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A Stationary Flow of Fresh and Salt Groundwater
in a Heterogeneous Coastal Aquifer.

S. CHALLAL - A. LYAGHFOURI

Sunto. – Si stabilisce l’esistenza e l’unicità di una soluzione monotona per il problema
di frontiera libera correlato al flusso stazionare d’acqua dolce e salata intorno ad
un acquifero eterogeneo. Si provano la continuità e l’esistenza di un limite asinto-
tico della frontiera libera.

Introduction.

We study a two phase free boundary problem modeling a stationary flow of
fresh and salt water through a heterogeneous, horizontal and unbounded two
dimensional coastal aquifer. We recall that this problem was studied in [AD1]
for the homogeneous case. Existence of a solution was proved together with
the continuity of the free boundary (see also [C]) and some qualitative proper-
ties. The uniqueness of the solution was left as an open problem.

After setting the problem, we establish an existence result for a general
matrix permeability. When the permeability depends only on the vertical di-
rection, we prove existence of monotone solutions. For this kind of solutions,
we give an asymptotic behavior far away on the left and on the right of the
aquifer. We also prove the continuity of the free boundary separating the two
fluids. Moreover, we prove uniqueness of these solutions. Finally we study the
behavior of the free boundary at the left boundary of its definition interval.

The case of a flow governed by a nonlinear Darcy’s law is considered in
[CL1] and [CCL].

1. – Statement of the problem.

The aquifer is represented by the open set V4R3 (2h , 0 ), (hD0).
Fresh water is injected through the segment [OA] (A4 (0 , a), aD0) with to-
tal amount Qf and with uniform velocity, while salt water is injected far away
on the left side of the aquifer over the height h with a total amount Qs (see Fi-
gure 1). The aquifer considered here is heterogeneous with permeability
a(X) 4 (aij (X) )1 G i , jG2 , X4 (x , z). The flow is governed by the following Dar-
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Figure 1

cy law:

v42 a(X)(˜p1gez ) in V(1.1)

where ez 4 (0 , 1 ), v is the fluid velocity, p its pressure and g is the specific
weight of the fluid given by

g4g f x(V f )1g s x(V s ) with g s Dg f D0 ,(1.2)

x(E) denotes the characteristic function of the set E, V f (resp. V s) denotes the
subset of V occupied by fresh (resp. salt) water.

We assume that the flow is incompressible and the two fluids are unmixed
and separated by an interface G. Moreover ¯V0 [OA] is assumed to be impervi-
ous. This leads to:

div (v) 40 in V(1.3)

v4
2Qf

a
ez on [OA](1.4)

vNn40 on ¯V0 [ OA ](1.5)

vi Nn40 on G (i4s , f )(1.6)

vi denotes the restriction of v to V i (i4s , f ) and n is the outward unit normal
to ¯V or G.

From (1.3), there exists a stream function c such that

v4Rot c4g2
¯c

¯z
,

¯c

¯x
h in V .(1.7)

Let z� D (V), we have by (1.2):

s
V

(˜p1gez ) NRot z42s
V

a21 (X) Rot cNRot z(1.8)
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and

s
V

(˜p1gez ) NRot z4s
V

gex . ˜z with ex 4 (1 , 0 ) .(1.9)

Now for

b(X) 4
ta(X)

det (a(X) )
(1.10)

with det (a(X) )4 (a11 Na22 2a12 Na21 )(X) and ta(X) 4 (aji (X) )1 G i , jG2 , one can
easily verify that:

s
V

a21 (X) Rot cNRot z4s
V

b(X) ˜cN˜z(1.11)

Using (1.7)-(1.11) and the strong formulation (1.1)-(1.6), we obtain the follow-
ing weak formulation:

(P)

.
`
/
`
´

Find (c , g) �H 1
loc (V)3L Q (V) such that :

i ) s
V

(b(X) ˜c1gex )N˜z40 (z�H 1
0 (V) with compact support in V

ii ) g�H(c) a.e. in V

iii ) 2Qf GcGQs a.e. in V

iv ) c(x , 2h) 4Qs , c(x , 0 ) 4f 0 (x) (x�R

where H is the maximal monotone graph defined by:

H(t) 4

.
/
´

g s

[g f , g s ]

g f

if tD0

if t40

if tE0

(1.12)

and

f 0 (x) 42 Qf ming x 1

a
, 1h , x 14 max (x , 0 ) .(1.13)

The condition (P) iii) expresses that the discharge of the flow through the sec-
tion [2h , z] lies between 0 and Qs 1Qf (see [CCL]).

We will assume that b satisfies:

b� [L Q (V) ]4 , )aD0, ab(X) j , jb FaNjN2 a.e. X�V , (j�R2 .(1.14)
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REMARK 1.1. – Note that if a(X) satisfies (1.14) with det (a(X) )D0
or ta(X) 4a(X), then b(X) satisfies (1.14).

2. – Existence of a solution.

To prove the existence of a solution, we consider a sequence of approxima-
ted problems on bounded subdomains V m4 (2m , m)3 (2h , 0) (mDa) of V.

First, we define the function F by:

F(x , z) 4f 0 (x)1f 1 (z) (Qs 2f 0 (x) )(2.1)

where f 0 is defined by (1.13) and f 1 defined by

f 1 (z) 4s
0

a

s
z

0
dX

b22 (X)
Os

0

a

s
2h

0
dX

b22 (X)
.(2.2)

Next, for mDa, we consider the following problem:

.
`
/
`
´

Find (c m , g m ) �H 1 (V m )3L Q (V m ) such that :

i ) s
V m

(b(X) ˜c m 1g m ex )N˜z40 (z�H 1
0 (V m )

ii ) g m �H(c m ) a.e. in V m

iii ) 2Qf Gc mGQs a.e. in V m

iv ) c m 4F on ¯V m .

