Bollettino

Unione Matematica Italiana

E. Ballico
 The boundedness of singular subvarieties of \mathbf{P}^{N} not of a general type and with low codimension

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 3-B (2000), n.3, p. 687-689.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2000_8_3B_3_687_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

The boundedness of singular subvarieties of \boldsymbol{P}^{N} not of a general type and with low codimension.

E. Ballico

Sunto. - Sia $X \subset \boldsymbol{P}^{N}$ una varietà irriducibile n-dimensionale localmente Cohen-Macaulay, \boldsymbol{Q}-Gorenstein e non di tipo generale; assumiamo $N=6,2 n=N+2 e$ $\operatorname{dim}(\operatorname{Sing}(X))=2 n-N$. In questo lavoro dimostriamo che $\operatorname{deg}(X) \leqslant(N+1)^{N-n} e$ quindi che l'insieme di tutte queste varietà è parametrizzato da un insieme finito di varietà algebriche.

0. - Introduction.

The aim of this paper is to give a partial extension to singular varieties of a nice result of M. Schneider ([S]). Trivial examples (e.g. taking cones) show that it is essential to make some restrictions on the dimension of the singular locus and/or the nature of the singularities.

Theorem 0.1. - Fix integers n, N with $N=6$ and $2 n=N+2$. There are only finitely many families of irreducible locally Cohen-Macaulay \boldsymbol{Q}-Gorenstein complex subvarieties X of \boldsymbol{P}^{N} with $\operatorname{dim}(X)=n$ and $\operatorname{dim}(\operatorname{Sing}(X))=$ $2 n-N$ such that the Iitaka dimension $\kappa\left(X, \omega_{X}\right)$ of ω_{X} is at most $n-1$; more precisely, for every such X we have $\operatorname{deg}(X) \leqslant(N+1)^{N-n}$.

Theorem 0.2. - Fix integers n, N with $N=6$ and $2 n=N+2$. There are only finitely many families of irreducible locally Cohen-Macaulay Q-Gorenstein complex subvarieties X of \boldsymbol{P}^{N} with $\operatorname{dim}(X)=n$, and $\operatorname{dim}(\operatorname{Sing}(X))=$ $2 n-N$ such that a desingularization of X is not of general type; more precisely, for every such X we have $\operatorname{deg}(X) \leqslant(N+1)^{N-n}$.

Here if $\operatorname{Sing}(X) \neq 0 \operatorname{dim}(\operatorname{Sing}(X))$ is the maximal dimension of an irreducible components of $\operatorname{Sing}(X)$. We always assume $\operatorname{Sing}(X) \neq \emptyset$, otherwise the result was proved by M. Schneider in [S]. We will follow several of the steps of his proof. We stress that in the critical case $2 n=N+2$ of Theorems
0.1 and 0.2 we require only $\operatorname{dim}(\operatorname{Sing}(X))=1$, i.e. we do not require that X has only isolated singularities.

The author was partially supported by MURST and GNSAGA of CNR (Italy).

1. - The proofs.

In both theorems the boundedness follows from the existence of the Chow variety of \boldsymbol{P}^{N} or of the Hilbert scheme of \boldsymbol{P}^{N} and the first assertion, i.e. an upper bound for $\operatorname{deg}(X)$. Since X is \boldsymbol{Q}-Gorenstein, there is a positive integer t such that $\left(\omega_{X}^{\otimes t}\right)^{* *}$ is a line bundle. By definition the Iitaka dimension $\kappa\left(X, \omega_{X}\right)$ of the pair $(X, \omega X)$ is the Iitaka dimension $\kappa\left(X,\left(\omega_{X}{ }^{\otimes t}\right)^{* *}\right)$ of the line bundle $\left(\omega_{X^{\otimes t}}\right)^{* *}$. Let $\pi: Z \rightarrow X$ be a desingularization of X. Since X is normal, we have $\left.h^{0}\left(X,\left(\left(\omega_{X^{\otimes t}}\right)^{* *}\right)^{\otimes m}\right)=h^{0}\left(X_{\text {reg }},\left(\left(\left(\omega_{X^{\otimes t}}\right)^{* *}\right)^{\otimes m}\right)\right) \mid X_{\text {reg }}\right)$. Hence for all integers $m>0$ we have $h^{0}\left(Z, \omega_{Z^{\otimes t m}}\right) \leqslant h^{0}\left(X,\left(\left(\omega_{X^{\otimes t}}\right)^{* *}\right)^{\otimes m}\right)$. Hence if $\kappa\left(X, \omega_{X}\right)<n$, then Z is not of general type. Hence Theorem 0.2 follows from Theorem 0.1. Now we will prove Theorem 0.1.

