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On Mathematical Finance.

P. L. LIONS (*)

Sunto. – I. Introduzione.
II. Un rapido esame di modelli e strumenti.
III. Simulazioni Monte-Carlo efficienti e calcolo di Malliavin.
IV. Osservazioni parziali e «option pricing».

I. – Introduction.

We present here a brief survey of some issues in Mathematical Finance,
concentrating mostly on rather practical problems such as modelling and nu-
merical issues and ignoring some more theoretical issues.

As is well-known, the industry of options (also called derivatives, securi-
ties ...) has become a huge one with many «players» consisting not only of fi-
nancial institutions but also of financial divisions in the major companies wor-
ldwide. New products are being designed, almost constantly, and now areas
expand rapidly such as credit risk options or options on utilities (gaz, electri-
city...). Since the pioneering word of F. Black and M. Scholes [4], R. Merton
[16], mathematical models are being used and developed by many research
groups for option pricing and hedging (defined more precisely in section II be-
low), leading to numerical software on which traders often base their activi-
ties. The industry of derivatives is clearly a high technology one and it is thus
not surprising to see that models, numerical methods (and computer systems)
are becoming more and more sophisticated with the input of thousands of ma-
thematically trained financial engineers. Of course, mathematical models and
numerical methods will probably never suffice to yield a complete description
of the derivatives market, but their overall efficiency and precision is quite re-
markable. A general argument for the mathematical approach can be made
once we recall that, by analogy with various other sciences, partial differential
equations are often efficient to describe, in an average fashion, the collective
dynamical behavior of large numbers of interacting particles. In the financial

(*) Conferenza tenuta a Napoli il 13 settembre 1999 in occasione del XVI Congresso
U.M.I.



P. L. LIONS554

applications, one can then argue (somewhat vaguely) that the particles are the
agents (or contracts) which interact by trading (1).

We describe in section II below the classical theory of option pricing and
some more recent models or products together with some of the issues concer-
ning them, such as, for instance, the issue of numerical computations. In sec-
tion III, we present briefly some work taken from [9], [8] that allows for effi-
cient Monte-Carlo computations of hedges. Finally, in section IV, we illustrate
a general approach, developed in collaboration with J.-M. Lasry [12], to the is-
sue of option pricing and hedging with partial observations of informations.
And we do so in the context of rather typical financial problems.

II. – A quick tour of models and issues.

Of course, this section is a biased selection of topics and the interested rea-
der should consult various references that present the field in more details
and more completely, such as D. Duffie [6], [7], M. Musiela and M. Rutkowski
[17], R. Rebonato [19] ...

II.1. Classical Black-Scholes theory revisited.

We denote by St the value of some assets (equities, interest rates ...) at time
t and we assume that St solves the following stochastic differential equation
for tF0.

dSt 4s (St ). dWt 1b(St ) dt , S0 4S�R N(1)

where Wt is a standard Brownian motion in R m and s , b are functions of S that
we take to be time-independent in order to simplify the presentation. Also, we
shall not bother to state the precise regularity and growths conditions on
(s , b) needed in this section. Of course, typical examples of (1) are the Bro-
wnian case where s and b are constants that we still denote by s and b, and

St 4S0 1s. Wt 1bt, and the log-normal case where s

S
and b

S
are constants

and St 4S0 expmsWt 1gb2
s 2

2
h tn. Other explicit «gaussian cases» are used

in Finance together with models for which (1) cannot be solved «explicitely».
A typical example of an option is a contract between two parties, one of

which pays at t40 some price for the future payment by the other party at so-
me specified time TD0 (the maturity of the option) of F(ST ) where F is a spe-
cified function of S. Once more, in order to simplify the notation and presenta-

(1) It is rather striking to recall that traders call the most commonly exchanged pro-
ducts liquids products (although no relationship with Fluid Mechanics is to be
expected).
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tion, we shall take the interest rate to be 0. Then, the obvious questions of inte-
rest are: i) what is the price of this option i.e. how much should the first party
be asked, ii) how should the second party manage this contract i.e. how should
he invest (sell or buy) in St in order to protect himself from the random fluc-
tuations of F(ST ) (this is the so-called hedging question).