(Pm)

THEOREM 2.1.

i) There exists a solution (c m , g m ) of problem ( Pm ).

ii) If b(X) 4b(z) a.e. in V , then there exists a solution (c m , g m ) such
that

¯x c m G0 and ¯x g m G0 in D8 (V m ) .(2.3)

To prove Theorem 2.1, we consider for eD0, the following problem:

.
`
/
`
´

Find c m
e �H 1 (V m ) such that :

i ) s
V m

(b(X) ˜c m
e 1He (c m

e ) ex )N˜z40 (z�H 1
0 (V m )

ii ) c m
e 4F on ¯V m

(Pm
e )
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where

He (t) 4g f 1 (g s 2g f ) ming t 1

e
, 1h .(2.4)

Arguing as in [L], we establish that (Pm
e ) admits a unique solution satisfying,

up to a subsequence

(c m
e , He (c m

e ) ) � (c m , g m ) in H 1 (V m )3L 2 (V m )(2.5)

with g m �H(c m ). Then taking (c m
e 2Qs )1 and (2Qf 2c m

e )1 as test functions
of (Pm

e ), we prove that for all e� (0 , Qs )

2Qf Gc m
e GQs a.e. in V m .(2.6)

PROOF OF THEOREM 2.1.

i) Using Rellich’s theorem and the continuity of the trace operator, we
deduce that (c m , g m ) is a solution of (Pm ).

ii) Since ¯x (He (c m
e ) )4He8 (c m

e ) ¯x c m
e and He8 (c m

e ) F0, it suffices to
show that ¯x c m

e G0.
Let dD0 and set c m

ed (X) 4c m
e (x1d , z). To compare c m

ed and c m
e on V m

d O
V m where V m

d 4 (2m2d , m2d)3 (2h , 0 ), we need the two following
lemmas:

LEMMA 2.2. – Let O be a bounded open set of R2. Let F : O KR2 be a Lips-
chitz continuous function. Let u1 and u2 satisfying:

s
O

(b(X) ˜ui 1F(ui ) ) Q˜z40 (z�H 1
0 (O), i41, 2 .(2.7)

If (u1 2u2 )1�H 1
0 (O) then u1 Gu2 a.e. in O.

PROOF. – Let hD0 and fh (t) 4 (12hOt 1 )1. Set u4 (u1 2u2 )1. It is clear
that fh (u) �H 1

0 (O). Then we deduce

s
O

(b(X) ˜u1 (F(u1 )2F(u2 ) ))N˜( fh (u) )40

and

(2.8) s
O O[uFh]

h

u 2
b(X) ˜uN˜u4

2 s
O O[uFh]

h

u 2
(F(u1 )2F(u2 ) )N˜uGLh s

O O[uFh]

N˜uN

NuN

where L is the Lipschitz constant of F.



S. CHALLAL - A. LYAGHFOURI510

Using (1.14) and the Cauchy schwartz inequality, we deduce from
(2.8):

s
O

N˜ logg11
(u2h)1

h
hN

2

4 s
O O[uFh]

N˜uN2

u 2
Gc

where c is a constant independent of h.
By Poincaré’s inequality, we get

s
O

N logg11
(u2h)1

h
hN

2

Gc .

Letting hK0, we deduce that u40 a.e. in O. r

Now, let us define for z� [2h , 0 ]

.
/
´

v1Q (z) 42 Qf 1 (Qs 1Qf ) f 1 (z) ,

v2Q (z) 4Qs f 1 (z) .
(2.9)

We have

LEMMA 2.3. – Assume that b(X) 4b(z). For any eD0, we have:

v1QGc m
e Gv2Q a.e. in V m .(2.10)

PROOF. – First remark that for z�H 1
0 (V m ), we have

s
V m

(b(z) ˜v1Q1He (v1Q ) ex )N˜z4

(Qs 1Qf ) s
V m

f 18 (z) b12 (z)
¯z

¯x
1f 18 (z) b22 (z)

¯z

¯z
40 .

Moreover (v1Q2c m
e )140 on ¯V m . Then applying Lemma 2.2 with b(X) 4

b(z), F4 (He , 0 ), we get v1QGc m
e a.e. in V m . In the same way we establish

that c m
e Gv2Q a.e. in V m . r

END OF THE PROOF OF THEOREM 2.1. – Since b does not depend on x, c m
ed

satisfies the same equation satisfied by c m
e in V m

d OV m i.e.

s
V m

d OV m

(b(z) ˜c m
ed1He (c m

ed ) ex )N˜z40 (z�H 1
0 (V m

d OV m ) .
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Moreover, we have by Lemma 2.3

c m
ed (2m , z) 4c m

e (2m1d , z) Gv2Q (z) 4c m
e (2m , z)

c m
ed (m2d , z) 4c m

e (m , z) 4v1Q (z) Gc m
e (m2d , z)

and

c m
ed (x , 2h) 4c m

e (x1d , 2h) 4Qs 4c m
e (x , 2h)

c m
ed (x , 0 ) 4c m

e (x1d , 0 ) 4f 0 (x1d) Gf 0 (x) 4c m
e (x , 0 ) .

Thus (c m
ed2c m

e )1�H 1
0 (V m

d OV m ) and by Lemma 2.2, we get c m
edGc m

e a.e. in
V m

d OV m from which we deduce:

¯x c m
e G0 in D8(V m ) . r(2.11)

Now we can state the main result of this section:

THEOREM 2.4.

i) There exists a solution (c , g) of problem (P).

ii) If b(X) 4b(z) a.e. in V , then there exists a solution (c , g) such
that

¯x cG0 and ¯x gG0 in D8(V) .(2.12)

PROOF. – First let m0 Da and h�C Q (R) such that 0 GhG1, h41 in
(2m0 , m0 ), h40 for NxNFm0 11, Nh 8 NGc. Then for mF11m0, h 2 (c m 2F)
is a test function for (Pm ). So

s
V m011

h 2b(X) ˜c mN˜c m422 s
V m011

hc mb(X) ˜c mN˜h1 s
V m011

b(X) ˜c mN˜(h 2F)2

s
V m011

g m h 2 ¯x c m 1 s
V m011

g m h 2 ¯x F2 s
V m011

g m 2hh 8 (c m 2F) .

Using (1.14), the Cauchy-Schwartz inequality and the fact that c m , g, h, h 8, F,
˜F are uniformly bounded, we deduce that: N˜c mNL 2 (V m0 ) Gc(m0 ) which leads
by (Pm ) iii ) to

Nc mN1, V m0
Gc(m0 ) .(2.13)

Let us now extend c m by v1Q (resp. v2Q ) for xFm (resp. xG2 m). We also
extend g m to V0V m in such a way to have g m �H(c m ) a.e. in V. Then by (2.13)
and a diagonal process there exists a subsequence of (c m , g m ) and (c , g) �
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H 1
loc (V)3L Q (V) such that

(c m , g m ) � (c , g) in H 1
loc (V)3L 2 (V) .(2.14)

Now, (2.14) allows us to check that (c , g) is a solution of (P). This proves i).
Using Theorem 2.1 ii), we prove ii). r

Let us now give some properties of the solutions of (P).