Proof of Theorem 0.1. We claim that the inequality $2 \operatorname{dim}(X)=$ $\operatorname{codim}(X)+2$ implies that the restriction map $H_{D R}^{2}\left(\boldsymbol{P}^{N}\right) \rightarrow H_{D R}^{2}(X)$ is bijective; if X is assumed to be locally a complete intersection, this is [O], Th. 2.3; in the general case lift X to positive characteristic, use [HS], part (a) of Cor. 4.4, to obtain that $\boldsymbol{P}^{N} \backslash X$ has cohomological dimension $\leqslant 2(N-$ $n)-2$ and then apply [H2], Th. 7.1 at p. 86. By [FL], part (B) of Cor. $5.3, X$ is simply connected and hence $H^{2}(X, \boldsymbol{C})$ is dual to $H_{2}(X, \boldsymbol{C})$. By [H2], Th. 5.1 and the finiteness theorem $6.1, H_{D R}^{2}(X)$ is dual to $H_{2}^{D R}(X)$. By [H], p. 89, $H_{2}^{D R}(X)$ is the Borel-Moore homology of X and hence by page 6 in A. Haeflinger's exposé in [B] we have $H_{2}^{D R}(X) \cong H_{2}(X, \boldsymbol{C})$. We obtain $H^{2}(X, \boldsymbol{C}) \cong \boldsymbol{C}$. Since X is \boldsymbol{Q}-Gorenstein, ω_{X} has a first Chern class $c_{1}\left(\omega_{X}\right)$ in $H^{2}(X, \boldsymbol{C})$ (or use the De Rham cohomology and [H2], p. 58). Call $f \cdot \boldsymbol{C}$ value of $c_{1}\left(\omega_{X}\right)$ obtained by the identification of $H^{2}(X, \boldsymbol{C})$ with \boldsymbol{C}. Notice that we have $f=0$, otherwise by Seshadri criterion of ampleness ([H1], p. 37) we would have $\left(\omega_{X^{\otimes t}}\right)^{* *}$ ample and hence $\kappa\left(X,\left(\omega_{X}{ }^{\otimes t}\right)^{* *}\right)=n$, contradicting our assumptions. Let M be a general linear subspace of \boldsymbol{P}^{N} with $\operatorname{codim}(M)=\operatorname{dim}(X)-\operatorname{codim}(X)$. Set $Y:=X \cap M$. By the assumption on $\operatorname{dim}(\operatorname{Sing}(X))$ and Bertini theorem $\operatorname{Sing}(X) \cap M=\emptyset$ and Y is smooth. Notice that Y has codimension $\operatorname{dim}(Y)$ in M and hence the normal bundle $N_{Y, M}$ of Y in M has $\operatorname{rank} \operatorname{dim}(Y)$. Set $H:=\boldsymbol{O}_{Y}(1)$. By the adjunction formula and the smoothness of X along Y the line bundle ω_{Y} has the same intersection products as $H^{\otimes(f+\operatorname{dim}(\operatorname{Sing}(X))}$ with all cohomology classes coming from \boldsymbol{P}^{N} and with $c_{1}\left(\omega_{X}\right)$ and in particular with $\quad c_{1}\left(N_{Y}, M\right) \cong H^{\otimes(N+1-\operatorname{codim}(M))} \otimes c_{1}\left(w_{Y}\right)^{*} \quad$ and \quad with $\quad c_{N-n}\left(N_{Y}, M\right) \cong$
$\operatorname{deg}(Y) H^{N-n}$ (self-intersection formula ([F], Cor. 6.3)). Hence we may repeat verbatim the proofs in [S] and obtain all the statements of 0.1 .

REFERENCES

[B] A. Borel, Intersection Cohomology, Progress in Math., 50, Birkhäuser, 1984.
[F] W. Fulton, Intersection Theory, Ergebnisse der Math. B., 2, Springer-Verlag, 1984.
[FL] W. Fulton - R. Lazarfeld, Connectivity and its applications in algebraic geometry, in: Algebraic Geometry, Proc. Chicago Circle, pp. 26-92, Lect. Notes in Math., 862, Springer-Verlag, 1980.
[H1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lect. Notes in Math., 156, Springer-Verlag, 1970.
[H2] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Publ. Math. IHES, 45 (1976), 5-99.
[HS] R. Hartshorne - R. Speiser, Local cohomological dimension in characteristic p, Ann. Math., 105 (1977), 45-79.
[0] A. Ogus, On the formal neighborhood of a subvariety of projective space, Amer. J. Math., 97 (1975), 1085-1107.
[S] M. Schneider, Boundedness of low-codimensional submanifolds of projective space, Int. J. Math., 3 (1992), 397-399.

Dept. of Mathematics, University of Trento, 38050 Povo (TN) Italy
E-mail: ballico@science.unitn.it

Pervenuta in Redazione
il 18 settembre 1998