Under various natural assumptions (complete market, no arbitrage, conti-
nuous time hedging ...) that we do not wish to describe here, these problems
were solved in [4], [16]. Various presentations are possible and we follow one
which is based upon optimal control theory (and utility functions) since this is
basically the only one that remains once we discard one of the aforementioned
assumptions. This is why we introduce the wealth process

dPt 4a t QdSt for tF0 , P0 4P�R(2)

where Pt stands for the wealth (of the second party), a t is the hedge or in
other words the number of assets owned during the «interval (t , t1dt)», and
obviously we may choose a t as we wish among all processes (adapted to the fil-
tration generated by W) with apropriate bounds that we do not specify here.
At time T, the wealth will be PT 2F(ST ) and we measure the «quality» of the
hedge by the following expected utility

E[U(PT 2F(ST ) ) ](3)

where U is an arbitrary utility function that we assume to be, for instance,
continuous, concave and increasing on R. (In fact, the result mentioned below
is true for much more general functions U but we shall not detail this point
here ...). And we are thus interested in the following stochastic control
problem

V4 Max
a t

E[U(PT 2F(ST ) ](4)

and V is obviously a function of (P , S , T) : V4V(P , S , T).
Pricing and hedging the option many then be formulated as follows: in (2),

P stands for the total wealth at time t40 which, of course, contains the price
paid by the first party. This is why, it is natural to consider an auxiliary control
problem, corresponding to the case when no option is bought or sold,
namely

V0 (P , S , T) 4 max
a t

E[U(PT ) ] .(5)

Then, the «fair» price of the option is the quantity, denoted by u, such
that

V0 (P2u , S , T) 4V(P , S , T) ,(6)

and the optimal hedge is d t4 at2a0
t where at, a0

t are respectively maximizers of
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(4), (5) respectively (provided, of course, all these objects u , a, a0 exist ...).
It turns out that u is entirely determined by the following expression

u(S , T) 4E[F(S 0
T ) ] ,(7)

which is thus independent of P and U, and

d t 4d(S , t) , d4
¯u

¯S
(S , t) .(8)

In the above formula, S 0
t stands for the solution of (1) with b40 and, infact, we

can also write (7) with St solving (1) but, then, we need to replace E (i.e. the
probability) by a new one according to the classical Girsanov formula. This
change of probability is an important notion in Mathematical Finance but we
shall not develop this aspect here.

An easy proof of (7)-(8) can be made using the Hamilton-Jacobi-Bellman
equations associated to (4) and (5). And we just sketch a formal proof of (7)
(which also yields (8) with little more work ...): we recall first that V and V0 sol-
ve the following equation, where we denote by a4ss T

¯W

¯T
2

1

2
Trga Q

¯2 W

¯S 2 h2b Q
¯W

¯S
1

1

2
g ¯2 W

¯P 2 h21

Q

Q ga Q
¯2 W

¯S¯P
1b

¯W

¯P
hT

Qa 21 Q ga Q
¯2 W

¯S¯P
1b

¯W

¯P
h40 ,

(9)

and, of course, VNT40 4U(P QF(S) ), V0 NT40 4U(P).
Next, a straightforward computation shows that V0 (P2u(S , T), S , T),

also solves (9) and satisfies the same initial condition than V if and only if u
solves

¯u

¯T
2

1

2
Trga Q

¯2 u

¯S 2 h40 , uNT40 4F(S) .(10)

And (7) is nothing but the probabilistic representation of the solution of
(10).

REMARK. – The same facts hold for american options which can be exerci-
sed at any (stopping) time t in [O , T]. Then, the optimal hedging formula re-
mains the same ((8)) while the price is given by

u(S , T) 4 max
0 GtGT

E[F(St ) ](11)
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which solves uniquely the following obstacle problem (variational inequality ...)

.
/
´

Ming ¯u

¯T
2

1

2
Trga Q

¯2 u

¯S 2 h, u2Fh40

uNT40 4F(S) .

(12)

Historically, the first models that have been used were one-dimensional,
mostly log-normal models (but also some Gaussian models for interest rates)
which make possible to derive explicit representations of the price u and of

the hedge ¯u

¯S
(also called delta).

These formulae are even particularly simple for the most common products
such as calls (F(S) 4 (S2K)1 ), puts (F(S) 4 (K2S)1 ), digitals (F(S) 4

1(SFK) ) ..., or even bareers which are slightly more elaborate contracts and
whose prices essentially solve (10) with appropriate Dirichlet boundary condi-
tions on some line (S4B). However, no such formula exists in the case of ame-
rican options, which were solved numerically by tree methods i.e. explicit finite
difference methods (see for instance D. Lamberton and B. Lapeyre [10]).

II.2. Increasing dimension.

As we saw above, determining the price of an option amounts to solve a li-
near parabolic equation (or an obstacle problem for american options). From a
numerical viewpoint, this is an easy matter in dimension N41 and, in addi-
tion, for many simple models explicit or semi-explicit formulae are often avai-
lable. However, it is clear by now that one has to consider situations in higher
dimensions (NF2). One can list a few reasons for such a necessity

i) Higher dimensional models

More accurate models involve at least two dimensions: this is the case for
stochastic volatility models such as

.
/
´

dSt 4s t St dWt

ds t 4ns t dBt 1a(s t 2s) dt
(13)

where n , a , s are positive constants and Bt is a Brownian motion with a fixed
correlation parameter r with Wt . Exactly as before, we obtain a price
u(S , s , T) which solves

¯u

¯T
2

1

2
s 2 S 2 ¯2 u

¯S 2
2

n 2

2
s 2 ¯2 u

¯s 2
2rns 2 S

¯2 u

¯s¯S
2a(s2s)

¯u

¯s
40 ,(14)
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a two dimensional parabolic equation which becomes degenerate (and delicate
to solve numerically) if NrN is close to 1. Other examples include two-factors in-
terest rate models ...

ii) Options involving several assets

Typical examples include options on baskets, or worst-of-N. We then have
N one-dimensional assets S 1

t , R, S N
t and the pay off F depends of (S 1

t , R,

S N
t ) 4St (for instance of 1

N
!
N

i41
ai S i

t , or min
iG iGN

(ai S i
t ) for some weights

a1 , R , aN D0). In such examples, N may reach 10 or even be larger ...!

iii) Exotic and path-dependent options

Even if the underlying asset St is one-dimensional, the form of the pay-off
may lead to equations in higher dimensions. This is the case with exotic op-

tions such as asian options where F4F gST , s
0

T

St dth or look-backs where

F4F (ST , max
0 G tGT

St ) (for instance ...). In those two examples, the price (and

the hedge) of the option is determined by the solution of a two-dimensional
equation namely u(S , T) 4 u(S , I , T)NI40 and

¯u

¯T
2

1

2
s 2 (S)

¯2 u

¯S 2
2S

¯u

¯I
40 , uNT40 4F(S , I)(15)

in the case of «asian options», and u(S , T) 4u(S , M , T)NM4S and

(16)
¯u

¯T
2

1

2
s 2(S)

¯2u

¯S 2
40 for SEM,

¯u

¯M
40 at S4M, uNT404F(S, M) ,

in the case of «look-backs» (see G. Barles, E. Daher and M. Romano [2]).
These two examples show how the addition of one rule (the integral or the

maximum) in the contract leads to one more dimension for the associated par-
tial differential equation. This explains why the so called path-dependent op-
tions which depend in a non trivial way on the path (t O St ) are often untreata-
ble by PDE techniques (this is the case for «structured» products like Mortga-
ge Backed Securities, CMO, IAB ...). Numerical evaluations can then only be
made by Monte-Carlo simulations.

II.3. Nonlinear equations.

It is reasonable to expect that more and more financial situations will re-
quire the case of nonlinear (partial differential) equations. This is in fact alrea-
dy the case for american options (see II.1 above) or related objects, or for
«passport options» which lead intrinsically to stochastic control problems and
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their corresponding Hamilton-Jacobi-Bellman equations. Another reason for
the occurence of nonlinear equations is to take into account market imperfec-
tions (and their impact on pricing and hedging) such as imperfect volatility ca-
libration (see the worst case model by M. Avellaneda, A. Paras and A. Levy
[1], or the partial observation model by J.-M. Lasry and the author [11]), mar-
ket frictions (transaction costs for instance, see the asymptotic model by G.
Barles and M.H. Soner [3]) or discrete hedging in order to take into account
the fact that continuous hedging is not realistic (see the model by J.-M. Lasry
and P.-L. Lions [11]). For such nonlinear equations, the issues are modelling
and numerical ones but not a theoretical one since the theory of viscosity solu-
tions provides the desired mathematical framework. It might be worth poin-
ting out that this to be expected since viscosity solutions theory has been desi-
gned to take care of all equations enjoying maximum and comparison principle
properties. And this is a natural fact in Finance since two options (with the sa-
me maturity) with pay-offs F 1 FF 2 are to be priced with the same ordering
(u1 Fu2 )!

II.4. Numerical perspective.

We shall not discuss here an important practical issue namely the calibra-
tion of models i.e. the numerical determination of the various paremeters ente-
ring the chosen models in view of observed market prices. This type of pro-
blem falls into the classical field of inverse problems which are, in general,
quite delicate.

Leaving aside the specific difficulties associated with calibration, the
main numerical issues concern, of course, the computation of the prices
and of the hedges. At this point, one needs to make a distinction between
deterministic methods such as trees (=explicit finite differences) or more
generally finite differences or finite elements, and Monte-Carlo methods.
For low dimensions (N41 or 2, possibly 3...), the former are obviously
preferred because of their efficiency (speed and precision) and because
they allow to treat american options or, more generally, nonlinear equations.
On the other hand, they degrade as N increases and, in particular, are
useless for «really» path-dependent products. This is where Monte-Carlo
methods are used: their advantages being the simplicity of implementation,
their intrinsic parallel structure and the possibility of computing in «high
dimensions». The drawbacks of Monte-Carlo methods are the oscillating
nature of the (slow) convergence to the desired result (prices and hedges)
and the fact that they cannot be used, with classical approaches, to compute
the solution of nonlinear equations. Various tricks or recipes have been
proposed to cure at least part of the first draw back (variance reduction,
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imputance sampling, control variables, blocks counting ...) and we wish
to mention one aspect namely the generation of Brownian paths.

Let us first recall how classical Monte-Carlo simulations are performed (for
european options) in order to approximate, say, the price (for instance u(S , T)
given by (7)). Given a time discretization Dt, one generates N3M (with M4

T/Dt) independent centered Gaussian variables with variance Dt in order to ap-
proximate the increments of a N-dimensional Brownian motion (WjDt2

W( j21) Dt , 1 GjGM). Then, one solves (1) by a discretization scheme (many are
possible, Euler for instance) and generates SjDt for 1 GjGM. Along this discre-
tized path, one then computes the pay off. Doing this computation for n paths (i.e.
generating n3N3M independent Gaussian variables) one obtains n values
(F i)1 GiGn . And, finally, an approximation of the price namely

1

n
!
i41

n

F i .

The typical rate of convergence (neglecting the time discretization error) of
this approximation is 1/kn if one use «randomly generated» Gaussian variables
and is thus rather slow. On the other hand, one can generate these variables
using the so-called low discrepancy sequences which are much more effective in
low dimensions, the dimension is in our case typically n3N3M or n3N in so-
me particular cases and is thus in general quite large. Various groups, including
ours — see also [5] —, advocate the use of mixed generations of Brownian paths
by, for example, generating through low discrepancy sequences intermediate
points (midpoints for instance) connected by randomly generated Brownian brid-
ges. All these tricks and recipes are quite useful for practical computations but
we shall not attempt to detail them more here. The next section is devoted to a
more conceptual improvement of Monte-Carlo simulations for the computation of
hedges i.e. the «delta» ¯u/¯s and more generally all sensitivities of the price with
respect to important parameters, that are called in the financial jargon «greeks»,
like the «gamma» ¯2 u/¯S 2, «vega» ¯u/¯v...

III. – Efficient Monte-Carlo simulations and Malliavin calculus.

The contents of this section are taken from [9] and [8].

III.1. Position of the problem.

As we saw in the preceding section, we are mainly interested in the following
quantities

ul4E[F(S(T , l), l) ] ,
¯m ul

¯l m
4

¯m

¯l m
E[F(S(T , l) ) ](17)
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where mF1 and l is a parameter (say in R) and St 4S(t , l) solves

dSt 4s (St , l) QdWt , S0 4S�R N .(18)

Once more, we do not make precise the regularity and growths assumptions
on s and F in S and l (that we may take as smooth as we wish ...). A typical
example is: l4S (if N41, say), in which case ¯m u/¯l m is the «delta» if n41
and the «gamma» if n42.

The computation, by Monte-Carlo simulations, of ¯ul /¯l (or ¯2 ul /¯l 2) is
classically performed by difference quotients i.e. by computing (by a Monte-
Carlo procedure) the following expectation (for instance)

E k 1

h
]F(S(T , l1h) )2F(S(T , l) )(l

for an appropriate «small» h (which has to be chosen well ...). Obviously, this
difference quotient is a (crude) approximation of the following expression

¯ul

¯l
4E k ¯F

¯l
(ST , l)1

¯F

¯S
(ST , l)

¯ST

¯l
l(19)

where
¯ST

¯l
solves the following affine stochastic differential equation

dg ¯St

¯l
h4 k ¯s

¯S
(St , l)

¯St

¯l
1

¯s

¯l
(St , l)lQdWt .(20)

In fact, (19) makes sense if F has some regularity in S (for instance, F�C 1

and ¯F/¯S bounded, or even F Lipschitz if s is nondegenerate ...). And we also
have

¯2 ul

¯l 2
4E y ¯2 F

¯l 2
12

¯2 F

¯S¯l

¯ST

¯l
1

¯F

¯S

¯2 ST

¯l 2
z(21)

with

dg ¯S 2
t

¯l 2 h4 y ¯s

¯S

¯2 St

¯l
1

2¯2 s

¯S¯l

¯St

¯l
1

¯2 s

¯l 2
zQdWt .(22)

The regularity of F in S is a serious difficulty since F(S) 41(SDK) for a di-
gital and F(S) 4 (S2K)1 for a call (or (K2S)1 for a put) and thus

¯F

¯S
4d K (S) for a digital

¯2 F

¯S 2
4d K (S) for a call , 2d k (S) for a put .



P. L. LIONS562

In particular, for a digital, the approximation by difference quotients of
¯ul /¯l amounts to the following quantity, in the simple example where l4S,
St 4S1sWt,

E k 1

h
1(0 EST2SEh)l

which is clearly an unstable quantity to compute by a Monte-Carlo simulation
(if h is small, otherwise the expectation is not necessarily close to the desired
quantity). This shows why classical Monte-Carlo methods to compute grecks
are not efficient and we shall see below that Malliavin calculus provides a cure
by allowing to integrate by parts within the expectation.

III.2. Malliavin calculus and integration by parts.

We just present the basic facts of Malliavin derivatives and integration by
parts and we refer the reader interested in more details to the books by D.
Nualart [18] and P. Malliavin [15]. Given a notion of integral, it is natural to
expect a notion of derivative. And the notion of Malliavin derivative of random
variables (in a Wiener space i.e. in the probability space associated to a stan-
dard Brownian motion ...) is naturally associated to the notion of (Ito×) stocha-
stic integrals. More precisely, if N41 in order to simplify notation, the Mallia-
vin derivative Dt, whenever it exists, acts linearly on random variables F, sati-
sfies the chain rule, (Dt F)tF0 is an adapted process, Dt F40 for tFT (TEQ)
if F is measurable with respect to (Ws )0 GsGT and Dt F is defined on smooth

(dense) random variables of the form F4W gs
0

Q

h1(t) dWt , ..., s
0

Q

hm (t) dWth with

W�C Q
0 (R m ), mF1, hi �L 2 (0 , Q) (1 G iGm) by

Dt F4!
i4 i

m
¯W

¯xi

(2) hi (t) .(23)

Denoting by Ft the s field generated by (Ws )0 GsG t, we have the two follo-
wing fundamental properties if F is FT measurable (0 ETEQ)

F4E[F]1s
0

T

E[Dt FN Ft ] dWt ,(24)

and the integration by parts formula

Eys
0

T

Dt Fa t dtz4E[Fd(a) ](25)

where d(a) is the so-called Skorohod (stochastic) integral that extends to
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smooth processes the Itô (stochastic) integral. In particular, if a t is adapted

then d(a) 4s
0

T

a t dWt .

A simple explanation of (25) is provided by looking at the example when
F4W(Wt1

, Wt2
2Wt1

, R , WT 2Wtm21
) where W �C Q

0 (R m ), mF1, 0 4 t0 E

t1 E t2 ERE tm21 E tm 4T, and a t 4c i (Wt1
, R , WT 2Wtm21

) if ti21 G tE ti ,
with c i (say) �C Q

0 (R m ). Then, we have

Eys
0

T

Dt Fa t dtz4 !
i41

m

E k ¯W

¯xi

c il (ti 2 ti21 ) 4

!
i41

m

(ti2ti21 ) s
R m

¯W

¯yi

(y) c i (y) expu2!
j

y 2
j

2(tj 2 tj21 )
v»

j
(2p (tj2tj21 ) )21/2 dy4

!
i41

m

s
R m

Wc i yi expu2!
j

y 2
j

2(tj 2 tj21 )
v»

j
(2p(tj 2 tj21 ) )21/2 dy2

!
i41

m

(ti 2 ti21 ) s
R m

W(div c) expu2!
j

y 2
j

2(tj 2 tj21 )
v»

j
(2p(tj 2 tj21 ) )21/2 dy .

In particular, if c i depends only on yk for kE i — which is equivalent to re-
questing that a t is adapted —, we have div c40 and we obtain

Eys
0

T

Dt Fa t dtz4 !
i41

m

E[Wc i (Wti
2Wti21

] 4EyWs
0

t

a t dWt
z .

III.3. Applications to the representation of greeks.