3. – Properties and asymptotic behavior of solutions.

PROPOSITION 3.1. – Let (c , g) be a solution of (P). We have:

i) c�C 0, b
loc (V) for some b� (0 , 1 );

ii) [cD0] and [cE0] are open sets;

iii) If b�C k , s (V) then c�C k11, s ( [cD0]N [cE0] ).

If b is analytic in V then c is analytic in [cD0]N [cE0].

PROOF. – Taking j� D (V) as a test function for (P), we get

div (b(X) ˜c)42 g x in D8 (V) .(3.1)

Then i) is a direct consequence of (3.1) and usual results of regularity (see
[GT]). ii) is a consequence of i). Using (P)ii) and (3.1), we get

div (b(X) ˜c)40 in D8 ( [cD0] ) (resp. D8 ( [cE0] ) )(3.2)

from which we deduce iii) (see [GT]). r

In the remainder of this paper, we will assume that b(X) 4b(z) a.e. in V
and consider only monotone solutions (c , g) of (P) (i.e. ¯x cG0, ¯x gG0 in
D8 (V)).

PROPOSITION 3.2. – Let (c , g) be a solution of (P). Then we have:

div (b(z) ˜c)F0, div (b(z) ˜c1 )F0, div (b(z) ˜c2 )F0 in D8 (V)

where c14 max (c , 0 ) and c24 (2c)1.

PROOF. – The first inequality is a consequence of (3.1) and (2.12). Now, let
j� D (V), jF0 and eD0, then min (c1 Oe , j) is a test function for (P) and we
have:

s
V

b(z) ˜cN˜gming c1

e
, jhh1g¯xgming c1

e
, jhh40 .(3.3)
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Note that:

s
V

g¯xgming c1

e
, jhh4gss

V

¯xgming c1

e
, jhh40 .

Then (3.3) becomes:

s
VO [c1Fej]

b(z) ˜cN˜j4

2
1

e
s

VO [c1Eej]

b(z) ˜cN˜c142
1

e
s

VO [c1Eej]

b(z) ˜c1
N˜c1G0 .

Letting eK0, we get:

s
V

b(z) ˜cN˜jG0 (j� D (V) , jF0 .

Thus we obtain:

div (b(z) ˜c1 )F0 .

To prove div (b(z) ˜c2 )F0, we take min (c2 Oe , j) as a test function for (P)
and we argue as above. r

THEOREM 3.3. – Let (c , g) be a solution of (P). Then we have:

i) For all z� [2h , 0 ],

c(x , z) Kv1Q (z) (resp . v2Q (z) ) as xK1Q (resp . 2Q) .(3.4)

ii) For a.e. (x , z) �V , we set gR (x , z) 4g(x1R , z). Then we have:

(3.5) gR (x, z)�g1Q(z) (resp. g2Q(z)) as RK1Q (resp.2Q) in L 2 (V 0,1)

where g1Q�H(v1Q ) (resp. g 2Q�H(v2Q ) ) and V m , n 4 (m , n)3 (2h , 0 ) for
m , n�R.

First, we need the following lemma:

LEMMA 3.4. – Let (c , g) be a solution of (P). Then we have:

lim
RK1Q

s
V R , R11

N˜(c2v1Q )N240 and lim
RK2Q

s
V R , R11

N˜(c2v2Q )N240.(3.6)

PROOF. – Let RDa. Set v R (x , z) 4c(x1R , z) and consider h R � D (R)
such that 0 Gh R G1, h R 41 in V 0, 1, h R 40 for NxNFR/2 and Nh R8 NGc/R. We



S. CHALLAL - A. LYAGHFOURI514

have by (1.14)

I R 4s
V

h R
2 N˜(v R 2v1Q )N2 G

1

a
s

V

h R
2 b(z) ˜(v R 2v1Q ) N˜(v R 2v1Q ) 4

1

a
s

V

b(z) ˜(v R 2v1Q ) N˜(h R
2 (v R 2v1Q ) )2

2

a
s

V

h R (v R 2v1Q ) b(z) ˜(v R 2v1Q ) N˜h R .

Since g x G0 and h R
2 (v R 2v1Q ) F0 then

s
V

b(z) ˜(v R 2v1Q ) N˜(h R
2 (v R 2v1Q ) )42s

V

g¯x (h R
2 (v R 2v1Q ) )G0 .

So

I R G2
2

a
s

V

h R (v R 2v1Q ) b(z) ˜(v R 2v1Q ) N˜h R G

c 8s
V

h R N˜(v R 2v1Q )NNN˜h RNG
1

2
s

V

h R
2 N˜(v R 2v1Q )N2 1

c 82

2
s

V

N˜h RN2 .

Then

I R G
c 9

R
, 0 G s

V 0, 1

N˜(v R 2v1Q )N2 GI R G
c 9

R

and the first part of (3.6) holds. The second part can be proved similar-
ly. r

PROOF OF THEOREM 3.3. – Using the fact that c is uniformly bounded in V
and nonincreasing in the x-direction, it admits limits when xK6Q. Moreover
using (3.6) and Poincaré’s inequality, we get (3.4). Finally, H being a maximal
monotone graph, we deduce (3.5). r

REMARK 3.5.

i) From the monotonicity and the asymptotic behavior of c, we deduce
that

v1QGcGv2Q in V .(3.7)
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ii) Note that

v1Q (z) 40 ` f 1 (z) 4
Qf

Qs 1Qf

.

But since

f 18 (z) 42
1

b22 (z)
O s
2h

0
ds

b22 (s)
E0 ,

then f 1 : [2h , 0 ] K [0 , 1 ] is one to one and there exists a unique h *� (0 , h)
such that

f 1 (2h *) 4
Qf

Qs 1Qf

.

For all 2hEzE2h *, v1Q (z) D0. So the set R3 (2h , 2h *) is contained
in [cD0].

4. – Study of the free boundary.

The free boundary is defined by G4 ](x , z) �VOc(x , z) 40(.
Due to the asymptotic behavior of c, one can define two functions g1 and g2

by:

g1 (z) 4 sup ]xOc(x , z) D0( for z� (2h *, 0 )

g2 (z) 4 inf ]xOc(x , z) E0( for z� (2h *, 0 ) .

Then, we have:

PROPOSITION 4.1.

G4 ](x , z) �VO2h *EzE0 and g1 (z) GxGg2 (z)( %G%GN [z42 h *] .

