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Partial Discretization of Topologies.

M. BONANZINGA - F. CAMMAROTO - M. V. MATVEEV

Sunto. – In questo lavoro daremo una construzione che aumenta il numero di sottospazi
chiusi e discreti dello spazio e daremo alcune applicazioni di tale construzione.

1. – Introduction.

Many interesting examples of topological spaces were constructed by
means of refining the topology of some well-known space. For example, in the
construction of the Michael line (see [10], 5.1.32) one declares all irrational
points of the real line isolated and thus obtains a stronger topology in which
there are more open discrete subsets than in the original topology of R.

In this paper we follow the opposite approach: we encrease the number of
closed discrete subsets. The new topology add to the old one new closed dis-
crete subspaces; for this reason we will speak about the «discretization» of the
original topology. This approach is not new; let us recall two well-known ex-
amples. The first one is the simplest example of a Hausdorff, nonregular
space, the second one provides the simplest construction of a Hausdorff
L-space.

EXAMPLE 1.1 ([10], 1.5.7). – The «usual» Hausdorff, nonregular space.

Consider the unit interval [0, 1] with the topology inherated from the usual
topology of the real line. Refine this topology on [0, 1] declaring that basic
neighbourhoods at points different from 0 are the same that in the original
topology, while a basic neighbourhood of the point 0 takes the following form:
[0 , e)0]1On : n41, 2 , R(, where eD0. The new space is a Hausdorff non-
regular space. Note that with respect to the original topology, a new closed
discrete subspace has been added.

EXAMPLE 1.2 [22]. – A Hausdorff L-space.
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Consider the space X4R with the topology generated by the base consist-
ing of all sets of the form (a , b)0A, where A is arbitrary countable set. This
space X is hereditarily Lindelöf but not separable. That it is not separable fol-
lows directly from the definition, that it is (hereditarily) Lindelöf either can be
easily seen directly, or it follows from Corollary 3.7 below.

Now we give the general definition.

DEFINITION 1.3. – Let (X , R) be a topological space, B be a base for X, Y%X
and t be a cardinal. Denote BYt4 ]U0A : U� B , A%Y , NANEt(; this family
is a base for a new topology RYt on X that we will call the partial t-discretiza-
tion of R. For Y4X we write just Rt and we will say that Rt is the t-discretiza-
tion of R.

Further we will often call R and RYt (resp., Rt ) the old and the new topolo-
gy, respectively. First of all, we note that the topology RYt does not depend on
the base B. In this sense the choise of B is not important, and we will often ad-
dress to the elements of BYt at to basic open sets without indicating which par-
ticular base B is considered.

In the topology RYt , all the sets A%Y with NANEt are closed in X and dis-
crete. In Example 1.1 we have that Y4 ]1On : n41, 2 , R( and t4v 1 ; in
Example 1.2, Y4X and t4v 1 .

Also note that if tDNXN, then (X , Rt ) is a discrete space. To avoid this triv-
ial case, henceforward we usually assume that tGD(X), where

D(X) 4min ]NUN : U is a nonempty open set in X(

is usually called the dispersion character of X. Note that for every infinite car-
dinal t we have that D(X , R) Ft iff D(X , Rt ) Ft; for this reason we simply
write D(X) Ft without indicating which topology, R or Rt , is considered.

Being refinements of the original topology, partial t-discretization and t-
discretization of course preserve the Hausdorff axiom of separation. However,
the regularity of a space typically is not preserved; from a regular or even a
normal space (X , R) we «nearly always» obtain a nonregular space (X , RYt ),
where Y%X, or (X , Rt ); why this happens can be easily seen from Examples
1.1 and 1.2. So, partial t-discretization and t-discretization are ways to obtain
Hausdorff examples in the cases when constructing regular ones is impossible
or difficult.

The paper is organized in the following way: we start with some basic facts
about t-discretizations, then we consider the behavior of various topological
properties under the operation of t-discretization, further we find out how the
operation of t-discretization interlaps with other operations on topological
spaces, and we finish with a selection of applications.
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2. – How much different is the new topology from the old one?

