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Bollettino U. M. 1.
(8) 3-B (2000), 505-533

A Stationary Flow of Fresh and Salt Groundwater
in a Heterogeneous Coastal Aquifer.

S. CHALLAL - A. LYAGHFOURI

Sunto. — Si stabilisce lesistenza e l'unicita di una soluzione monotona per il problema
di frontiera libera correlato al flusso stazionare d’acqua dolce e salata intorno ad
un acquifero eterogeneo. Si provano la continuitd e Uesistenza di un limite asinto-
tico della frontiera libera.

Introduction.

We study a two phase free boundary problem modeling a stationary flow of
fresh and salt water through a heterogeneous, horizontal and unbounded two
dimensional coastal aquifer. We recall that this problem was studied in [AD1]
for the homogeneous case. Existence of a solution was proved together with
the continuity of the free boundary (see also [C]) and some qualitative proper-
ties. The uniqueness of the solution was left as an open problem.

After setting the problem, we establish an existence result for a general
matrix permeability. When the permeability depends only on the vertical di-
rection, we prove existence of monotone solutions. For this kind of solutions,
we give an asymptotic behavior far away on the left and on the right of the
aquifer. We also prove the continuity of the free boundary separating the two
fluids. Moreover, we prove uniqueness of these solutions. Finally we study the
behavior of the free boundary at the left boundary of its definition interval.

The case of a flow governed by a nonlinear Darcy’s law is considered in
[CL1] and [CCL].

1. — Statement of the problem.

The aquifer is represented by the open set Q=R X (—h, 0), (h>0).
Fresh water is injected through the segment [OA] (4 = (0, a), a > 0) with to-
tal amount @, and with uniform velocity, while salt water is injected far away
on the left side of the aquifer over the height & with a total amount Q, (see Fi-
gure 1). The aquifer considered here is heterogeneous with permeability
a(X) = (a;(X)); <, j<2, X = (2, 2). The flow is governed by the following Dar-
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N 0 l A -
—Q ) fresh water
h
salt water I
Figure 1
cy law:
(1.1) v=—aX)(Vp+vye,) in Q

where e, = (0, 1), v is the fluid velocity, p its pressure and y is the specific
weight of the fluid given by

(1.2) y=vm(RQp)+yx(2,) with y,>y>0,

x(E) denotes the characteristic function of the set £, Q (resp. Q) denotes the
subset of £ occupied by fresh (resp. salt) water.

We assume that the flow is incompressible and the two fluids are unmixed
and separated by an interface I'. Moreover 0Q2\[OA] is assumed to be impervi-
ous. This leads to:

1.3) div(v) =0 in
(1.4) v = _—Qfez on [OA]
a
(1.5) pv=0 on 9Q\[0A]
(1.6) v;. v=0 on I' i=s, f)

v; denotes the restriction of v to 2, (¢ = s, f) and » is the outward unit normal
to 0Q or I.
From (1.3), there exists a stream function 3 such that

1.7 szow:(—a—w,a—w) in Q.
oz = Ox

Let e (L), we have by (1.2):

(1.8) [ +ye.) Rott = — [a~'(X) Rot y.Rot ¢
Q

Q
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and
(1.9) [(p+ye) Rott= [ye,. V& with e, = (1,0).
Q Q
Now for
(1.10) b = 2D
'  det(aX))

with det(a(X)) = (a1 .@» — a12.3 )(X) and ‘a(X) = (aji(X))l <i, js2, ONe can
easily verify that:

(1.11) [a X0 Roty Rot & = [6(X) Vy.v¢
o Q

Using (1.7)-(1.11) and the strong formulation (1.1)-(1.6), we obtain the follow-
ing weak formulation:

( Find (v, y) e H.(2) X L*(£2) such that:

i) f(b(X) Vy +ye,). V=0 VieH](Q) with compact support in Q
Q

B ii) yeH(yp) ae. in Q

i) —Q<sy<@, ae inQ
L IV) plx, —h) =Q, (x,0)=g¢(x) VreR

where H is the maximal monotone graph defined by:

Vs ift>0
(1.12) Ht)= 1 [ys y,] ift=0
Y ift<0
and
‘%.+
(1.13) o) = —Qfmin(j,l), 2t =max(x,0).

The condition (P)iii) expresses that the discharge of the flow through the sec-
tion [ —h, 2] lies between 0 and Q; + Q (see [CCL]).
We will assume that b satisfies:

(1.14) belL=(D]I*, Fa>0, (WX E & =alf|® ae XeQ,VEeR®,
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REMARK 1.1. — Note that if a(X) satisfies (1.14) with det(a(X))>0
or 'a(X) = a(X), then b(X) satisfies (1.14).
2. — Existence of a solution.

To prove the existence of a solution, we consider a sequence of approxima-

ted problems on bounded subdomains Q,, = (—m, m) X (—h, 0) (m > a) of Q.
First, we define the function @ by:

2.1) D(x, 2) = ¢ o@) + ¢1(2)(Qs — Po(x))

where ¢ is defined by (1.13) and ¢, defined by
YOoax [ ax

2.2 = / _—

22 Pr() Of d 0@ Of_h b ()

Next, for m > a, we consider the following problem:
([ Find (y,,, y.n) e HY(R,,) X L*(R,,) such that:
i) f OX) VY, +yme,).VE=0 VieH(R,,)

Qm

P
(Pn) i) y,eHGp,) ae inQ,

i) -Q<vy,<@Q, ae in Q,

(V) ¥, =P on dRQ,.

THEOREM 2.1.

i) There exists a solution (v ,,, ¥ ) of problem (Pp,).

ii) If b(X) = b(z) a.e. in Q, then there exists a solution (.., ¥ ) such
that

2.3) V<0 and J,y,<0 m D'(Q,).