PROOF. – It is a consequence of definitions of g1 , g2 and the monotonicity
of c. r

THEOREM 4.2. – g1 4g2 4g , G4 [x4g(z) ] and g is continuous on
(2h *, 0 ).

To prove Theorem 4.2, we need two lemmas:

LEMMA 4.3. – Let z0 � (2h *, 0 ), x0 �R and rD0.
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Assume that S4 ](x , z0 )ONx2x0NGr( %G , then we cannot have

((x , z) �Br (x0 , z0 ) 0S , c(x , z) c0

where Br (x0 , z0 ) is the open ball of center (x0 , z0 ) and radius r.

PROOF. – We can assume that Br (x0 , z0 ) %R3 (2h *, 0 ). Suppose that
c(x , z) c0 ((x , z) �Br (x0 , z0 ) 0S. Then for j� D (Br (x0 , z0 ) ), we have by
(P) i)-ii)

s
Br (x0 , z0 )

b(z) ˜cN˜j42 s
Br (x0 , z0 )

g¯x j40 .(4.1)

For 0 EdErO2, the function defined by: c d (x , z) 4c(x2d , z) satisfies by
(4.1): div (b(z) ˜c d )40 in Br/2 (x0 , z0 ). Moreover, we have c dFc in
Br/2 (x0 , z0 ) and c4c d on SOBr/2 (x0 , z0 ). Thus by the strong maximum princi-
ple (see [GT]), c4c d in Br/2 (x0 , z0 ). Thus ¯x c40 and c(x , z) 4k (z) in
Br/2 (x0 , z0 ). This leads by (4.1) to

k (z) 4ls
z0

z
ds

b22 (s)
in Br/2 (x0 , z0 ) for l�R .

We distinguish two cases:

1) If lD0 then cD0 in Br/2
14Br/2 (x0 , z0 )O [zDz0 ] and cE0 in

Br/2
24Br/2 (x0 , z0 )O [zEz0 ]. Since c is monotone, then cFk (z) D0 in

D4 (2Q , x0 )3 (z0 , z0 1r/2 ). So we have

.
/
´

div (b(z) ˜(c2k) )40

c2kF0

c2k40

in D

in D

in Br/2
1

and by the strong maximum principle, c4k in D.
Now for xK2Q, we have by (3.4), k (z) 4v2Q (z) which leads to a contra-

diction since k (z0 ) 40 and

v2Q (z0 ) 4Qss
z0

0
ds

b22 (s)
O s
2h

0
ds

b22 (s)
D0 .

2) If lE0 then cE0 in Br/2
1 and cD0 in Br/2

2 . So we have cD0 in D 84

(2Q , x0 )3 (z0 2r/2 , z0 ). We get c4k in D 8 and we obtain a contradiction
with the asymptotic behavior of c at 2Q. r

LEMMA 4.4. – Consider R4 (x1 , x2 )3 (z1 , z2 ) %V such that on its bound-
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ary we have:

.
/
´

c(x , z) G0

c(x , z) Gd

c(x , z) G2 d

for z4z1 and z4z2

for x4x1

for x4x2

for some dD0. Then:

c(x , z) E0 for xD
x1 1x2

2
, z1 EzEz2 .

PROOF. – Let u be the function defined by:

.
`
/
`
´

div (b(z) ˜u)40 in R 24g x1 1x2

2
, x2h3 (z1 , z2 )

u40 for
x1 1x2

2
GxGx2 , z� ]z1 , z2 ( and x4

x1 1x2

2
, z1 GzGz2

u42 d for x4x2 , z1 GzGz2 .

Note that we have uG0 on ¯R 2 and ug0 in R 2, so by the weak and strong
maximum principles, we deduce that: uE0 in R 2 .

Consider now w defined by:

w (x , z) 4

.
/
´

u(x , z)

2u(x1 1x2 2x , z)

in R 2

in R 14gx1 ,
x1 1x2

2
h3 (z1 , z2 ) .

Let us verify that w satisfies:

.
/
´

div (b(z) ˜w)40

wFc

in R

on ¯R .

Let j� D (R). We have:

s
R

b(z)(˜w) N˜j4 s
R 2

b(z)(˜u). ˜j2 s
R 1

b(z) (˜(u(x1 1x2 2x , z) ))N˜j

4 s
R 2

b(z)(˜u) N˜j2 s
R 2

b(z)(˜u) N˜j(x1 1x2 2x , z)

4 s
R 2

b(z)(˜u) N˜(j2j(x1 1x2 2x , z) )40
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since j(x , z)2j(x1 1x2 2x , z) 40 on ¯R 2. Then we get by the weak maxi-
mum principle cGuE0 in R 2 since by Proposition 3.2, we have
div (b(z) ˜c)F0 in R. r

PROOF OF THEOREM 4.2. – Using Lemma 4.3 and Lemma 4.4, one can adapt
the proof given in [AD1] or [CCL]. r

COROLLARY 4.5. – Let (c , g) be a solution of (P). Then we have

i) g4g s x( [cD0] )1g f x( [cE0] ) a.e. in V

ii) The sets [cD0] and [cE0] are connected by arcs.

PROOF. – i) We have by (P)ii), g4g s a.e. in [cD0] and g4g f a.e. in
[cE0]. Moreover the set [c40] 4G is of measure zero by Proposition 4.1
and Theorem 4.2. Thus g4g s x( [cD0] )1g f x( [cE0] ) a.e. in V.

ii) We argue as in [CCL]. r

5. – Uniqueness of the solution

THEOREM 5.1. – There exists a unique solution (c , g) of (P).
First, we have

LEMMA 5.2. – Let (c 1 , g 1 ), (c 2 , g 2 ) be two solutions of (P). Then we have
for i41, 2

Fi (z) 4s
V

(b(z) ˜(c i 2c 0 )1 (g i 2g 0 ) ex )N˜z40 (z� D (R2 )(5.1)

where c 0 4 min (c 1 , c 2 ) and g 0 4 min (g 1 , g 2 ).

PROOF. – Let z� D (R2 ), zF0 and eD0. Set j4 min (z , (c i 2c 0 )Oe).
Using the fact that j is a test function for (P) written for (c 1 , g 1 ) and
(c 2 , g 2 ), we obtain by subtracting the equations:

(5.2) s
[c i2c 0 ] Fez]

b(z) ˜(c i 2c 0 ) N˜z1

s
V

(g i 2g 0 ) z x Gs
V

(g i 2g 0 )gz2
c i 2c 0

e
h1

x

.