We may now go back to the expressions (19) (and (21)) and we wish to inte-

grate by parts inside the expectation the term E k ¯C

¯S
(ST )

¯ST

¯l
l. The main idea

is to find an «integrating factor» a (which is a random process) such that

¯F

¯S
(ST )

¯St

¯l
4s

0

T

Dt ]F(ST )( a t dt a.s.(26)

If we can find one, we then have

E k ¯F

¯S
(ST )

¯ST

¯l
l4E[F(ST ) p](27)

where p4d(a). In conclusion, we obtain a representation of ¯ul

¯l
in terms of
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quantities that are straightforward to compute by Monte-Carlo simulations
provided we determine a which solves (26). In order to do so, we first observe
that we have

s
0

T

Dt ]F(ST )( a t dt4
¯F

¯S
(ST )s

0

T

Dt ST a t dt ,

hence, we need to determine a solving

s
0

T

Dt ST a t dt4
¯St

¯l
a.s.

And if Dt ST g0 a.s., this is certainly possible choosing for instance a t 4

(Dt ST ) ¯St

¯l
gs

0

T

(Dt ST )2 dth21/2

. Finally, one can check that Dt ST 4s (St ) j T j21
t ,

where j t satisfies: dj t 4s 8 (St ) j t dWt , j 0 41. And, if for example when l4S
(the delta), s is nondegenerate, we may check (see [9]) for more details) that
we may choose a in such a way that we find

p4
1

T
s
0

T

s21 (St ). j t dWt .(28)

Let us also observe that there exist many weights p (the question of the «opti-
mal» one with minimal variance is studied in [9]) for which (27) holds and that
we also have (by an easy density argument)

¯u

¯S
4E[F(ST ) p](29)

for all F�L Q (for instance).
Let us give another application to an asian option where we are interested

in ¯u

¯S
with u4E[F(ST , IT ) ] and IT 4s

0

T

St dt. Then, we have

¯u

¯S
4Ey ¯F

¯S
j T 1

¯F

¯T
us

0

T

j t dtvz

4Eys
0

T

Dt ]F(ST , IT )( a t dtz
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if a t satisfies

s
0

T

a t s (St ) j T j21
t dt4j T

and

s
0

T

dts
t

T

a t s (St ) j s j21
t ds4s

0

T

j t dt ,

and since the linear forms s (St ) j21
t and s (St ) j21

t s
t

T

j s ds are obviously linear

independent, the existence of such a factor a and thus of a weight p is insured.
Examples are given in [9].

III.4. Localization.

Numerical illustrations may be found in [9], [8]. We only wish to mention
here that the practical implementation of the above approach requires, in or-
der to produce a very efficient numerical method (much more than the classi-
cal difference quotients approach), to localize the above integration by parts
around the singulaties of F. This is explained in detail in [9], [8] but the idea is
simple. For instance, in the Brownian case St 4S1sWt, (28)-(29) yield

¯u

¯S
4E kF(ST )

WT

s T
l .

And multiplying F by WT may lead to a Monte-Carlo simulation of a random
variable with a rather large variance which is thus quite slow. This is why one
has to localize the integration by parts: for instance, if F is smooth except at K,
we introduce C smooth such that CfF outside [K1 , K2 ] (with K1 EKEK2 )
and we write

¯u

¯l
4E kC 8

¯ST

¯l
1 (F2C) pl .

The quantity (F2C) p is now better behaved since, in the Brownian case,
(F2C) WT is now compactly supported ...

III.5. Conditional expectations.

Malliavin calculus can also be used for the Monte-Carlo simulations of con-
ditional expectations. One class of example (others may be found in [9]) is the
following one:

u4E[F(ST )NSt 4S 8 ](30)
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where 0 E tET and S 8 is arbitrary. Of course, in view of the Markov property,
this is nothing else than u(S 8 , T2 t). In particular, our approach allows to
compute, with a single set of Monte-Carlo paths emanating from a fixed posi-
tion S, the solution of a linear second order parabolic equation at any point S 8

(and positive time) which is a completely new fact in scientific computing. Of
course, traditional Monte-Carlo simulations of (30) are hopeless since «almost
all» paths generated «randomly» will miss the value S 8 at time t.

Formally, the idea of our approach is to write

u4
E[F(ST ) d S 8 (St ) ]

E[d S 8 (St ) ]
(31)

and then only needs to integrate by parts E[F(ST ) d S 8 (St ) ], for each F, wi-
thout differentiating F(ST ). This is indeed possible provided we introduce
H(S) 41/2 sign (S2S 8 ) and we write

E[F(ST ) H 8 (St ) ] 4Eys
0

T

Ds ]F(ST ) H(St )( a s dsz
4E[F(ST ) H(St ) d(a) ]

provided a satisfies

s
0

T

(Ds ST ) a s ds40 , s
0

T

(Ds St ) a s ds41

i.e.

s
0

T

s (Ss ) j21
s a s ds40 , s

0

t

s (j s ) j21
s a s ds4j21

t .

We may then choose for instance, a s 4
1

s (j s )

j s

j t
g 1

t
1[0, t) /sh2

1

T2 t
1[t , T) (s) ).

And, denoting by p4d(a), we obtain finally the desidered representation
namely

u4
E[F(ST ) H(St ) p]

E[H(St ) p]
.(32)

And this representation can be computed with the same generation of paths
than the one used initially to compute E[F(ST ) ] ...

Let us finally mention that this approach is used in [14] to make a full Mon-
te-Carlo computation of american options, thus opening the road to Monte-
Carlo simulations of all financial products ...
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IV. – Partial observations and option pricing.

The work described below is taken from [12] and should be seen only as an
example showing, we hope, the usefulness of partial observations models in Fi-
nance. Other examples may be found in [12] and will be developed elsewhe-
re.

IV.1. An industrial problem.

We begin with a practical financial issue encountered by many industrial
groups that need to protect themselves againts currency fluctuations during
the negotiation (and execution) of a contract. Typically, we may need an option
at time T (which could be thought as an insurance policy against currency fluc-
tuations for instance ...) but the actual need of this option and its precise form
depend an a random event which is (essentially) independent from the finan-
cial sphere (signing or not signing a contract for instance) and on which we ha-
ve some informations (the probability of signing the contract for example) or
we may obtain (= buy) some informations. The issues are numerous and cer-
tainly include the price (and the hedge) of such a product and the understan-
ding of the relationships between the price of this option and the price of
informations.

IV.2. Without observations.

We consider an asset governed by (1) and a pay off of the form

F(ST , Y)

where Y is independent from (Wt )tF0 and its law is given (or estimated) by a
probability measure m. Examples include: i) (contract) Y41 or 0 with proba-
bility p , 12p and F(S , 1 ) 4F(S) (we need the option if Y41), F(S , 0 ) 40
(we do not need it if Y40); ii) (sales) Y4y�R k with a law dm(y) and

F(S , y) 4F(S) Qy g4 !
i41

k

F i (S) yih.

We then use the utility function approach described in section 2 and intro-
duce the wealth process Pt satisfying (2). Then, a t is obviously adapted to the
filtration generated by Wt (it is «independent» from Y). And we consider

V(P , S , T) 4 max
a t

E[U(PT 2F(ST ) ](33)

where E is the «total» expectation with respect to (W , Y) and U(p) is a utility
function that we take, in order to simplify the presentation, to be

U(p) 412e 2lp(34)

and lD0 is a positive parameter that corresponds to the absolute risk aver-
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sion. In other words, we have

V(P , S , T) 4 max
a t

EsU(PT 2F(ST , y) ) dm(y)(35)

and, as in section 3, we introduce V0 (given by (5)) and the «fair» price u of the
product such that (6) holds.

It is shown in [12] (it is infact a very special case of the results shown the-
rein) that u is given by

u(S , T) 4E[C(S 0
T ) ] , C(S) 4

1

l
logse lF(S , y) dm(y) ,(36)

and that the «optimal» hedge is still given by (8). Formally, this can be easily
understood since V and V0 still solve the same HJB equation (9) and we have
now

VNT40 4sU(P2F(S , y) ) dm(y)

412e 2lPkse lF(S , y) dm(y)l
412e 2l(P2C(S) ) .

The meaning of the above result is that we just need to consider an equiva-
lent option whose pay off is C. In addition, for low risk aversion i.e. small l,

C(S)4sF(S, y) dm(y)1
l

2
ksF 2(S, y) dm(y)2gsF(S, y) dm(y)h

2l1o(l) ,

i.e. the first order approximation is simply to consider the averaged payoff
sF(S , y) dm(y) (i.e. Fp for a contract) which is a very natural quantity from a
financial view-point, but the next order (that builds up the price of the pro-
duct) involves the variance in y of the pay-off which, of course, measures the
risk induced by fluctuations of Y. Notice finally that the price (u) is increasing
with respect to l i.e. grows if risk aversion grows!

IV.3. Partial observations and the cost of informations.

We now consider a pay-off given by F(ST , YT ) where Yt satisfies

dYt 4!(Yt ) QdBt 1g(yt ) dt , Y0 4y�R k ,(37)

Bt is a n-dimensional Brownian motion independent of W and !, g are smooth
(with bounds that we do not specify here, see [12]). And we wish to incorporate
in our model the following possible actions (controls): on each time interval
(t , t1dt), either we choose b t 41, we observe dYt and we pay cdt, or we choose



ON MATHEMATICAL FINANCE 569

b t and we do not observe dYt. Then, (2) is replaced by

dPt 4a t QdSt 2cb t dt(38)

and a t (the hedging strategy) is now adapted to the filtration generated by the
observations (which are, in some sense, parts of the controls, a feature that
makes this type of control problems rather new ...). The cost c (for observa-
tion) is t aken to be a positive constant in order to simplify notation.