It turns out that it is different, but not very much different. This gives hope
that preserving some properties of the old topology and destroying other
properties one can obtain spaces with interesting sets of properties.

First, let us compare the closed sets in the old and in the new topology. Of
course, in general, new closed sets do appear after a (partial) t-discretization,
but the following result shows that (under some assumptions) regular closed
(and hence regular open) sets in the old and in the new topologies are the
same.

PROPOSITION 2.1. – Let t be a cardinal, (X , R) be a space and V be an ele-
ment of Rt . We have that

(A) if D(X) Ft, then clRt
V4clR V4clR U, for some U�R;

(B) if Y is a subset of X such that X0Y is dense in (X , R), then clRYt
V4

clR V4clR U, for some U�R.

PROOF. – (A): For every y�V, fix Uy �R and Ay %X, NAyNEt so that
Uy 0Ay %V. Put U4N]Uy : y�V(. Then U�R and U&V. It is clear that
clRt

V’clR V’clR U. It remains to check that clR U’clRt
V. Let x�clR U and let

W be a basic neighbourhood of x in Rt, i.e. x�W4OW 0AW where OW �R
and NAWNEt. Since x�clR U, there is z�UOOW. By the definition of U,
z�Uy OOW for some y�V. So, Uy OOW is a nonempty open (in the topology R)
set. Since D(X) Ft and NAy NAWNEt, there is t� (Uy OOW )0(Ay NAW ) %
(Uy 0Ay )O (OW 0AW ) %VOW. So, every neighbourhood of x in Rt intersects V,
i.e. x�clRt

V.
(B): The proof of this fact repeats the proof of case (A) almost wordwise.

Now the hypothesis that X0Y is dense in (X , R) is used instead of the condi-
tion that X has dispersion character greater or equal to t and the set U is de-
fined as follows: for every x�V, we can fix the sets Ux �R and Ax %Y, with
NAxNEt, such that x�Ux 0Ax %V; then U4N]Ux : x�V(. r

Recall that a space is almost regular if every point can be separated by
open sets from every regular closed set not containing this point [26]; a space
is semiregular if regular open sets form a base [10]; a T1 space is regular if and
only if it is both almost regular and semiregular [26]. Since (under our usual
assumptions) regular closed sets in the old topology remain regular closed in
the new topology, we have the following proposition:

PROPOSITION 2.2. – Let t be a cardinal, (X , R) be a space and V be an ele-
ment of Rt . We have that



M. BONANZINGA - F. CAMMAROTO - M. V. MATVEEV488

(A) if D(X) Ft and (X , R) is almost regular, then (X , Rt ) is almost
regular;

(B) if Y is a subset of X such that X0Y is dense in (X , R) and (X , R) is
almost regular, then (X , RYt ) is almost regular.

So we see that even though in general regularity is not preserved by t-dis-
cretization and partial t-discretization, a «part» of regularity, namely almost
regularity, is preserved by these operations. In fact, regularity is destroyed by
means of the loss of semiregularity: the regular open sets are (again under our
usual assumptions) the same in the old and in the new topology, and since they
formed a base for the old topology, they can not form a base for the new topol-
ogy, because the new topology is, tipically, finer. In other words, in the case of
the t-discretization we have the following simple proposition (say that a space
is t-discrete if all its subsets of cardinality less than t are closed and
discrete):

PROPOSITION 2.3. – Let D(X) Ft. Then either (X , R) is t-discrete (i.e.
R4Rt ), or (X , Rt ) is not semiregular.

We conclude the consideration of regular open sets and almost regularity
with the example demonstrating that the assumptions «D(X) Ft» and «X0Y is
dense in (X , R)» in Proposition 2.2 are essential.

EXAMPLE 2.4. – An almost regular space (X , R) such that the v 1-discretiza-
tion (X , Rv 1

) is not almost regular.