A STATIONARY FLOW OF FRESH AND SALT GROUNDWATER ETC. 519

Setting g0 4 min (g1 , g2 ) and using Corollary 4.5i), we obtain

(5.3) s
V

(g i 2g 0 )gz2
c i 2c 0

e
h1

x

4

(g s 2g f )s
I0

{gz2
c i 2c 0

e
h1

(gi (z), z)2gz2
c i 2c 0

e
h1

(g0 (z), z)}
with I0 4 ]z� (2h *, 0 ) /g0 (z) Egi (z)(.

Taking into account (5.3) and letting eK0 in (5.2), we get:

Fi (z) G0 (z� D (R2 ) , zF0 .(5.4)

Now, we consider z� D (R2 ). Let K4supp z and M4 sup
K

NzN. It is clear that

there exists R0 Da such that (RFR0 , K% (2R , R)3R.
Consider z R : RKR1 defined by:

z R (x) 4

.
`
/
`
´

0

M

M(2x1R11)

M(x1R11)

if NxNFR11

if NxNGR

if RGxGR11

if 2R21 GxG2R .

Then we have

(RFR0 , ((x , z) �R2 , 2z R (x) Gz(x , z) Gz R (x) .(5.5)

Using (5.4)-(5.5), we get

Fi (z R ) G Fi (z) G2 Fi (z R ) .(5.6)

Let us compute Fi (z R ):

Fi (z R ) 4M s
V 2R21, 2R

b(z) ˜(c i 2c 0 ) Nex 1M s
V 2R21, 2R

(g i 2g 0 )

2M s
V R , R11

b(z) ˜(c i 2c 0 ) Nex 2M s
V R , R11

(g i 2g 0 ) .

By Lemma 3.4 and Theorem 3.3, we deduce that:

lim
RK1Q

Fi (z R ) 40

from which we deduce that Fi (z) 40 and the lemma follows. r

REMARK 5.3. – Note that (c 0 , g 0 ) is a solution of (P) since by density
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(5.1) is still true for z�H0
1 (V) with compact support. Clearly we have

also c 0x G0 and g 0x G0 in D8 (V).

PROOF OF THEOREM. – 5.1. – Since for xFa, we have c i (x , 0 ) 4c 0 (x , 0 ) 4

2 Qf , there exists by continuity a small ball B centered on a point (a1 , 0 ) with
a1 Da such that BOV% [c i E0]O [c 0 E0]. Now, let z� D( [c i E0]NB).
Using (5.1) and the fact that g i 4g 0 4g f a.e. in [c i E0], we get:

s
[c iE0]

b(z) ˜cN˜z40(5.7)

with c4c i 2c 0 . Now because c40 on BO [z40], we may extend c by 0
into B0V in such a way that c�H 1

loc ( [c i E0]NB). We also extend b(z) by I2

into B0V. Then we obtain from (5.7):

s
[c iE0]NB

b(z) ˜cN˜z40 (z� D( [c i E0]NB) .(5.8)

Moreover we have cF0 in the open connected set V i 4 [c i E0]NB, c40 in
B0 [c i E0] and b strictly elliptic, thus we deduce by the strong maximum
principle that c40 in V i which leads to c i 4c 0 in [c i E0] and then c 1 4c 2

in [c 1 E0]O [c 2 E0]. But we can verify that we have now [c 1 E0] 4 [c 2 E

0]. Similarly we prove that c 1 4c 2 in [c 1 D0]O [c 2 D0] and [c 1 D0] 4

[c 2 D0]. Finally, we have proved that c 1 4c 2 in V and by Corollary 4.5i), we
have also g 1 4g 2 in V. r

6. – Study of the free boundary near z42 h *.

The goal of this section, is to prove the following theorem which means that
G does not contain the ray [z42h *].

THEOREM 6.1.. – The set S4 ]x�ROc(x , 2h *) 40( is empty and
G4 [x4g(z) ].

PROOF. – We argue by contradiction. Assume that Sc¯. Since c is conti-
nuous in V and nonincreasing, S is a closed interval. Set a4 inf S and
b4 sup S.

Let x0 �S, then by monotonicity of c, c(x , 2h *) Gc(x0 , 2h *) 40 (xF

x0 . Moreover c(x , 2h *) Fv1Q (2h *) 40, then c(x , 2h *) 40 (xFx0. So
b41Q.

Now, if a42Q, then c(x , 2h *) 40 (x�R. But this leads to a contradic-
tion with the asymptotic behavior of c at 2Q. Thus

S4 ]x�R , c(x , 2h *) 40( 4 [a , 1Q) .(6.1)
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Figure 2

Let a 84 max (a11/2 , 1 ) Da and C a constant satisfying

CD
a 8

h2h *
b22 2b21 a.e. in V(6.2)

which is possible since b�L Q (V).
Define f (z) by:

f (z) 4 s
2h

z
b21 (s)1C

b22 (s)
ds(6.3)

then we have:

LEMMA 6.2.

i )

ii )

iii )

f�W 1, Q (2h , 0 ) and f 8 (z) D
a 8

h2h *
D0

f (2h *) Da 8

(b22 (z) f 8 (z)2b21 (z) )840 in D8 (2h , 0 ) .

PROOF. – i) By (1.14), we have for z1 , z2 � (2h , 0 )

Nf (z1 )2 f (z2 )N4 Ns
z1

z2

b21 (s)1C

b22 (s)
dsN Gc1 Nz1 2z2N

and Nf (z)NGc1 Nz1hNG2c1 h for some constant c1 . Then f�W 1, Q (2h , 0 )
and by (6.2)-(6.3)

f 8 (z) 4
b21 (z)1C

b22 (z)
D

a 8

h2h *
D0 .(6.4)

ii) Using (6.4), we have from (6.3): f (z) D (z1h) a 8O(h2h *). By i)
f�C 0 ( [2h , 0 ] ), then f (2h *) Da 8.

iii) We have by (6.4), b22 (z) f 8 (z)2b21 (z) 4C and then iii) holds.
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Let kD0. We define the functions v and u by:

.
/
´

v(x , z) 4k(g s 2g f ) ( f (z)2x)1

u(x , z) 4g s x( [xE f (z) ] )1g f x( [xD f (z) ] )
(x , z) �D(z1 )(6.5)

where D(z1 ) 4 (a 8 , 1Q)3 (2h *, z1 ) with z1 � (2h *, 0 ). Then we have

LEMMA 6.3. – There exists kD0 such that:

s
D(z1 )

(b(z) ˜v1uex ) ˜jF0 (j� D (D(z1 ) ) , jF0 .(6.6)

PROOF. – Set D 1 (z1 ) 4D(z1 )O [xE f (z) ] and D 0 (z1 ) 4D(z1 )O [xD f (z) ]
(see Figure 2). Let j� D (D(z1 ) ), jF0. We have

s
D(z1 )

(b(z)˜v1uex ) ˜j4 s
D 1 (z1 )

(b(z) ˜v1g s ex ) ˜j1 s
D 0 (z1 )

g f ex N˜j .(6.7)

In D 1 (z1 ), we have ˜v4k(g s 2g f ) (2ex 1 f 8 (z) ez ) and

b(z) ˜v4k(g s 2g f ) ((2b11 1b12 f 8 (z) ) ex 1 (2b21 1b22 f 8 (z) ) ez )4

k(g s 2g f ) ((2b11 1b12 f 8 (z) ) ex 1Cez ) .

Then

div (b(z) ˜v)40 in D 1 (z1 )(6.8)

since (2b11 1b12 f 8 (z) ) does not depend on x. Using (6.7) and (6.8), we get by
applying the Green formula

s
D(z1 )

(b(z) ˜v1uex ) ˜j4 s
[x4 f (z) ]

(b(z) ˜v1g s ex )Nnj1 s
[x4 f (z) ]

g f ex N(2n) j4

s
[x4 f (z) ]

([k(g s 2g f ) (2b11 1b12 f 8 (z) )1 (g s 2g f ) ] n x 1k(g s 2g f ) Cn z ) j

where n denotes the unit normal vector to (¯D 1 (z1 )O [x4 f (z) ] ) pointing into
D 0 (z1 ). n is given explicitely by

n4n x ex 1n z ez 4
1

k11 f 82 (z)
(ex 2 f 8 (z) ez ) .
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Then we have

s
D(z1 )

(b(z) ˜v1uex ) ˜j4 (g s 2g f ) s
[x4 f (z) ]

uk (z)

k11 f 82 (z)
j

with uk (z) 411k(2b11 1b12 f 8 (z)2Cf 8 (z) ).
Note that, since b11 , b12 , f 8�L Q (2h , 0 ), we have Nuk (z)21NGkc1 for

some constant c1 . Then uk (z) F12kc1 . If we choose k such that 12kc1 D0 i.e.
0 EkE1/c1 then (6.6) holds. r

Now, we will compare (c1 , g) with (v , u).

LEMMA 6.4. – Let (c , g) be a solution of (P) and (v , u) defined by (6.5).
Then there exists z0 � (2h *, 0 ) such that

s
D(z0 )

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜z40 (z� D(R2 ) ,(6.9)

where v0 4 min (c1 , v), u 0 4 min (g , u).

PROOF. – The proof is done in several steps.

1st step.

We have c(a 8 , 2h *) 40 then by continuity of c, there exists dD0 such
that

c(a 8 , z) Gk(g s 2g f ) ( f (2h *)2a 8 ) (z� (2h *, 2h *1d) .

Moreover )z0 � (2h *, 2h *1d) such that c(a 8 , z0 ) 40. If not, we distin-
guish two cases:

i) c(a 8 , z) D0 (z� (2h *, 2h *1d) leads to c(x , z) Fc(a 8 , z) D0
(x� (a , a 8 ) which contradicts Lemma 4.3 since we have c(x , z) D0 in
(a , a 8 )3 (2h , 2h *) and c(x , 2h *) 40 for x� (a , a 8 ).

ii) c(a 8 , z) E0 (z� (2h *, 2h *1d) leads to c(x , z) Gc(a 8 , z) E0
(xFa 8 which leads again to a contradiction by Lemma 4.3.

Set D4D(z0 ). Then since f 8 (z) D0

c1 (a 8 , z) Gk(g s 2g f ) ( f (2h *)2a 8 )G

k(g s 2g f ) ( f (z)2a 8 )4v (a 8 , z) (z� (2h *, z0 )

c1 (x , 2h *) 40 Gv (x , 2h *) (xFa 8

c1 (x , z0 ) 40 Gv (x , z0 ) (xFa 8
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then

c1Gv on ¯D .(6.10)

2nd step.

We have (z� D(R2 ), zF0

s
D

(b(z) ˜(c12v0 )1 (g2u 0 ) ex )˜zGs
I

(g s 2g f ) z(g(z), z) dz ,(6.11)

where I4 ]z� (2h *, z0 )Og(z) D f (z)(.
Indeed, let eD0, z� D(R2 ), zF0. Set

j4 ming (c12v0 )

e
, zh4 ming (c12v)1

e
, zh .

We have j�H 1 (D), jF0 and j40 for large x. Moreover j40 on ¯D by (6.10).
By Proposition 3.2, we have div (b(z) ˜c2 )F0 in D8 (V), then
div (b(z) ˜c1 )1¯x gF0. So we have:

s
D

(b(z) ˜c11gex ) ˜jG0 .

By (6.6), we have:

2s
D

(b(z) ˜v1uex ) ˜jG0 .

Adding these inequalities, we get:

s
D

(b(z) ˜(c12v)1 (g2u) ex ) ˜jG0

which can be written:

s
D

(b(z) ˜(c12v0 )1 (g2u 0 ) ex )˜jG0 .(6.12)

Since j4z2 (z2 (c12v0 )Oe)1, we have:

s
DO [c12v0Fez]

b(z) ˜(c12v0 ) ˜z1s
D

(g2u 0 ) ex N˜zG

2
1

e
s

DO [c12v0Eez]

b(z) ˜(c12v0 ) ˜(c12v0 )1s
D

(g2u 0 )gz2
(c12v0 )

e
h1

x

.
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By (1.14), we get:

(6.13) s
DO [c12v0Fez]

b(z) ˜(c12v0 ) ˜z1

s
D

(g2u 0 ) ex N˜zGs
D

(g2u 0 )gz2
(c12v0 )

e
h1

x

.

Note that we have:

s
D

(g2u 0 )gz2
(c12v0 )

e
h1

x

4 s
DO [v0D0]

(g2u 0 )gz2
(c12v0 )

e
h1

x

1 s
DO [v040]

(g2u 0 )gz2
c1

e
h1

x

.