To prove Theorem 2.1, we consider for ¢ >0, the following problem:
Find y¢,e H(L,,) such that:

(P i) f(b(X) Vi, + Ho(ph) e).VE=0  YieH{(2,)

2,

ii) v, =@ on 0Q,,
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where

t+
2.4) Ht) =y+ (s~ 7)) min(T, 1).

Arguing as in [L], we establish that (P%) admits a unique solution satisfying,
up to a subsequence

(2.5) Wiy He@3) =@y yo)  in HY(R,,) X L*(2,,)

with y,, € H(y ,). Then taking (v}, — Q,)" and (—@Q;— v7,)" as test functions
of (P;,), we prove that for all e (0, Q,)

(2.6) -QrsyY, <@ ae in Q,.

PrOOF OF THEOREM 2.1.

i) Using Rellich’s theorem and the continuity of the trace operator, we
deduce that (y,,, v.,) is a solution of (P).
ii) Since 8, (H,(v%))=H,(y:,) 9, v:, and H/ (v&,) =0, it suffices to
show that o, vy, <0.
Let 6 > 0 and set ¥ (X) =y, (x + 3, 2). To compare 12 and ¢, on 29, N
Q,, where Q% =(-m—06,m—0)x(—h,0), we need the two following
lemmas:

LEMMA 2.2. — Let O be a bounded open set of R% Let F : ©—R? be a Lips-
chitz continuous function. Let u, and uy satisfying:

2.7 ﬂb(X)Vui+F(ui))~V§=0 VieHJ(O), i=1,2.

O
If (u; —ug) ™ € HY(O) then u; < wus a.e. in O.

PRrOOF. — Let 7> 0 and f,(t) = (1 —n/t *)". Set u = (u; —up)*. It is clear
that f, (u) € Hy (O). Then we deduce

f(b(X) Vau + (F(uy) = F(uy))).V(f, () = 0

(G]

and

ey " b(X) VuVu =

ONfu =yl u

B f %(F(ul)—F(uz)).Vu$L77 f |Vl

ontuzn W onfuzy] |u

where L is the Lipschitz constant of F.
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Using (1.14) and the Cauchy schwartz inequality, we deduce from

2.8):
/

O

S T
= —— =<c

2
ONfu=nl U

Vlog(1+u)

Ui

where ¢ is a constant independent of #.
By Poincaré’s inequality, we get

)

O

2
<c

10g(1+

(w—m)" )
n

Letting #—0, we deduce that # =0 a.e. in ©O. =
Now, let us define for ze[—#, 0]

[V:0(2) = — @+ (Q; + Q) ¢1(2),
Vo5 (2) = Qs91(2).

2.9

We have

LEMMA 2.3. — Assume that b(X) = b(z). For any ¢ >0, we have:

(2.10) Viw SYPhH<v_, ae in Q,,.
PrOOF. — First remark that for {e H{(Q,,), we have

f () Vv, o +H. (v, ) e,).VE=

Qm

2] 2]
Qs+ Q) f ¢1(z) bl2(2)8_§0 +¢1(2) bzz(z)a—i =0.

Qo

Moreover (v, . —%%)" =0 on 92,,. Then applying Lemma 2.2 with b(X) =
b(z), F=(H,, 0), we get v, , <y a.e. in 2,,. In the same way we establish
that v{,<v_, ae.in Q,. N

END OF THE PROOF OF THEOREM 2.1. — Since b does not depend on x, y¢
satisfies the same equation satisfied by ¢, in 2%, N Q,, ie.

[ 0@ v+ H @ e)Ve=0 VieHNQ5,NQ,).

5
Q(m Ny,
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Moreover, we have by Lemma 2.3
Yin(=m, 2) = yi,(=m+0,2) Sv_.(2) =pi(~m,2)
Pin(m—0,2) =yi,(m, 2) =v, () Spi,(m—9,2)
and
pine, —h) =yL(x+0, —h) =Q,=y(x, —h)
Win(@, 0) =y (x +0,0) = ¢o(x +0) < ¢y(x) = yi,(x, 0).
Thus (£ —yp2,) " e Hi(22,N 2,,) and by Lemma 2.2, we get 1 < ¢, a.e. in
Q2% N Q,, from which we deduce:

(2.11) ax#’inso in @,(Qm)o u

Now we can state the main result of this section:

THEOREM 2.4.

i) There exists a solution (v, y) of problem (P).
i) If b(X) =0(z) a.e. in 2, then there exists a solution (v, y) such
that

2.12) <0 and 38,y<0 in ®(Q).

Proor. — First let my>a and neC*(R) such that 0 <y <1, =1 in
(—myg, my), 7 =0 for |x| =my+1, |n'|<c. Then for m =1+ my, n*(y,, — P)
is a test function for (P,). So

[ @0y, Yy, ==2 [ bV, I+ [ b0 VY, Vo) -

Q mo+1 Q mo+1 Q mo+1

f Vm’?zaﬂcl/)m"— f Vm’?zaﬂcq)_ f sznn,(wm_(p)
Qw1,0+1 Qw1,0+1 Qw1,0+1
Using (1.14), the Cauchy-Schwartz inequality and the fact that y ., v, n, n’, @,
V@ are uniformly bounded, we deduce that: |Vy,, | .2 Q) S c(my) which leads
by (P,,)iii) to

(2.13) | Yo | 1, Qu = C(mo) .

Let us now extend v, by v, ., (resp. v_,) for x = m (resp. ¥ < — m). We also
extend y,, to 2\ Q,, in such a way to have y,, € H(y,,) a.e. in . Then by (2.13)
and a diagonal process there exists a subsequence of (v ,,, ¥,.) and (v, y) e
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Hl.(2)x L*(R) such that
(2.14) Wor V) =, 7)) In Hyge(Q) X L*(Q).

Now, (2.14) allows us to check that (1, y) is a solution of (P). This proves i).
Using Theorem 2.1 ii), we prove ii). =
Let us now give some properties of the solutions of (P).

3. — Properties and asymptotic behavior of solutions.

ProPosITION 3.1. — Let (v, y) be a solution of (P). We have:
i) e CLP(Q) for some Be (0, 1);
ii) [y > 0] and [y < 0] are open sets;
iii) If be C*°(Q) then peC* L[y >0]U [y <0]).
If b is analytic in Q2 then v is analytic in [y >0]U [y <0].
Proor. — Taking £ D(R2) as a test function for (P), we get
3.1) div(b(X) Vy)=—vy, in D' (Q).

Then i) is a direct consequence of (3.1) and usual results of regularity (see
[GTY)). ii) is a consequence of i). Using (P)ii) and (3.1), we get

32  dve@X) Vy)=0 1in @' [y >01) (resp. @ ([ <01))

from which we deduce iii) (see [GT]). =

In the remainder of this paper, we will assume that b(X) = b(z) a.e. in Q
and consider only monotone solutions (v, y) of (P) (ie. 3, <0, 9,y <0 in
D' (2)).

ProposITION 3.2. — Let (v, v) be a solution of (P). Then we have:
div(b(z) V) =0, div(b(z) V") =0, div(b(z)Vy~)=0 in D' (Q)
where P =max(y, 0) and v~ =(—y)*.

ProoF. — The first inequality is a consequence of (3.1) and (2.12). Now, let
Ee D(Q),E=0and ¢ >0, then min (yp * /€, &) is a test function for (P) and we
have:

(3.3) fm@vwv(mm(w+,a)+y@(mm(w+,g):o.
Q € €
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Note that:

Qf y&x(min(

w; g)) :ysfax(mjn( w; 5)) o

Q
Then (3.3) becomes:
[ b vyve-
QNnyt =ef]
1
—l f b(z) V. Vyp © = — — f b(z) Vp* .Vy ™ <0.
gsm[w*ws] 890[w*<a§]

Letting ¢e—0, we get:
fb(z) Vp.VE<SO VEe®(RQ), £=0.
Q

Thus we obtain:
div(b(z) V) =0.

To prove div (b(z) Vy ~ ) = 0, we take min (¢ ~ /€, &) as a test function for (P)
and we argue as above. ®

THEOREM 3.3. — Let (v, v) be a solution of (P). Then we have:
i) For all ze[—h, 0],
(B.4) Y, 2) =V, .(2) (resp. v_,(2)) as x— + x (resp. — x).
ii) For a.e. (x,z2) e, we set yp(x, z) =y(x + R, z). Then we have:
(B.5)  yr(r,2)—y . () (resp. y_,(2) as R—+ o (resp.— ) in LZ(QO,I)

where y .. e Hv, ) (resp. y e Hw_.)) and ., , = (m, n) X (=h, 0) for
m, nelR.

First, we need the following lemma:

LEMMA 3.4. — Let (v, y) be a solution of (P). Then we have:

@6 lm [ V@ -v.)F=0 ad lim [ [V@-v_.)*=0.

QR R+1 QR R+1

PrOOF. — Let R >a. Set wy(x, 2) =yw(x + R, 2) and consider e M(R)
suchthat 0 <np<1,7rp=1in Q¢ 1, np=0 for |x| = R/2 and |ny| < c/R. We
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have by (1.14)

1
IR=f77%3|V(wR—v+w)|2S —fn%b(z) Vior —v1w) . Viog—v,.) =
o a.Q
1
—fb(z) Viwr—v,:.).V@%i(wg—vi)) —
a.Q

2
_fnR(wR_v+w)b(z) V(wﬁ_v+w).VﬂR.
a3
Since y,<0 and n%(wg—v,.) =0 then
fb(z) V(iwg=2.2) VOh(0p—v,.)) = —f)/ax(n?g(wg—vw))s().
Q Q

So

2
IRS_—fﬂR((/)R_/I)+m)b(Z')V(wR_U+m).V77R$
ag
, 1 2 2 c” 2
' | ne|Viwg=via) | |Voe|< = | 12 |V(0r—vi0) |+ — | |VnRr|*.
2 2
Q Q Q
Then
c//

7 0< f [Viwg—v,.)|P<I%<

Q0,1

It < <

R

and the first part of (3.6) holds. The second part can be proved similar-
ly, =

Proor oF THEOREM 3.3. — Using the fact that vy is uniformly bounded in £
and nonincreasing in the x-direction, it admits limits when x — = . Moreover
using (3.6) and Poincaré’s inequality, we get (3.4). Finally, H being a maximal
monotone graph, we deduce (3.5). =

REMARK 3.5.

i) From the monotonicity and the asymptotic behavior of 1, we deduce
that

3.7 Vi SYSV_o in Q.
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ii) Note that

Qy
Qs + Qf '

V:.(2)=0 < ¢,(r) =

But since

0
1 / ds
’ - _ < O ,
Pi) beo (2) f b2 ()

—h

then ¢:[—h, 0]—[0, 1] is one to one and there exists a unique h* e (0, h)
such that

&
Q5+Qf

Forall —h<z< —h* v, ,.(2)>0.Sotheset Rx (—h, —h*)is contained
in [y >0].

¢1(_h*) =

4. — Study of the free boundary.

The free boundary is defined by I'= {(x, 2) e Q /y(x, z) =0}.
Due to the asymptotic behavior of 1, one can define two functions ¢; and g,
by:

g1(z) = sup {x/y(x,2z) >0} for ze(—L*, 0)
g2(2) = inf{a/y(x, z) <0} for ze (—h*,0).
Then, we have:
PROPOSITION 4.1.
G={(x,2)eQ/-h*<z<0 and g,(z) Sx<gy(2)} cIcGU[z=—h*].

ProoF. - It is a consequence of definitions of g;, g» and the monotonicity
of . m

THEOREM 4.2. — ¢g1=¢,=¢, G=[x=9g®)] and g is continuous on
(=h*,0).

To prove Theorem 4.2, we need two lemmas:

LEMMA 4.3. — Let zpe (—h*,0), xt,e R and r > 0.
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Assume that S = {(x, z9) /|2 —x,| <r}cl, then we cannot have
V(x, 2) € B,(xg, 2)\S,  y(x,2) =0
where B,.(xy, zy) s the open ball of center (xy, zy) and radius 7.

ProOF. — We can assume that B,.(xg, 25) CR X (—h*, 0). Suppose that
Y, 2z) 20 Y(x, 2) € B.(xy, 20) \S. Then for &e D(B,(xy, z,)), we have by
(P) 1)-ii)

4.1) [ bayvpve=- [ ya,e=0.

B, (9, 20) B, (g, 20)
For 0 <6 <7/2, the function defined by: v ;(x, z) = w(x — 0, z) satisfies by
(4.1): div(b(z) Vy5)=0 in B,s(x, zy). Moreover, we have ys;=vy in
B, (g, 29) and ¢ = s on S N B, (xg, 2). Thus by the strong maximum prinei-
ple (see [GT]), v =vys in B,s(xy, 29). Thus 9,9 =0 and y(x, z) = x(z) in
B, (xy, 29). This leads by (4.1) to

K4

k(z) =4

20

ds
b22 S

in B,,./Z(./X/'(], Zo) for AeR.

We distinguish two cases:
1) If >0 then >0 in Bjs=B,s(x, 20)N[z2>2)] and » <0 in
B,p = B,s(x, 20) N [2 <7zy]. Since @ is monotone, then ¥ =k(z)>0 in
D= (—o,x) X (2, 20+ 1/2). So we have
div(b(z) V(i —x))=0 in D
Y—k=0 in D
Y—k=0 in B
and by the strong maximum principle, ¥ = k in D.

Now for & — — o, we have by (3.4), k(z) =v_., (z) which leads to a contra-
diction since k(zy) =0 and

0 0

o (z)=Q ds /f ds

N >
P bz (s) % bz (s)

2) If <0 theny <0in B, and v >01in B,;;. So we have  >0in D' =
(=0, ) X (29— 1/2, 29). We get p =k in D' and we obtain a contradiction
with the asymptotic behavior of y at —c. =

LEMMA 4.4. — Consider R = (%1, x5) X (21, 22) CQ such that on its bound-
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ary we have:
(e, 2) <0 for z=2z; and z=12,
Y(x,2) <0 for x=ux,
Ypx,2) < -8 for x=ux,

for some 6 > 0. Then:

X+ @
w(x,2) <0  for x> 12 2 5 <2<z

Proor. — Let % be the function defined by:

( +
div(b(z) Vu)=0 in R = (% x2) X (21, 2)

L+ %o
Sx<ay, 2€{%,2 ) and x = P HS2<2,

3 xry + X
u=0 for ! z

u=—0 for x=xy, 2;<2<2,.

L

Note that we have v <0 on OR ~ and u#0 in R ~, so by the weak and strong
maximum principles, we deduce that: v <0 in R ™.
Consider now w defined by:

ulx, 2) in R~
7/()(90, Z) = X1+ %o

l -, +as—x,2) in RT= (xl,

)X (21, 22).

Let us verify that w satisfies:

div(b(z) Vw) =0 in R
wZY on OR .

Let £ D(R). We have:

f b(z)(Vaw) . VE = f b(z)(Vu). VE — f b(2) (V(u(wy + 5 — , 2))).VE
R R~ +

R

- f b(2)(Vu) .VE — f b(2)(Va) VE, + 25 — , 2)
R~ R~

= [ b)) V(& — £+ —w, 2)) = 0
2
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since &(x, z) — &(xy + 25—, 2) =0 on OR ~. Then we get by the weak maxi-
mum principle p<u <0 in R~ since by Proposition 3.2, we have
div(b(z) V) =0in R. m

ProOF oF THEOREM 4.2. — Using Lemma 4.3 and Lemma 4.4, one can adapt
the proof given in [AD1] or [CCL]. =

COROLLARY 4.5. — Let (v, v) be a solution of (P). Then we have

D y=yay>0D)+ymuly<0]) ae in Q
i) The sets [y > 0] and [y <0] are connected by arcs.

Proor. — i) We have by (P)ii), y =y, a.e. in [y >0] and y =y, ae. in
[v < 0]. Moreover the set [y =0] =TI is of measure zero by Proposition 4.1
and Theorem 4.2. Thus y =y, x([y >0]) + yx([y <0]) a.e. in Q.

ii) We argue as in [CCL]. =

5. — Uniqueness of the solution

THEOREM 5.1. — There exists a unique solution (v, v) of (P).
First, we have

LEMMA 5.2. — Let (1, v1), (32, ¥2) be two solutions of (P). Then we have
fori=1,2

61 F© = [6& V@ —p) + (i—y0) e) V=0  Vie DR
Q

where v, =min(y, ¥,) and yo=min(y, ys).

ProoF. — Let {e M(R?), =0 and ¢>0. Set &=min (§,(y; — ) /e).
Using the fact that £ is a test function for (P) written for (y,, y;) and
(¥, v2), We obtain by subtracting the equations:

62 [ s va-pove

lyi—vol=ell

f(Vi_Vo)Cx$f(Vi—yo)(§— M) _
@ Q

& x
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Setting g, = min(g;, ¢») and using Corollary 4.5i), we obtain

U)i_wo)Jr
€

X

63 [oi-roe-
Q

(m—w)f[(@— PP oo - (6= L) oo, z)}
Iy

&

with Iy = {ze (=h*, 0)/g,(2) <g;(2)}.
Taking into account (5.3) and letting ¢—0 in (5.2), we get:

(5.4) F() <0 Vie DR, ¢£=0.

Now, we consider & e M(R?). Let K =supp & and M = sup |C]. It is clear that
there exists Ry >a such that VR =R,, Kc(—R, R) X ﬁ
Consider Cz: R—R™ defined by:
0 if |[x|=ZR+1
if |x|<sR
M(—x+R+1) ifR<axs<R+1
Mx+R+1) if —-R-1<x<-R.

Crlw) =

Then we have

(5.5) VR=R,, V(x,2eR?® —Crpx)<ix,z) <izp).
Using (5.4)-(5.5), we get

(5.6) F(Cr) < T < — F(Cpr).

Let us compute F;(Ep):

FE=M [ b&V@i—pet+M [ (ri-yo

Q_Rr-1,-R Q_p-1,-R

M [ b@V@i-ye-M [ @i-yo.

Qp R+1 QR R+1

By Lemma 3.4 and Theorem 3.3, we deduce that:
lim F(Cg) =0
R— +
from which we deduce that J;() =0 and the lemma follows. ™

REMARK 5.3. — Note that (v, y,) is a solution of (P) since by density
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(5.1) is still true for e H}(Q) with compact support. Clearly we have
also ¥y, <0 and y,,<0 in D' (Q).

PRrROOF OF THEOREM. — 5.1. — Since for & = a, we have y;(x, 0) =y (x, 0) =
— @y, there exists by continuity a small ball B centered on a point (a,, 0) with
a; >a such that BN Qcly,;<0]N[yy,<0]. Now, let e D([y;<0]UB).
Using (5.1) and the fact that y,=y,=y,a.e. in [y; <0], we get:

.7) [ @ vyp.ve=0

[y;<0]
with v =y ; —y,. Now because v =0 on B N [z = 0], we may extend v by 0
into B\ 2 in such a way that v e H..([y; <0] U B). We also extend b(z) by I,
into B\ Q. Then we obtain from (5.7):

(5.8) [ @ vp.ve=0 viea(y,<0]UB).
[y;<0lUB

Moreover we have 1 = 0 in the open connected set ;= [y ; <0]UB, y =01in
B\[y;<0] and b strictly elliptic, thus we deduce by the strong maximum
principle that ¢ = 0 in Q; which leads to y; =y, in [y; < 0] and then y; =y,
in [v;<0]N [y, <0]. But we can verify that we have now [y <0] = [y, <
0]. Similarly we prove that vy, =1y, in [v;>0]N[y,>0] and [y;>0] =
[y 2> 0]. Finally, we have proved that 1 ; = ¥, in 2 and by Corollary 4.5i), we
have also y; =7y, in 2. =

6. — Study of the free boundary near z = — h*.

The goal of this section, is to prove the following theorem which means that
I' does not contain the ray [z = —h*].

THEOREM 6.1. — The set S={xeR/y(x, —h*)=0} is empty and
I'=[x=yg)]

ProOF. — We argue by contradiction. Assume that S # ¢. Since y is conti-
nuous in £ and nonincreasing, S is a closed interval. Set a =inf S and
B =supS.

Let x5 € S, then by monotonicity of v, y(x, —h*) <y(x,, —h*)=0Vr=
xy. Moreover y(x, —h*)=v,,(—h*)=0, then y(x, —h*)=0 Ve =ux, So
p =+ .

Now, if a = — o, then y(x, —h*) =0 Ve e R. But this leads to a contradic-
tion with the asymptotic behavior of i at — co. Thus

6.1) S={xeR, y@, —h*)=0}=[a, +=).



A STATIONARY FLOW OF FRESH AND SALT GROUNDWATER ETC. 521

z=z; T T

1 1

1 1 . S

: : D (Zl) x=f(z)

: : Ij) (zl)

Z=-h* 1 1
X=0 x=0
Figure 2
Let o' =max(a+1/2,1) >a and C a constant satisfying
6.2) C> % hp—by aein @
. h— h,* 22 21 T
which is possible since be L * ().
Define f(z) by:
] by (s) +C
(6.3) f(z) = b+ C
s bas(s)
then we have:
LEMMA 6.2.
a/
i WL > (=h,0 and "(z) > >0
) fe ( ) f1(@) P

i) f(=h*)>a’
i) (by(2) f'(2) —by(2))' =0 in D' (—h,0).

Proor. - i) By (1.14), we have for z;, z,e (—h, 0)

22

f by (s) +C
2 baa(s)

and |f(2)| <c;|z+h|<2c h for some constant c¢;. Then fe WL =(—h,0)
and by (6.2)-(6.3)

[f(z1) = f(z2) | = ds

$Cllz1—2’2|

by () +C a’
6.4 ! = 0.
(6.4) [ ) > P >

ii) Using (6.4), we have from (6.3): f(2) > (z+h) o’ /(h—h*). By 1)
feC%[—h, 0]), then f(—h*)>a'.
iii) We have by (6.4), bsy(z) f'(z) — by1(z) = C and then iii) holds.
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Let k> 0. We define the functions v and 0 by:

(6.5) { v, 2) =k(y,—y ) (f2) —x)"

(%, z) e D(z)
0(x, z) =y x(le <f@)]) + y x> f(2)])

where D(z;) = (a', + ©) X (—h*, z;) with z;e (—h*, 0). Then we have

LEMMA 6.3. — There exists k>0 such that:

6.6) [ 6@ Vo+0e,)vEz0  Vec D)), E20.
D(z1)

PROOF. — Set D " (z;) = D(z;) N [x <f(2)] and D°(z;) = D(z;) N [x > f(2)]
(see Figure 2). Let £ D(D(2;)), £=0. We have

67 [ B0+ e,)VE = f(b(z)anLysex)VéJr fyfex.vg.

D(z1) D* () D(z)

In D *(z,), we have Vo=k(y,—yp)(—e,+f"(2) e,) and
b(2) Vo=k(y,—y)((= by + bz f'(2)) e, + (= by + by f'(2)) e.) =
k(ys—y ) ((= by + biaf'(2) e, + Ce,) .
Then
(6.8) div(b(z) Vo) =0 in D *(z,)

since ( — by; + byof' (2)) does not depend on . Using (6.7) and (6.8), we get by
applying the Green formula

f(b(z)VerGew)VE: f (b(2) Vo + y,e,).vE + f yrep (—v) E=

D(z1) [x=£(2)] [x=£(2)]
([k(Vs - Vf)( = by +byf () + (v, — yolve+ k(y s — 7y) CVz)g
[x=f(2)]

where v denotes the unit normal vector to (8D * (z;) N [« = f(2)]) pointing into
D°(z,). v is given explicitely by

1
v=v,e, +v,e,= —-—--»=>,—f (2)e.).

V1+f*(z)
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Then we have

f (b(z) Vo +0e,)VE= (v, — vy w(2)

—
DGy [ }"[zu V1+f*(2)

with ,(2) = 1+ k( = by + biaf” (2) — Cf' (2)).

Note that, since by, byz, f' €L " (—h, 0), we have |u,(z) — 1| < ke, for
some constant ¢;. Then u,(z) =1 — kc;. If we choose k such that 1 — kc; > 0 i.e.
0 <k <1/c; then (6.6) holds. =

Now, we will compare (y *, y) with (v, ).

LEMMA 6.4. — Let (v, y) be a solution of (P) and (v, 6) defined by (6.5).
Then there exists zoe (—h™*, 0) such that

(6.9) f bRVt —v)+(y—0y)e,)VE=0 Vie D(R?),
D(zp)

where vy =min(y ¥, v), 6,=min(y, 0).
ProOF. — The proof is done in several steps.

1st step.

We have y(a', —h*) =0 then by continuity of 1, there exists 6 > 0 such
that

Yla',2)<k(y,—yp)(f(=h*)—a') Vze(—h*, —h*+0).

Moreover Jzye (—h*, —h* + ) such that y(a’, z;) =0. If not, we distin-
guish two cases:

) yla',z)>0 Vze(—h*, —h*+0) leads to y(x,z)=y(a’',z)>0
Ve e (a, a’) which contradicts Lemma 4.3 since we have wy(x,z) >0 in
(a,a’)yx (=h, —h*) and y(x, —h*) =0 for xe(a, a’).

i) yla',z) <0 Vze(—h*, —h*+0) leads to y(x,z) <y(a',z)<0
Va = a’ which leads again to a contradiction by Lemma 4.3.

Set D = D(z;). Then since f'(z) >0
pia', ) skly,—yp(f(—=h*)—a') s
k(y,—yp(fle) —a')=v(a',2) Vze(—h*,z)
Y (e, —h*)=0<wv(x, —h*) Vr=a’'

Y@, z)=0<v(x,z) Ve=a
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then
(6.10) y*<wv on dD.
2nd, step.

We have Ve M(R?), £=0

610 [0 V@ =)+ (=00 e)VE< [ =7 L), 2 dz,
D 1

where I = {ze(-h*, z) /9(z) > f(2)}.
Indeed, let ¢ >0, e D(R?), £=0. Set

§=min(—(w _”0),z;):min(—(w S_v) ,z;).

&

We have Ee HY(D), £ =0 and & = 0 for large . Moreover & = 0 on 8D by (6.10).
By Proposition 3.2, we have div(b(z)Vy )=0 in @' (Q), then
div (b(z) Vyp ") + 9,7 = 0. So we have:

[ ) vy * +ye) vE<0.
D
By (6.6), we have:
~ [0 Vo + 6e,) VE<0.
D
Adding these inequalities, we get:
[o@ v =+ -0e)va<o
D
which can be written:

(6.12) JO@ Y@ —w)+ (=09 e)VE<O.
D

Since §=¢—(C— (9" —vy) /)", we have:

f b(z) Vi * —vO)VC-}-f(y—GO)ex.VCS
D

DNy " —n=ell

1 )\
- — f b(Z)V(1/)+_Uo)V(1/J+_Uo)+f(V_00)(§_u) .
Dyt —up<et] D € @
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By (1.14), we get:

(6.13) f b(z) V(yp © =) VE+
DNyt —vy=ekl
[o-ove.ves [o-op(c- =22
D D € “
Note that we have:
f(y—ao)(g—u) - (y—60>(c—u)
B € T DA wy>0] € @
+ f (V—Go)(é—w ) .
DN [vy=0] &€ /e

Since DN [y, >0]=DN [y " >0]N[v>0]), we have y =0 =0,=y, in this
set and then

(,l/)+_v0))+:0

&

(V_eo)(é—

DN [vy>0]

For the other integral, we have:

(y—eo)(:—”’ )
& Ju

_ f (rr=vp Eat f (V“‘>_W)(C_w7+)w+

DNyt =vy=0] DNyt >0,v=0]

a2 I (SR )

DN[f)<x<g)] €

DN [vy=0]

9(2)
=<ys—yf>ff(§—”’ )
I f@z) € Ja
=<ys—yf>f(c— e ) 9(2) z)—(C— L ) (f(z), 2)de
1

< (ys— Vf)fcj(g(z), z)dz  since y " (9(2),2)=0.
I
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Thus:

(6.14) fW—BM(C—SK—:ﬂﬁ) SOu—VﬂfC@@L@dm
D € r I

Using (6.14) and letting e —0 in (6.13), we get (6.11).

3rd step.
We have Yie M(R?), £=0

(6.15) Jo@ V@ —w)+ (=00 e)VE<0.
D

Indeed, let 6 >0, L e M(R?), £=0. Set Ay = [v,> 0] and define as(X) = (1 —
d(X, Ay) /0)*. Note that

Ay=[y " >0]N[v>0]=[x<g@]N[x <f(2)] =[x <min (f(2),9(z))]c[x <f(2)]

and a,=1 in 4,. Then we write:

J 0@ V@ =)+ (=00 ) Ve = [0 V@ —u) + (7 = 00) €.) V(es©)
D D

+ 0@ T@ - +-00e) V(A -apd)
D

=IP+13.

First by the previous step we have:
<@, -vp (@, 0@, 2 dz
I

Since {(g(z), 2)/zel} cR*\ A, we get:
6.16) Tim, ., 10 <0.
Next we write:

= [ @@ —w)+ =00 e) V(1 -ay))

DnNlgz)>a'l

+ [ 0@Vt —w)+ =00 e) V(- ay) D).

DnNlgz)<a'l

We remark that for all (x,z)eDN[g(z)<a'], we have x>g(z) then
y*(x, z) =0. Moreover, since v=0, we have vo=min(y ", ») =0 in DN
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[g(z) <a']l. Then y=0,= Yy in DN[gz)<a'] and

bR V(" —v) +(y =00 e) V(1 —ay) §)=0.

DNlgiz)<a'l

B= [ @@ —w)+ ¢ =00)e)V(1-ay))

DNlgz) >a’l
= [ 6@Vt +re)V-ap)- [ 6 Vit 0e) V(-
DNlgE)>a’] DNlg)>a’)
=13, 13 ,.
Let us consider the set
J={ze(—h*, z)/9(z)>a'}.

IfJ=0then g(z) <a'Vze(—h*, z)) andtheny " (a', 2) =0Vze[—h*, 2]
By monotonicity of i, we have y < 0 in D which leads to a contradiction with
Lemma 4.3 since we have ¢ >0in QN[z< —h*]and v =0 on (a’, + ©) X

{=h*}

Assume now that J # ¢. For any zeJ we define
m(z) =inf{se(—h*, 2) /Vtels, 2], tel}
M(z) =sup{se(—h*, z)/Vtelz,s], tel}.
Since ¢ is continuous, we have VzeJ, m(z), M(z) ¢ J. Set
J={lm@), M()Ic[—h*, z]/zeJ}.

Let us define ¢: J— Q by ¢([m(z), M(2)]) =re @ N [m(z), M(z)] (r is chosen
arbitrarily, @ is the set of rational numbers). ¢ is one to one from J to ¢(}f) c Q.
Indeed, let [m(z), M(2)] and [m(z"), M(z')] € J such that ¢([m(z), M(2)]) =
o([m(z"), M(z")]), then [m(z), M(z)]IN [m(z'), M(z')] #@. This leads by
definition of m(z) and M(z) to [m(z), M(z)] = [m(z"), M(z')].

Thus, we have

g ={lmz,), M(z,)1c[—h*, 2]/z,€J, neN} with NCIN.

Now we can write 12‘571 as follows:

I3, = J (b Yy * +ye) V(1= ay) ©)

Upex(a’, + o)X (m(zy), M(z,))
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-3 | (0(=) Vg " +ye.) V(1 —as) 0.

MEN (a4 ) x (mlzy), M(z,))

We have Vze(m(z,), M(z,)), (a',z)eA, Indeed, we have for ze
(m(z,), M(z,)), g(z) > a’, then v * (a', z) > 0. By continuity, 3» > 0 such that
»*>0in B,(a', z). We also have v>0 in B,(a’, 2) N D, then v,>0 in
B,(a',2)ND. Thus B,(a’, 2) N DCA,.

We deduce that (1—as)a’,z)=0. Moreover v *(x,m(z,))=
v (x, M(z,)) =0 Vx> a'. Using Lemma 6.5 below, we get

b)) Ve +ye,)V((1—as)E) <0  VneN
(a', +0) X (m(z,), M(zy))

and then
(6.17) I, <0.
Now, we have
.= [ y(Q-a)0,
(D\4y) Ng(z) > a']
+o

- | ya-apo,

J min(f(2), 9(2))
= — [7((1 = ap) D(min (f(2), g(2)), 2)
J

=0 since (min (f(z), 9(z)), 2) e A, when zeJ .

Thus Iy ;=0 and by (6.16)-(6.17) we get (6.15).

4th step.

Let {e M(R?). Set K =supp & and M = sup || . Then there exists Ry>a
K

such that VR = R, Kc (— R, R) X R. Define ¢z as in the proof of Lemma 5.2,
then we have:

—Cp<C<(l(p VR=R,.
Using (6.15) for ¢ — ¢ and Cp + ¢ respectively, we get:
T(Cr) =T < —T(Cr)
with T(&) = [ (6(2) V(y " = v0) + (y = 05) €,) VE.
D
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Moreover, we have for large R:

e =-M [ bY@ —v).e.-M [ -6,

Dp p+1 DR, Rr+1

-M f b)) Vy " .e,— M f (y=vp

Dp r+1 Dp g1

_be(z) Vy;g.ex—Mf(VR_Vf)

Dy, 1 Do, 1

with D,, , = £2,, ., N D. By (3.5), we have:

Rgriloo f(yR_Vf) =0.
Dy, 1

Moreover by (3.6), we deduce up to a subsequence of R, still denoted by R,
that:

Vzpﬁ—\VUIOO:O in Lz(Doyl).
Thus:

; + —
lim [ b) Vs e.=0.

Dy, 1

This completes the proof of Lemma 64. =

LEMMA 6.5. — If D = (%, + %) X (21, 22) C 2, (21 <2) and
P, z) <0 i=1,2 Ve=u,

then we have
618)  [() Vy* +ye,)VESO  VEeH' (D), £20
D
E(xy, 2) =0 a.e. z€(z,7) and E=0 for large x .
Proor. — Using Proposition 3.2 we deduce that
(6.19) f(b(z) Vo' +ye,)VESO VEecH{ (D), £=0 with bounded support .
D
Now, let £e C * (2) such that & =0, &(x,, 2) =0 and & = 0 for large x. Let 6 > 0

and define dy(z) = min((z —2;)" /0, 1).min ((z; —2)* /0, 1). Since d;s(z;) =
ds(22) = 0, we have ds & e H} (D) with compact support in D, so it is a test func-
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tion for (6.19). Then
J @@ Vo +ye,) Vids &) <0.
D

But, since ds does not depend on x, we obtain:

(6.20) [ o) Vg V(dy &) + dy ye, VE<O.

D

Moreover we have

(6.21) fb(z) Vot V(1 —d,) &) <0.
D

Indeed, set §o= (1 — d;)& and for e >0, let { = min(y * /e, {,). We have { =0
on 8D and ¢ =0, then since div(b(z) Vy*) =0, we get

Jo@ vy rve<o
D

which can be written

[ bz) Vi Ve, + & f b(z) Vop © .V * <0
&

DNiy* =eol DNyt <elol

then by (1.14),

[ @y ve<0.

DNyt =ekyl

Letting ¢—0, we get (6.21).
Now, adding (6.20) and (6.21), we get

(6.22) fb(z) Vo VE+dsye, VE<O.
D

(6.18) holds by letting 6 —0 in (6.22). =

END oF PROOF OF THEOREM 6.1. — Let z,e (—h™, z).
1) If y*(a’, z,) =0 then by monotonicity vy *(x,2,) =0 Vex=a'.

2) If y*(a’', z4) >0 then by continuity of 1, there exists a small ball
B,.(a', z4)such that w * > 01in B,(a’, z). Let us denote by C . the connected
component of D(z,) N[y >0] which contains B,(a’, z.) N D(zy). Let Ce
M(R?) with supp&cd={(x,2)/(a+a’)/2<w<a’, |z—z.| <r}U(C,N
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z= T
L o (zo)
1 1
1 il ~a—x=f(z)
7oy == b = g =
] o @ G U@,
z=-h* 1 :

x=0 X=(04+)2 x=of

Figure 3
D *(zy)) (see Figure 3). Applying Lemma 6.4, we obtain:
(6.23) [ b v -n*vi=0
C,ND* ()

since we integrate on [y * >0]N [v> 0], in which we have y=60=y,.
Let us define a function w by:

(" =v)" in C,ND"(2)
0 in A\(Cs+ND*(z))

then since v * (a', z) <wv(a’', z) Vze (—h*, zy), it is clear that we H'(4) and
from (6.23), we get:

(6.24) f b(z) VwVE=0 Ve OX(A).
A

Now, since w=0in 4, w=01in A\(C, N D " (z;)), we deduce from (6.24) and
the strong maximum principle that w =0 in 4 which leads to
(6.25) pr<ov inda.

1) If (f(z*), 24)eCy, then (f(z*)’ Z'*)Ea(c* mDﬁ—(zo)) and by (6.25)
Y (f(2e), 25) <0(f(24),24)=0. So Y (f(z4),24)=0 and then
Y, z2.) =0 Ve=f(z,).

2) If (f(z4),24)¢Cy Assume that y*(f(z4),2.)>0 then
Y@, 2.)>0 Vosf(zy). Since C.N((a',fz)]X{z.4})=0, we get
(a’, f(z4)] x {24} cC, and we have a contradiction. Thus ¥ * (f(z4), 24) =0
and ¥ " (x,2.) =0 Ve = f(z,).

Hence, we have proved that

yre,2)=0 Vx=f(2), (x,2)eD().
This means that y(x, 2) <0 in D°(z)). We then have:
div(b(z) V) =0 in @' (D°(zy)) .

By the asymptotic behaviour of 1y at + o and the strong maximum principle,
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we deduce that:

'l/)<0 in DO(Z()).

Since we have ¢y >0in[z < —h*]NQ and y(x, —h*) =0forx = a', we get a
contradiction with Lemma 4.3.
We conclude that I'N[z= —h*] =0 and '=[x=g(z)]. =

COROLLARY 6.6. — We hawve:

lim h*g(z) =4 o0,

2= —h* 2>

Proor. — Let A > 0. By Theorem 6.1, we have y(A, —h*) > 0. Since vy is
continuous, there exists ¢ >0 such that:

Vze(—h*, —h*+9d) y,2)>0

this leads to:

Vze(—=h*, —h*+0) gk)>A

which means that:

lim g(z) = + 0. [
2= —h* 2> —-h*
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