By transfinite induction, it is easy to construct three disjoint dense sub-
spaces Q1 , Q2 , Q3 of the real line R with the usual topology S such that
R4Q1 NQ2 NQ3 and D(Qi ) 4c, for i41, 2 , 3. Since (R , S) is hereditarily se-
parable, there exist countable and dense sets C1 , C2 , C3 such that Ci %Qi, for
i41, 2 , 3. Define S4C1 NC2 NC3 with the topology inhereted from (R , S)
and let ]an : n�v( %R be a sequence of pairwise distinct points converging
to 0 in the topology S. Also consider R with the topology S* generated by S N
]Q1 (N ]Q2 (. Consider the set X4 (R3 ]0()N (S3 ]an : n�v() with the
following topology R: Y4S3 ]an : n�v( with the product topology R is open
in X; a basic neighbourhood of the point (q1 , 0 ) �Q1 3 ]0( takes the form
(((q12d , q11d)OQ1 )3]0()N(((q12d , q11d)OS)3 ]am : mDn(), where
dD0 and n�v; a basic neighbourhood of the point (q2 , 0 ) �Q2 3 ]0( takes
the form (((q2 2d , q2 1d)OQ2 )3 ]0()N(((q2 2d , q2 1d)OS)3 ]am :
mDn(), where dD0 and n�v; a basic neighbourhood of the point (q3 , 0 ) �
Q3 3 ]0( takes the form ((q3 2d , q3 1d)3 ]0( )N(((q3 2d , q3 1d)OS)3

]am : mDn(), where dD0 and n�v. Note that D(X) 4v.
Now we prove that (X , R) is almost regular. Since Y is an open subset of
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(X , R) and a dense subspace of the almost regular space R3 ]an : n�v(, we
have that (X , R) is almost regular at all points of the form (x , an ). Then we
have to prove that X is almost regular at the point (x , 0 ). Let U%X be a regu-
lar open subset such that (x , 0 ) �U; we want to find an open set T%X such
that (x , 0 ) �T’clX (T) ’U. Assume that (x , 0 ) �Q3. Then there exists dD0
and n�v such that (x , 0 ) � ((x2d , x1d)3 ]0( )N(((x2d , x1d)OS)3

]am : mDn()’U.

Define T4ggx2
d

2
, x1

d

2
h3 ]0(hNgggx2

d

2
, x1

d

2
hOSh3

]am : mDn(h. Then (x , 0 ) �T’clX (T) 4gkx2
d

2
, x1

d

2
l3 ]0(hN

ggkx2
d

2
, x1

d

2
lOSh3 ]am : mFn(h%U .

Now assume that x�Q1 ; for x�Q2 the proof is similar. There exist dD0
and n�v such that (x , 0)�(((x2d , x1d)OQ1 )3]0()N(((x2d , x1d)OS)3

]am : mDn()’U. Define A4(((x2d , x1d)OQ1 )3]0()N(((x2d , x1d)O
S)3 ]am : mDn(). We have clX(A) 4clX (clY(AOY))4clX (( [x2d , x1d]O
S) 3 ]am : mFn( ) = ([x2d , x1d]3 ]0()N (( [x2d , x1d]OS)3 ]am :
mFn( ). IntX (clX (A) )4 ((x2d , x1d)3 ]0( )N(((x2d , x1d)OS)3 ]am :
mDn()’U. Define the open set T4 ((x2dO2, x1dO2)3 ]0( )N
(((x2dO2, x1dO2)OS)3]am : mDn(). Then (x , 0)�T’clX(T)4( [x2dO2,
x1dO2]3 ]0()N (( [x2dO2, x1dO2]OS)3 ]am : mFn( )’U.