Since DO [v0 D0] 4DO ( [c1D0]O [vD0] ), we have g4u4u 0 4g s in this
set and then

s
DO [v0D0]

(g2u 0 )gz2
(c12v0 )

e
h1

x

40

For the other integral, we have:

s
DO[v040]

(g2u 0 )gz2
c1

e
h1

x

4 s
DO[c14v040]

(g f 2g f ) z x 1 s
DO [c1D0, v040]

(g s 2g f )gz2
c1

e
h1

x

4 (g s 2g f ) s
DO[f (z)ExEg(z)]

gz2
c1

e
h1

x

4 (g s 2g f )s
I

s
f (z)

g(z)

gz2
c1

e
h1

x

4 (g s 2g f )s
I

gz2
c1

e
h1

(g(z), z)2gz2
c1

e
h1

( f (z), z) dz

G (g s 2g f )s
I

z(g(z), z) dz since c1 (g(z), z)40 .
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Thus:

s
D

(g2u 0 )gz2
(c12v0 )

e
h1

x

G (g s 2g f )s
I

z(g(z), z) dz .(6.14)

Using (6.14) and letting eK0 in (6.13), we get (6.11).

3rd step.

We have (z� D(R2 ), zF0

s
D

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜zG0 .(6.15)

Indeed, let dD0, z� D(R2 ), zF0. Set A0 4 [v0 D0] and define a d (X) 4 (12

d(X , A0 )Od)1. Note that

A04[c1D0]O[vD0]4[xEg(z)]O[xEf (z)]4[xEmin ( f (z),g(z))]%[xEf (z)]

and a d41 in A0 . Then we write:

s
D

(b(z) ˜(c12v0 )1(g2u 0 ) ex ) ˜z4s
D

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜(a d z)

1s
D

(b(z) ˜(c12v0)1(g2u 0) ex) ˜((12a d) z)

4I1
d1I2

d .

First by the previous step we have:

I1
dG (g s 2g f )s

I

(a d z) (g(z), z) dz

Since ](g(z), z)Oz�I( %R2 0 A0, we get:

limdK0 I1
dG0 .(6.16)

Next we write:

I2
d4 s

DO [g(z) Da 8 ]

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜((12a d ) z)

1 s
DO [g(z) Ga 8 ]

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜((12a d ) z) .

We remark that for all (x , z) �DO [g(z) Ga 8 ], we have xDg(z) then
c1 (x , z) 40. Moreover, since vF0, we have v0 4 min (c1 , v) 40 in DO
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[g(z) Ga 8 ]. Then g4u 0 4g f in DO [g(z) Ga 8 ] and

s
DO [g(z) Ga 8 ]

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜((12a d ) z)40 .

So

I2
d4 s

DO [g(z) Da 8 ]

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜((12a d ) z)

4 s
DO[g(z)Da 8]

(b(z) ˜c11gex) ˜((12a d) z)2 s
DO[g(z)Da 8]

(b(z) ˜v01u 0ex) ˜((12a d) z)

4I2, 1
d 2I2, 2

d .

Let us consider the set

J4 ]z� (2h *, z0 )Og(z) Da 8( .

If J4¯ then g(z) Ga 8 (z� (2h *, z0 ) and then c1 (a 8 , z) 40 (z� [2h *, z0 ].
By monotonicity of c, we have cE0 in D which leads to a contradiction with
Lemma 4.3 since we have cD0 in VO [zE2h *] and c40 on (a 8 , 1Q)3

]2h *(.
Assume now that Jc¯. For any z�J we define

m(z) 4 inf ]s� (2h *, z0 )O(t� [s , z], t�J(

M(z) 4 sup ]s� (2h *, z0 )O(t� [z , s], t�J( .

Since g is continuous, we have (z�J, m(z), M(z) �J. Set

J 4 ][m(z), M(z) ] % [2h *, z0 ]Oz�J( .

Let us define W : J KQ by W([m(z), M(z) ] )4r�QO [m(z), M(z) ] (r is chosen
arbitrarily, Q is the set of rational numbers). W is one to one from J to W(J) %Q.
Indeed, let [m(z), M(z) ] and [m(z 8 ), M(z 8 ) ] � J such that W([m(z), M(z) ] )4

W([m(z 8 ), M(z 8 ) ] ), then [m(z), M(z) ]O [m(z 8 ), M(z 8 ) ] c¯. This leads by
definition of m(z) and M(z) to [m(z), M(z) ] 4 [m(z 8 ), M(z 8 ) ].

Thus, we have

J 4 ][m(zn ), M(zn ) ] % [2h *, z0 ]Ozn �J , n�8( with 8%N .

Now we can write I2, 1
d as follows:

I2, 1
d 4 s

Nn�8 (a 8 , 1Q)3 (m(zn ), M(zn ) )

(b(z) ˜c11gex ) ˜((12a d ) z)
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4 !
n�8

s
(a 8 , 1Q)3 (m(zn ), M(zn ) )

(b(z) ˜c11gex ) ˜((12a d ) z) .

We have (z� (m(zn ), M(zn ) ), (a 8 , z) � A0 . Indeed, we have for z�
(m(zn ), M(zn ) ), g(z) Da 8, then c1 (a 8 , z) D0. By continuity, )rD0 such that
c1D0 in Br (a 8 , z). We also have vD0 in Br (a 8 , z)OD, then v0 D0 in
Br (a 8 , z)OD. Thus Br (a 8 , z)OD%A0 .

We deduce that (12a d )(a 8 , z) 40. Moreover c1 (x , m(zn ) )4

c1 (x , M(zn ) )40 (xDa 8. Using Lemma 6.5 below, we get

s
(a 8 , 1Q)3 (m(zn ), M(zn ) )

(b(z) ˜c11gex ) ˜((12a d ) z)G0 (n�8

and then

I2, 1
d G0 .(6.17)

Now, we have

I2, 2
d 4 s

(D 0 A0 )O [g(z) Da 8 ]

g f ((12a d ) z)x

4s
J

s
min( f (z), g(z) )

1Q

g f ((12a d ) z)x

42s
J

g f ((12a d ) z)(min ( f (z), g(z) ) , z)

40 since (min ( f (z), g(z) ) , z)� A0 when z�J .

Thus I2, 2
d 40 and by (6.16)-(6.17) we get (6.15).

4th step.

Let z� D(R2 ). Set K4supp z and M4 sup
K

NzN . Then there exists R0 Da

such that (RFR0 , K% (2R , R)3R. Define z R as in the proof of Lemma 5.2,
then we have:

2z R GzGz R (RFR0 .

Using (6.15) for z R 2z and z R 1z respectively, we get:

T(z R ) GT(z) G2T(z R )

with T(z) 4s
D

(b(z) ˜(c12v0 )1 (g2u 0 ) ex ) ˜z.
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Moreover, we have for large R:

T(z R ) 42 M s
DR , R11

b(z) ˜(c12v0 ) Nex 2M s
DR , R11

(g2u 0 )

42M s
DR , R11

b(z) ˜c1
Nex 2M s

DR , R11

(g2g f )

42 M s
D0, 1

b(z) ˜c R
1

Nex 2M s
D0, 1

(g R 2g f )

with Dm , n 4V m , n OD. By (3.5), we have:

lim
RK1Q

s
D0, 1

(g R 2g f ) 40 .

Moreover by (3.6), we deduce up to a subsequence of R, still denoted by R,
that:

˜c R
1 � ˜v 1

1Q40 in L 2 (D0, 1 ) .

Thus:

lim
RK1Q

s
D0, 1

b(z) ˜c R
1 . ex 40 .

This completes the proof of Lemma 6.4. r

LEMMA 6.5. – If D4 (x0 , 1Q)3 (z1 , z2 ) %V, (z1 Ez2 ) and

c(x , zi ) G0 i41, 2 (xFx0 ,

then we have

(6.18) s
D

(b(z) ˜c11gex ) ˜jG0 (j�H 1 (D), jF0

j(x0 , z) 40 a.e. z� (z1 , z2 ) and j40 for large x .

PROOF. – Using Proposition 3.2 we deduce that

(6.19) s
D

(b(z) ˜c11gex ) ˜jG0 (j�H 1
0 (D), jF0 with bounded support .

Now, let j�C Q (V) such that jF0, j(x0 , z) 40 and j40 for large x. Let dD0
and define dd (z) 4 min((z2z1 )1 Od , 1 )Nmin ((z2 2z)1 Od , 1 ). Since dd (z1 ) 4

dd (z2 ) 40, we have dd j�H 1
0 (D) with compact support in D, so it is a test func-
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tion for (6.19). Then

s
D

(b(z) ˜c11gex ) ˜(dd j) G0 .

But, since dd does not depend on x, we obtain:

s
D

b(z) ˜c1 ˜(dd j)1dd gex N˜jG0 .(6.20)

Moreover we have

s
D

b(z) ˜c1 ˜((12dd ) j)G0 .(6.21)

Indeed, set z 0 4 (12dd )j and for eD0, let z4 min (c1 Oe , z 0 ). We have z40
on ¯D and zF0, then since div (b(z) ˜c1 )F0, we get

s
D

b(z) ˜c1 ˜zG0

which can be written

s
DO [c1Fez 0 ]

b(z) ˜c1
N˜z 0 1

1

e
s

DO [c1Eez 0 ]

b(z) ˜c1
N˜c1G0

then by (1.14),

s
DO [c1Fez 0 ]

b(z) ˜c1
N˜z 0 G0 .

Letting eK0, we get (6.21).
Now, adding (6.20) and (6.21), we get

s
D

b(z) ˜c1
N˜j1dd gex N˜jG0 .(6.22)

(6.18) holds by letting dK0 in (6.22). r

END OF PROOF OF THEOREM 6.1. – Let z *� (2h *, z0 ).

1) If c1 (a 8 , z *) 40 then by monotonicity c1 (x , z *) 40 (xFa 8.

2) If c1 (a 8 , z *) D0 then by continuity of c, there exists a small ball
Br (a 8 , z *) such that c1D0 in Br (a 8 , z *). Let us denote by C * the connected
component of D(z0 )O [c1D0] which contains Br (a 8 , z *)OD(z0 ). Let z�
D(R2 ) with supp z%D4 ](x , z)O(a1a 8 ) /2 ExEa 8 , Nz2z *NEr(N (C *O
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Figure 3

D 1 (z0 ) ) (see Figure 3). Applying Lemma 6.4, we obtain:

s
C

*
OD 1 (z0 )

b(z) ˜(c12v)1 ˜z40(6.23)

since we integrate on [c1D0]O [vD0], in which we have g4u4g s .
Let us define a function w by:

w4
.
/
´

(c12v)1 in C *OD 1 (z0 )

0 in D0(C *OD 1 (z0 ) )
,

then since c1 (a 8 , z) Gv(a 8 , z) (z� (2h *, z0 ), it is clear that w�H 1 (D) and
from (6.23), we get:

s
D

b(z) ˜w ˜z40 (z� D(D) .(6.24)

Now, since wF0 in D, w40 in D0(C *OD 1 (z0 ) ), we deduce from (6.24) and
the strong maximum principle that w40 in D which leads to

c1Gv in D .(6.25)

1) If ( f (z *), z * )�C *, then ( f (z *), z * )�¯(C *OD 1 (z0 ) ) and by (6.25)
c1 ( f (z *), z * )Gv( f (z *), z * )40. So c1 ( f (z *), z * )40 and then
c1 (x , z *) 40 (xF f (z *).

2) If ( f (z *), z * )�C *. Assume that c1 ( f (z *), z * )D0 then
c1 (x , z *) D0 (xG f (z *). Since C *O((a 8 , f (z *)]3 ]z *()c¯, we get
(a 8 , f (z *)]3 ]z *( %C * and we have a contradiction. Thus c1 ( f (z *), z * )40
and c1 (x , z *) 40 (xF f (z *).

Hence, we have proved that

c1 (x , z) 40 (xF f (z), (x , z) �D(z0 ) .

This means that c(x , z) G0 in D 0 (z0 ). We then have:

div (b(z) ˜c)40 in D8 (D 0 (z0 ) ) .

By the asymptotic behaviour of c at 1Q and the strong maximum principle,



S. CHALLAL - A. LYAGHFOURI532

we deduce that:

cE0 in D 0 (z0 ) .

Since we have cD0 in [zE2h *]OV and c(x , 2h *) 40 for xFa 8, we get a
contradiction with Lemma 4.3.

We conclude that GO [z42h *] 4¯ and G4 [x4g(z) ]. r

COROLLARY 6.6. – We have:

lim
zK2h *, zD2h *

g(z) 41Q .

PROOF. – Let AD0. By Theorem 6.1, we have c(A , 2h *) D0. Since c is
continuous, there exists dD0 such that:

(z� (2h *, 2h *1d) c(A , z) D0

this leads to:

(z� (2h *, 2h *1d) g(z) DA

which means that:

lim
zK2h *, zD2h *

g(z) 41Q . r
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