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Pseudo-valuation Rings, II.

Davip F. ANDERSON - AYMAN BADAWI - DAvID E. DoBBS

Sunto. — Viene data una condizione sufficiente affinche un sopra-anello di un anello
di pseudo-valutazione (PVR) sia ancora un PVR. Da cio seque che se (R, M) ¢ un
PVR, allora ogni sopra-anello di R ¢ un PVR se (e soltanto se) R[u] é quasi-locale
per ciascun elemento u di (M : M). Vart risultati sono dimostrati per un ideale pri-
mo di un anello commutativo arbitrario R, avente Z(R) come insteme di zero-divi-
sori. Per esempio, se P ¢ un primo «forte» di R e contiene un elemento non-zero di-
visore di R, allora (P: P) é un sopra-anello di R con Uinsieme degli idealti total-
mente ordinato e con ideale massimale P; inoltre, (P: P) ¢ un PVR 1l cui ideale
massimale € un ideale primo anche in R se e soltanto se P e Z(R) sono entrambi
ideali primi «forti» di R. Se (R, M) ¢ un PVR, viene dimostrato anche che Z(R)
puo coincidere con nil (R) oppure con un ideale primo propriamente contenuto tra
questi due ideals.

1. — Introduction.

We assume throughout that all rings are commutative with 1 = 0. This pa-
per continues our study of pseudo-valuation rings (as introduced in [6]). We
begin by recalling some background material. As in [10], an integral domain R,
with quotient field K, is called a pseudo-valuation domain (PVD) in case each
prime ideal P of R is strongly prime, in the sense that xy e P, xe K, y € K im-
plies that either x € P or y € P. In [6], we generalized the study of pseudo-valu-
ation domains to the context of arbitrary rings (possibly with nonzero zerodivi-
sors). Recall from [6] that a prime ideal P of a ring R is said to be strongly
prime (in R) if aP and bR are comparable for all a, be R. A ring R is called a
pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A
PVR is necessarily quasilocal [6, Lemma 1(b)]; a chained ring is a PVR [6,
Corollary 4]; an integral domain is a PVR if and only if it is a PVD (cf. [1,
Proposition 3.1], [2, Proposition 4.2], and [5, Proposition 3]); and if R is a PVR
whose maximal ideal M contains a non-zerodivisor, then V:= (M: M) is a
chained ring with maximal ideal M [6, Theorem 8§].

The following notation will be used throughout. Let R be a ring. Then Z(R)
denotes the set of zerodivisors of R, and nil (R) denotes the set of nilpotent
elements of R. Also, S:=R — Z(R) = {x e R|x is a non-zerodivisor of R}, T' =
Ry is the total quotient ring of R, R' denotes the integral closure of R in 7, and
U(R) denotes the set of units of K. As usual, we say that a ring B is an overring
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of Rif RcBcT;if I is an ideal of R, then (I: I) = {x e T|xlc 1} is an overring
of Rand I '={xe T|xIcR}; and (R, M) denotes that R is quasilocal with
maximal ideal M. Any unexplained material is as in [6], [12].

This paper is organized as follows. Section 2 develops a characterization of
the PVRs all of whose overrings are PVRs. Section 3 is devoted to a number of
results and examples concerning strongly prime ideals, with, as expected, in-
terplay with the PVR concept. Two typical results in this regard are the fol-
lowing part of Theorem 3.6: if a strongly prime ideal P contains a non-zerodivi-
sor, then (P: P) is a chained ring with maximal ideal P; and Corollary 3.13: if
P e Spec (R), then (P: P) is a PVR whose maximal ideal is in Spec (R) if and
only if P and Z(R) are both strongly prime ideals of R. Moreover, Example
3.16(c) shows that if (R, M) is a PVR, then Z(R) can be nil (R), M, or a prime
ideal properly contained between these two ideals.

2. — PVRs whose overrings are PVRs.

Our first result is a partial converse to the fact that PVRs are quasilo-
cal.

THEOREM 2.1. — Let (R, M) be a PVR and u e V— R. Then R[u]is a PVR if
and only if R[u] is quasilocal.

PrOOF. — The «only if» assertion is immediate since a PVR is quasilocal [6,
Lemma 1(b)].

Conversely, suppose that E[«] is quasilocal. It suffices by [6, Theorem 7] to
show that M is the unique maximal ideal of R[u]. If u ¢ U(R[u]), then u + 1 e
U(R[u]) = U(R[u + 1)) since R[u] is quasilocal, whence (v + 1) 'e R’ by [12,
Theorem 15]. Hence (v + 1) ' ¢ M since M is a proper ideal of R[«]. Since R’
is a PVR with maximal ideal M by [6, Theorem 19], and (v + 1) 'eR' — M =
UR'),wehaveu+1eR andu=(u+1)—1eR’. On the other hand, if u
U(R[u]), then [12, Theorem 15] gives u e R'; as u ~' ¢ M (since M is a prop-
er ideal of R[u]), we have u ‘e R’ — M = U(R"). Thus, in both cases, ueR’,
and so R[u]cR’.

Consider veR[u]—M. As veR'—M=U(R"), v *eR’ and so, by [12,
Theorem 15], v "' e R[v]c R[u]. In particular, v € U(R[«]). Hence M is the
maximal ideal of R[u]. =

COROLLARY 2.2. — If (R, M) is a PVR, then the following conditions are
equivalent:
DR =V=WM:M)={xeT|xMcM};
(2) Each overring of R is a PVR;
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(3) Each overring of R that does not contain an element of the form 1/s
for some se M is a PVR;

(4) For each ueV—R, R[u] is a PVR;
(5) For each uwe V— R, R[u] is quasilocal;

(6) Each overring of R is quasilocal.

ProOOF. — (1) < (2) by [6, Theorem 21]; (2) = (3) trivially; and (3) = (2) by
[6, Lemma 20 and Corollary 4]. Moreover, (2) = (6) = (5) trivially; and (5) =
(4) by Theorem 2.1. It suffices to prove that (4) = (1). For this, note via the
proof of Theorem 2.1 that (4) implies that (M: M)c R’', while [6, Lemma 17]
gives the reverse inclusion. =

ExamMpPLE 2.3. — (a) Theorem 2.1 does not extend to overrings which are
generated by more than one element. In fact, if (R, M) is a PVD and A is a
quasilocal overring of R which is contained in (M: M), then A need not be a
PVD. For an example, consider R = Q + XQ(s, H)[[X]] = Q + M, where s, t,
and X are indeterminates and M = XQ(s, t)[[X]]. Observe that A=
Qfs, tls 4 + M is a quasilocal overring of R which is contained in (M: M) =
Q(s, HI[X]], although A is not a PVD.

(b) Not all PVRs satisfy the equivalent conditions in Corollary 2.2. We
next illustrate this with an example in which R is an integrally closed PVD.
Let t and X be indeterminates and let V = Q(¢)[[X]] = Q(¢t) + M, where M =
XV. Then V is a valuation domain, and hence R = Q + M is a PVD with maxi-
mal ideal M and (M: M) =V. However, R has an overring, namely R[t{] =
Q[t] + M, which is not quasilocal.

REMARK 2.4. — The equivalence of (5) and (6) in Corollary 2.2 has the follow-
ing counterpart for arbitrary rings. Let R be a ring with integral closure R,
and let McR. Then (R’', M) is quasilocal < for each ueR’', (R[u], M) is
quasilocal < each integral overring of R is quasilocal with unique maximal
ideal M. For a proof, note first via the incomparability and going-up properties
that if (R ', M) is quasilocal, then each integral overring of R is quasilocal with
unique maximal ideal M. On the other hand, suppose that (R[«], M) is quasilo-
cal for each uw e R'. Then if R has distinct maximal ideals M, and M,, pick ve
M, — M, and note, via the going-up property of R[v]c R’, that M, N R[v] and
M, N R[v] are distinct maximal ideals of R[v], the desired contradiction.

3. — Strongly prime ideals.

We next study some properties of strongly prime ideals. Recall that
a strongly prime ideal of R is comparable under inclusion to each ideal
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of R [6, Lemma 1(a)], and hence, that Z(R) is a prime ideal if R is
a PVR.

LEMMA 3.1. — Let P be a strongly prime ideal of a ring R. Then
(a) P is comparable to Z(R).

(b) Pg: is a strongly prime ideal of Rg- for any multiplicative subset S’ of
R disjoint from P.

(¢) Pp is a strongly prime ideal of Rp and Rp is a PVR.
(d) If P contains a non-zerodivisor of R, then Pp=P.

(e) Each prime ideal Qc P of R is strongly prime. Moreover, (P: P)C
(Q: Q).

ProOF. — (a) This is clear since Z(R) is a union of prime ideals of R [12, page
3] and a strongly prime ideal is comparable to each (prime) ideal of R [6, Lem-
ma 1(a)].

(b) This follows immediately from the definitions.

(¢c) By part (b) above, Pp is a strongly prime ideal of Rp, and hence Rp is
a PVR [6, Theorem 2].

(d) By part (a) above, Z(R) c P, and hence Rpc Rg. Let p/s e Pp with p e
P and se R — P. Then PcsR by [6, Lemma 1(a)]; so p/se Pp N R = P. Hence
Pp=P.

(e) For the first assertion, just use the proof of [6, Theorem 2]. For the
«moreover» statement, we may assume that @ = P. Let « € (P: P). Then xPc
P, and hence xQc PcR. Then (xQ) P = (xP) Qc Q yields ¥Qc @ since Q is
prime. Thus x e (Q: @), and hence (P: P)c (Q: Q). =

We first concentrate on the case when P is a strongly prime ideal which
contains a non-zerodivisor of R. In this case, we show that Rc Rpc (P: P)cC
P~ 1cT; and that (P: P)=P ! if P is not principal (Theorem 3.6); and in
Corollary 3.7(b), we determine when Rp = (P: P).

PrOPOSITION 3.2. — Let P be a strongly prime ideal of a ring R which con-
tains a non-zerodivisor of R. Then

(a) RcRpc (P: P)cPcT.
() P71=T.
Proor (a) By Lemma 3.1(a), Z(R)c P, and hence RpcT. Thus we need

only show that Rpc (P: P). This follows from Lemma 3.1(d) since RpcC
(Pp: Pp) = (P: P).
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(b) Let se P be a non-zerodivisor. If P '=T, then 1/s?2e P !; and
hence 1/s =s(1/s?) e PP "'cR, a contradiction. Thus P '= 7. =m

We next give another condition for a prime ideal to be strongly prime. This
generalizes [6, Theorem 5].

ProposiTION 3.3. — Let P be a prime ideal of a ring R. Then

(a) Suppose that Z(R)c P. Then P is strongly prime if and only if for
every a, be R, either bRcaR or aPcbP.

(b) Let P be a strongly prime ideal. If either P contains a non-zerodivi-
sor or P is a maximal ideal of R, then for every a, be R, either bRcaR or
aPcbP.

ProOOF. — (a) Suppose that P is strongly prime. Let a, be R. If bRcaP,
then bR caR. So we may assume that aPcbR. If aP ¢ bP, then ap = bc for
some pe P and ce R — P. Then c is a non-zerodivisor since Z(R)c P, and c|p
since PccR by [6, Lemma 1(a)]. Hence a|b, and thus bRcaR.

Conversely, suppose that for every a, b e R, either bR c aR or aPcbP. Let
a,beR.If aPcbP, then aPcbR. So we may assume that bRcaR. Then b =
ac for some ce R. If ce P, then bR caP. Suppose that c ¢ P. Then c is a non-
zerodivisor since Z(R)c P. Let 0 # p € P; then bp = acp. We claim that c¢|p. If
not, then c¢P c pP by hypothesis. Hence cp = pq for some q € P. Thus p(c — q) =
0, and hence ¢ — ge Z(R) c P. Thus ce P, a contradiction. Hence c|p for each
peP, and thus PccR. Hence aPcacR =bR. Thus P is strongly prime.

(b) In either case, Z(R)c P by Lemma 3.1(a). Thus part (b) follows from
part (a) above. m

Recall from [6] that an ideal I of a ring R satisfies property ( *) if whenev-
er xy eI for some &, y € T, then either x e I or y e I. It was shown [6, Theorem
14] that if (R, M) is a PVR, then M satisfies property (). The following
proposition is a generalization of that fact.

PRrOPOSITION 3.4. — Let P be a strongly prime ideal of a ring R. If P contains
a non-zerodivisor of R, then P satisfies property ().

Proor. — By parts (¢) and (d) of Lemma 3.1 and Proposition 3.2(a), Rp is a
PVR with maximal ideal Pp= P and total quotient ring 7. Thus P satisfies
property (*) by [6, Theorem 14]. =

For our next result, cf. [10, Proposition 1.2] and [6, Lemma 13].

PropPoSITION 3.5. — Let P be a strongly prime ideal of a ring R which con-
tains a non-zerodivisor of R. Then
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(@ T—RcUT).
() If xeT— R, then x "' PcP.

ProOF. — (a) Let x =a/be T — R, where aeR and be R — Z(R). Suppose
that a € Z(R). Since P is strongly prime, aR and bP are comparable. If aR c
bP, then x e Pc R, a contradiction. Thus bPcaRc Z(R), and hence be Z(R)
since P contains a non-zerodivisor, again a contradiction. Thus a ¢ Z(R); so
x 1=b/aeT, and thus xe U(T).

(b) We have x(x "1 P) = P; so x "' Pc P since P satisfies property ( =) by
Proposition 3.4. =

Recall that a ring R is a chained ring if its ideals are linearly ordered by
inclusion (i.e., for every x, y € R, either x|y or y|x). Any chained ring is neces-
sarily a PVR [6, Corollary 4]. The following result is motivated by [2, Proposi-
tion 4.3] and [4, Proposition 5].

THEOREM 3.6. — Let P be a strongly prime ideal of a ring R which contains a
non-zerodivisor of R. Then (P: P) is a chained ring with maximal ideal P.
Moreover, if P is nonprincipal, then (P: P) = P !; and if P is principal, then
(P: P)=R.

ProoF. — By parts (c) and (d) of Lemma 3.1, Rp is a PVR with maximal ideal
Pp = P. Since P contains a non-zerodivisor, (P: P) = (Pp: Pp) is a chained ring
with maximal ideal Pp= P by [6, Theorem §&].

For the «moreover» statement, first suppose that P is not principal. Let
xeP 1= (P:P). Then x 'eT by Proposition 3.5(a), and hence Pcx 'R.
Since x “'(xP) = P and x ¢ (P: P), we have x " € P since P satisfies property
(#) by Proposition 3.4. Thus P =« 'R, a contradiction. Hence (P: P) =P "1
If P is principal, then P = sR for some non-zerodivisor s e P. Thus (P: P) =
(sR:sR)=R. =

COROLLARY 3.7. — Let P be a strongly prime ideal of a ring R. Then

(a) If P contains a non-zerodivisor prime p of R, then P is maximal, P =
pR, and R is a chained ring (and thus a PVR).

(b) Suppose that P contains a non-zerodivisor of R. Then Rp = (P: P) if
and only if Rp is a chained ring.

(c) Let Q be a prime ideal of R properly contained in P. If @ contains a
non-zerodivisor of R, then @ is strongly prime and Ry = (Q: Q).

ProoF. — (a) Let y e R. Suppose that y ¢ pR. Then pP cyP by Proposition
3.3(b). Hence p? = ym for some m e R. Since p* + y and p is a non-zerodivisor
prime of R, p? |m. Hence m = p*k for some ke R. Thus p® = yp®k, and hence
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yk = 1. Thus y € U(R). Hence P is maximal, P = pR, and R is a PVR. Thus R =
(P: P) is a chained ring by Theorem 3.6.

(b) If Rp = (P: P), then Rp is a chained ring by Theorem 3.6. Converse-
ly, suppose that Rp is a chained ring. Then Rpc (P: P) by Proposition 3.2(a).
Let x e (P: P). We may assume that x ¢ P, and hence x is a unit of (P: P).
Thus either x or x ! is in Rp since Rp is a chained ring. If x "' Rp, thenx "'e
Rp— P, and hence ¥ = (x 1) 'e Rp. Thus Rp = (P: P).

(¢) By Lemma 3.1(e) and Theorem 3.6, (P: P)c (Q: @) are chained rings
with maximal ideals P and @, respectively. Thus Ry = (Rp)qg, = (P: P),, is a
chained ring by [6, Theorem 12]; so Ry = (Q: Q) by part (b) above. =

The next result is motivated by [2, Proposition 4.6].

THEOREM 3.8. — The following statements are equivalent for a proper ideal
I of a ring R which contains a non-zerodivisor of R:

(1) I is a nonprincipal strongly prime ideal of R.

(2) I ! is a ring and for every a, beR, the ideals al and bR are
comparable.

ProoF. — (1) = (2): This is clear by the definition of strongly prime ideal
and Theorem 3.6.

(2)=>(1): Let sel be a non-zerodivisor of R. The proof of Proposition
3.2(b) shows that I is not principal. We need only show that I is prime. Since
s e I is a non-zerodivisor and for every a, b € R, the ideals al and bR are com-
parable, Z(R) c I. Suppose that xy eI for some x, ye R —I. Hence I cxR and
IcyR by hypothesis. Since x, y e R — I and Z(R) cI, both « and y are non-ze-
rodivisors. Thus 1/x, 1/yel !, and hence 1/(xy)?>el ! since I ! is a ring.
Thus 1/xy = xy/(xy)* eIl "'c R, a contradiction. Hence I is prime. ®

We have the following partial converse to Theorem 3.6.

THEOREM 3.9. — Let P be a prime ideal of a ring R such that B = (P: P)is a
PVR with maximal ideal M e Spec (R). Then
(a) Z(R)cM.
(b) M, P, and Z(R) are strongly prime ideals of R.
In particular, if (P: P) is a PVR with maximal ideal P, then P is a strongly
prime ideal of R and Z(R)cP.
Proor. — (a) Let xe R — M. Then xe U(B). Thus x¢ Z(R), so Z(R)cM.
(b) Let a, be R. Since M is a strongly prime ideal of B, the ideals bB
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and aM are comparable. If bBcaM, then bR c aM. Thus we may assume that
aMcbB. If aM ¢ bR, then am = bd for some meM and deB— R. Thus de
U(B), and hence b = a(d "'m) e aM . Thus bR c aM, and hence M is a strongly
prime ideal of R. Since Pc M, P is also a strongly prime ideal of R by Lemma
3.1(e). Since Z(R)c M and the prime ideals of R contained in M are strongly
prime and linearly ordered, Z(R) is a prime ideal of R. Hence Z(R) is a strong-
ly prime ideal of R by Lemma 3.1(e).
The «in particular» statement is immediate. ®

We next consider the case when the strongly prime ideal P does not con-
tain a non-zerodivisor, i.e., when Pc Z(R). For this case, the next result is
analogous to Proposition 3.2.

PropoSITION 3.10. — Let P be a strongly prime ideal of a ring R such that
PcZ(R). Then

(a) Pg=P.
(b) (P:P)=T.
(¢c) P =Py is a strongly prime ideal of Rgy=T = (P: P).

ProOF. — Let se S. Then PcsR by [6, Lemma 1(a)], and hence (1/s) PCR.
Thus s((1/s) P)c P, s ¢ P, and P a prime ideal yields (1/s) Pc P. Hence Pg= P
and (P: P) =T. That Pg is strongly prime follows from Lemma 3.1(b). =

THEOREM 3.11. — Let P be a prime ideal of a ring R such that Pc Z(R).
Then

(a) T is a PVR if and only if Z(R)g is a strongly prime ideal of 7.

(b) (P: P)is a PVR with maximal ideal M € Spec (R) if and only if Z(R)
is a strongly prime ideal of R.

(¢) If (P: P)is a PVR with maximal ideal M e Spec (R), then (P: P) =T,
P is a strongly prime ideal of R, and M = Z(R).

PrOOF. — Let @ := Z(R).

(a) If T is a PVR, then T = Ry is quasilocal, necessarily with maximal
ideal Qg. Conversely, if Qs is a strongly prime ideal of 7', then T is a PVR by [6,
Theorem 2].

(b) If Q is a strongly prime ideal of R, then T = Rg is a PVR with maxi-
mal ideal @ = Qg by Lemma 3.1(c) and Proposition 3.10(a). Thus Pc @ is also a
strongly prime ideal of R by Lemma 3.1(e); so (P: P) =T by Proposition
3.10(b). The converse follows from Theorem 3.9(b).
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(¢) Suppose that (P: P) is a PVR with maximal ideal M e Spec (R). Then
P is a strongly prime ideal of R by Theorem 3.9(b), and hence (P: P) =T by
Proposition 3.10(b). By part (a) above, necessarily M =Qs=QsNR =
Q. =

The next two corollaries summarize our earlier results on when (P: P) is a
PVR.

COROLLARY 3.12. — Let P be a prime ideal of a ring R. If (P: P) is a PVR
with maximal ideal M e Spec (R), then P and Z(R) are strongly prime ideals of
R and either M =P or M = Z(R).

ProoF. — By Theorem 3.9(b), M, P, and Z(R) are strongly prime ideals of E.
Thus either Z(R) c P or Pc Z(R) by Lemma 3.1(b). If Pc Z(R), then M = Z(R)
by Theorem 3.11(c). If Z(R) is properly contained in P(c M), then M = P by
Theorem 3.6. =

COROLLARY 3.13. — Let P be a prime ideal of a ring E. Then the following
statements are equivalent:

(1) (P: P) is a PVR with maximal ideal M e Spec (R);
(2) P and Z(R) are strongly prime ideals of R.

ProOF. — (1) = (2) by Theorem 3.9(b).

(2)= (1): By Lemma 3.1(a), P and Z(R) are comparable. If Pc Z(R), then
we are done by Theorem 3.11(b). If Z(R) is properly contained in P, then we
are done by Theorem 3.6. =

QUESTION 3.14. — Let P be a strongly prime ideal of a ring R such that Pc
Z(R) and (P: P) (=T)is a PVR. Then T has maximal ideal Z(R)g and Z(R) is a
prime ideal of R. Is Z(R) also a strongly prime ideal of R?

Any PVD which is not a field gives an example of a PVR (R, M) for which
nil (R) = Z(R) # M. In [6, Example 10(b)], we constructed a PVR (R, M) with
nil (R) # Z(R) = M. These examples raise the question whether there exists a
PVR (R, M) for which nil (R) is neither Z(R) nor M. In Example 3.16(c), we
show that such behavior is possible. In the next proposition, we give a necess-
ary and sufficient condition for certain rings R to have nil (R) = Z(R).

ProposiTION 3.15. — Let R be a ring such that either R is quasilocal or
nil (R) is a (minimal) prime ideal of R. Then Z(R) = nil (R) if and only if for
every x e Z(R) there exists an integer k=1 such that "R =x*"'R.

ProoF. — We need only prove the «if» assertion. Suppose that there is an
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xeZ(R) — nil(R). Then x*=2**'m for some m e R and some integer k =1.
Hence (1 —xm) =0 enil (R). If nil (R) is prime, then 1 — am e nil (R) since
xe¢nil(R). Hence xm =1— (1 —xm) e UR), and thus x € U(R), a contradic-
tion. If R is quasilocal with maximal ideal M, then x € M, and hence 1 —xm e
U(R). Thus x*=0, so xenil(R), again a contradiction. Thus Z(R) =
nil(R). =

We end the paper with several examples. In particular, Example 3.16(c)
shows that if R is a PVR with maximal ideal M, then Z(R) can be nil (R), M, or
a prime ideal properly contained between these two ideals.

ExAMPLE 3.16. — (a) ([6, Example 10(a)]) Let k be a field and X and Y inde-
terminates. Then R =k[X, Y]/(X?, XY, Y?) =k[x, y] is a zero-dimensional
PVR with (strongly prime) maximal ideal M = Z(R) = (x, y), and (M: M) =R
is not a chained ring. Thus the non-zerodivisor hypothesis is needed in Theo-
rem 3.6.

(b) Let W be a valuation domain with maximal ideal N. For any 0 # x e
N, R=W/xW is a PVR [6, Corollary 3] with maximal ideal M = Z(R) = N/aW
and nil (R) = Q/xW, where @ = \/W is the (unique) prime ideal of W minimal
over xW. To see that Z(R) = N/xW, observe that for any m e N —«W, then
x = rm for some r¢xW, and hence (v + xW)(m + W) = 0 in W/xW with » +
xW nonzero. This example generalizes [6, Example 10(b)].

(¢) Let W be a valuation domain with maximal ideal N and let 0 Zx e N.
Then by part (b) above, W* = W/xW is a chained ring with maximal ideal
N* = N/aW = Z(W*), nil (W*) =\/xW/xW, and residue field k= W*/N* =
W/N. Let m: W*—k be the natural surjection, let D be a valuation domain
with maximal ideal P and quotient field %, and let R =z ~}(D). Then R is a
chained ring with maximal ideal M =z "'(P)>N*, nil(R) =nil(W*), and
Z(R) = Z(W*) = N*. (Also note that R = u ~*(D)/xW, where u: W—Fk is the
natural surjection; so x# ~1(D)c W is a valuation domain.)

By standard gluing techniques (cf. [9, Corollary 1.5]), Spec (R) is order-iso-
morphic to the result of gluing Spec (D) «above» Spec (W*), where 0 in
Spec (D) is identified with N* in Spec (W*). Thus for any integers ¢ and » with
1 <1i<mn, there is an (n — 1)-dimensional chained ring (R, M) with distinct
prime ideals nil (R) = MycM,c...c M, =M such that Z(R) = M;.

More generally, let (I, <) be any set which can be realized as the spectrum
of some valuation domain (i.e., by [13, Corollary 3.6], I is linearly ordered and
satisfies properties (K1) and (K2) (cf. [12, pages 6-7])). Let m be the minimum
element of I, L the maximum element of I, and ¢ el with m <7< L. By the
above construction, there is a chained ring (and hence a PVR) (R, M) with
Spec (R) order-isomorphic to I, where nil (R) <= m, Z(R) <=1, and M <= L.
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