Now consider the space (X , Rv 1
), and we show that this space is not almost

regular. R3 ]0( is clopen in (X , Rv 1
); indeed it was closed in (X , R) and

X0(R3 ]0() is countable. Since almost regularity is preserved by clopen sub-
spaces, it remains to show that R3 ]0( is not an almost regular subspace of
(X , Rv 1

). Let a , b�Q3, with aEb. Put H4 ( [a , b] 0Q2 )3 ]0(. Then H is a
regular closed subset of (R3 ]0(, Rv 1

NR3 ]0( ). Then consider a point x�
(a , b)OQ2 and define p4 (x , 0 ). We have that p can not be separated by open
sets from H. Indeed, since D(Q2 ) 4c, the interesection of every neighbour-
hood of p with every neighbourhood of H in (R3 ]0(, RNR3 ]0( ) has cardinali-
ty greater or equal to c. Then the interesection of every neighbourhood of p
with every neighbourhood of H in (R3 ]0(, Rv 1

NR3 ]0( ) is greater or equal to
c and then nonempty.

Note that X0Y is closed in (X , R) and (X , RYv 1
) is not almost regular. To

prove this last fact it is enough to note that X0Y is a clopen subspace of
(X , RYv 1

) which is not almost regular.
To finish the discussion of the axioms of separation, we note that (X , Rt ) is

a T1 space for every topology R and every cardinal tF2.
Now we will show that the old and the new topologies are similar yet from

one more viewpoint: we will prove that, under our usual assumptions, the
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spaces (X , R) and (X , Rt ), respectively (X , R) and (X , RYt ), have the same set
of real valued continuous functions. Of course, the functions which were con-
tinuous in the old topology remain continuous in the new one. It is necessary to
check that new continuous functions do not appear.

PROPOSITION 2.5. – Let (X , R) be a space and t be a cardinal. We have
that

(A) if D(X) Ft and f : (X , Rt ) KR is a continuous function, then f is a
continuos function with respect to the old topology R ;

(B) if Y is a subset of X such that X0Y is dense in (X , R) and
f : (X , RYt ) KR is a continuous function, then f is a continuos function with
respect to the old topology R.

PROOF. – (A): Let f : (X , Rt ) KR be a continuous function and ]as : s�S(

be a sequence converging to the point a�X in the sense of the old topology.
We have to prove that lim

s�S
f (as ) 4 f (a). By contradiction, assume that there

exists eD0 and a cofinal subnet A of ]as : s�S( such that Nf (as )2 f (a)NDe,
for every as�A. Let Wa be a neighbourhood of a in Rt . Now we show that
there exists as�A such that for every neighbourhood Vas

of it in Rt we have
that NWa OVas

NFt. Consider the set Wa 4Oa 0Ha, where Oa �R and Ha %X,
NHaNEt. Then there exists as�A such that as�Oa . Let Vas

be a neighbour-
hood of as in the new topology; we assume that Vas

4Uas
0Has

where Uas
�R

and Has
%X, with NHas

NEt. Then WaOVas
4(Oa0Ha )O(Uas

0Has
)4(OaO

Uas
)0(Ha NHas

). Since D(X) Ft and Oa and Uas
belong to R, we have that Oa O

Uas
is a nonempty open set of (X , R) and then it has cardinality Ft; then, as

both Ha and Has
have cardinality Et, we conclude that NWa OVas

NFt. Since
f : (X , Rt ) KR is a continuous function, there exists a neighbourhood Was

of as

in (X , Rt ) such that Nf (y)2 f (as )NEeO2, for every y�Was
. Then there exists a

point z�Wa OWas
such that Nf (z)2 f (a)NDeO2. By arbitrarity of Wa , we ob-

tain a contradiction.

(B): The proof of this fact repeats proof for the case (A) almost wordwise.
Now the hypothesis that X0Y is dense in (X , R) is used instead of the condi-
tion that X has dispersion character greater or equal to t to prove that for
every neighbourhood Wa of a in RYt there exists a point as�A such that for
every neighbourhood Vas

of as in RYt one has Wa OVas
c¯. r

Below Cp (X , R), Cco (X , R) and Cu (X , R) denote the space of all real contin-
uous functions on (X , R) with the topology of pointwise convergence, the com-
pact-open topology and the topology of uniform convergence, respectively.
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COROLLARY 2.6. – Let (X , R) be a space and t a cardinal. We have
that

(A) if D(X) Ft, then Cp ( (X , Rt ) ) 4Cp ( (X , R) ); Cco ( (X , Rt ) ) B

Cp ( (X , R) ) and Cu ( (X , Rt ) ) 4Cu ( (X , R) ).

(B) if Y is a subset of X such that X0Y is dense in (X , R), then
Cp ( (X , RYt ) ) 4Cp ( (X , R) ) and Cu ( (X , RYt ) ) 4Cu ( (X , R) ).

PROOF. – The proofs are obvious in the cases of the topology of pointwise
convergence and of the topology of uniform convergence. In the case of com-
pact-open topology it is enough to note that all compact sets in the t-dis-
cretization are finite. r

3. – Partial t-discretization (t-discretization) and...

3.1. – ...weak compactness-type properties.

Note that, if tDv, then all countable subsets of (X , Rt ) are closed and dis-
crete and hence (X , Rt ) is not countably compact; further, if tDv and NYNF

v, then all countable subsets of (X , RYt ) contained in Y are closed and discrete
and hence (X , RYt ) is not countably compact. Then it is natural to ask which
compactness-type properties weaker than countable compactness, such as
pseudocompactness, feeble compactness, and H-closedness, are preserved by
operations RKRt and RKRYt. Recall that a space X is pseudocompact provid-
ed all continuous real-valued functions are bounded; a space X is feebly com-
pact (see, for example [25]) provided every locally finite family of nonempty
open sets in X is finite. Feeble compactness, being, in general, a stronger
property, is equivalent to pseudocompactness for Tychonoff spaces (see [10]).
Further, recall that a Hausdorff space X is H-closed [20] iff for every open cov-
er of X there is a finite subfamily whose union is dense in X.

That (under our usual assumptions) pseudocompactness is preserved by
t-discretizations and partial t-discretizations is a direct corollary of Proposi-
tion 2.5:

PROPOSITION 3.1. – Let (X , R) be a space and t be a cardinal. We have
that

(A) if D(X) Ft and (X , R) is pseudocompact, then (X , Rt ) is pseudo-
compact;

(B) if Y is a subset of X such that X0Y is dense in (X , R) and (X , R) is
pseudocompact, then (X , RYt ) is pseudocompact.
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However, since (X , Rt ) and (X , RYt ) usually are not regular, for non-Ty-
chonoff spaces it is more natural to speak about feeble compactness than about
pseudocompactness.

PROPOSITION 3.2. – Let (X , R) be a space and t a cardinal. We have
that

(A) if D(X) Ft and (X , R) is feebly compact, then (X , Rt ) is feebly
compact;

(B) if Y is a subset of X such that X0Y is dense in (X , R) and (X , R) is
feebly compact, then (X , RYt ) is feebly compact.

PROOF. – (A): Let j4 ]Vn : n�v( be a sequence of nonempty open sets in
(X , Rt ). We assume that all the sets Vn are elements of Bt, i.e. there are Un �R
and An %X, NAnNEt such that Vn 4Un 0An. Then the sequence h4 ]Un :
n�v( consists of nonempty open sets in (X , R). Since (X , R) is feebly compact,
there exists a point p�X each neighbourhood of which in (X , R) intersects in-
finitely many elements of h. We claim that every neighbourhood O of p in
(X , Rt ) intersects infinitely many elements of j. Without loss of generality we
assume that O� Bt is a basic neighbourhood of p in (X , Rt ), i.e. O4WO 0BO for
some WO �R and some BO %X, NBONEt. We know that WO intersects infinitely
many elements of h. Let Un * be one of them. We claim that O intersects corre-
sponding Vn * 4Un * 0An *; this will finish the proof. We have that Vn * OO4

(Un * 0An * )O (WO 0BO ) 4 (Un * OWO )0(An * NBO ). