phi(G)}.$$

So $\Sigma(G) = H$.

By the previous observation it also follow that the supersoluble residual $(G/\Phi(G))_{\mathcal{S}} = G_{\mathcal{S}} \Phi(G) / \Phi(G)$ coincides with $\Sigma(G) / \Phi(G)$ and so $G_{\mathcal{S}} \Phi(G) = \Sigma(G)$ as we wanted.

Example.

The following is an example of a group satisfying the hypothesis of Theorem 3 (and so also that of Theorem 4).

Let $H = SL(2, 2^4)$ and let G be the subgroup of H defined by:

$$G = \left\langle \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}, \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \middle| \begin{array}{c} \alpha, \beta \in GF(2^4) \\ \alpha \neq 0 \end{array} \right\rangle.$$

Obviously G is the normalizer in H of a Sylow 2-subgroup of H and it is a maximal subgroup of H (see [3]). It is easy to see that $\Sigma(G)$ is equal to G_8 and coincides with the Sylow 2-subgroup.

REFERENCES

- L. I. SHIDOV, On maximal subgroups of finite groups, Sibirsk. Mat. Zh. 12, n. 3 (1971), 682-683.
- [2] A. L. GILOTTI and U. TIBERIO, On the intersection of a certain class of maximal subgroups of a finite group, Arch. Math., 71 (1998), 89-94.
- [3] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER and R. A. WILSON, Atlas of Finite Groups, Oxford 1985.
- [4] D. J. S. ROBINSON, A Course in the Theory of Groups, Berlin-Heidelberg-New York (1991).
- [5] B. HUPPERT, Endliche Gruppen I, Berlin-Heidelberg-New York (1967).
- [6] K. DOERK and T. HAWKES, Finite Soluble Groups, Berlin-New York (1992).
- [7] K. DOERK, Minimal nicht uberauflösbare, endliche Gruppen, Math. Zeitschr., 91 (1966), 198-205.

A. L. Gilotti: Dipartimento di Matematica

P.za di P.ta S. Donato, Università di Bologna, 40127 Bologna E-mail: gilotti@dm.unibo.it

U. Tiberio: Dipartimento di Matematica Applicata G. Sansone Via di S. Marta 3, 50139 Firenze E-mail: utiberio@dma.unifi.it

Pervenuta in Redazione il 22 giugno 1999