In order to write precisely the control problem, we introduce, as is custo-
mary in optimal stochastic control under partial observations and nonlinear
filtering, the conditional low of Yt given the observations that we denote by n t .
This conditional low is a random process that depends on y, and which is a.s. a
probability measure in y. The above heuristics are then translated in the follo-
wing stochastic parabolic equation

dn t 4Bn t Qb t dBt 1An t dt(39)

where An4
1

2

¯2

¯yi ¯yj

(Kij n), K4! Q!T, bn42divy (!n). This equation is no-

thing else than a variant of the famous Zakai’s equation in nonlinear filtering
theory. Then, we may write an infinite-dimensional stochastic control with full
observations

V(P , S , n , T) 4Maxa , b Esdn t (y) U(PT 2F(ST , y) )(40)

where n is the initial probability law on y4Y0 , so that n t Nt40 4n.
Working with the associated infinite-dimensional Hamilton-Jacobi-Bel-

lman equations, thanks to viscosity solutions theory as developed in P.-L.
Lions [13], and making manipulations somewhat related to those introduced in
section 2.1 (which can also be justified with the help of infinite-dimensional vi-
scosity solutions theory), one can show the following results that we state so-
mewhat imprecisely (in order to avoid rather unpleasant technicalities...).

THEOREM. – We have

V(P , S , n , T) 4V0 (P2u(S , n , T), S , T)(41)

where u (the price of the option) is the solution of the following infinite-di-
mensional nonlinear Black-Scholes equation

(42) { ¯u

¯T
2

1

2
Trga Q

¯2 u

¯S 2 h2 o ¯u

¯n
, Anp1

g2
1

2

¯2 u

¯n 2
(Bn , Bn)1

l

2 o ¯u

¯n
, Bnp2

2ch
1

n40
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( for all S , bounded non negative measures n , TF0) and

uNT40 4
1

l
logse lF(S , y) dn(y) .(43)

In addition, the hedging strategy is still given by (8).

Of course, this infinite-dimensional nonlinear equation is by no means easy
to solve and the following two corollaries provide some intuition about the
structure of u.

COROLLARY 1. – As l goes to 01 , u4u 0 1lu 1 10(l) where u 0, u 1

solve

¯w

¯T
2

1

2
Trga Q

¯2 w

¯S 2 h2 o ¯w

¯n
, Anp40(44)

with u 0NT404sF(S, y) dn(y), u 1NT404sF 2(S, y) dn(y)2gsF(S, y) dn(y)h
2

, i.e.

u 0 (S , n , t) 4E ksF(S 0
T , y) dn 0

T (y)l, u 1 (S , n , T) 4

E ksF 2 (S 0
T , y) dn T (y)2 gsF(S 0

T , y) dn 0
T (y)h

2l ,

with

¯v 0
t

¯t
4Avt

0 ; n 0
t Nt40 4n .(45)

In addition, the optimal control b t vanishes identically i.e. we never buy in-
formation for lD0 small enough.

Next, we consider the special case when S and g are constant (i.e. independent
of y) and when F(S , y) 4F(S) Qy; and we introduce

F 1
i (S , T) 4E[F 1

i (S 0
T ) ](46)

F 2
ij (S , T) 4E[F 1

i F 1
j (S 0

T ) ] .(47)
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COROLLARY 2. – For any n such that se cNyN dn(y) EQ for all cD0,

.
`
/
`
´

¯u

¯T
2

1

2
Trga

¯2 u

¯S 2 h4
l

2
Kij QF

2
ij1g i F 1

i2g l

2
Kij (F 2

ij 2F 1
i F 1

j )2ch
1

uNT40 4
1

l
logse lF(S) Qy dn(y) .

(48)

And, an optimal feed back control b t is given by b(S , t) 41 if and only if
l

2
Kij (F 2

ij (S , t)2 (F 1
i F 1

j )(S , t) ) Dc.

The equation (48) is a simple modification of the «Black-Scholes» equation
and shows various interesting phenomena. First of all, the decision of buying
information is independent of the initial guess n on y. Next, the scaling for the
cost c of information is (risk aversion) 3 (variance of Y)2 3 (variance of option
prices).
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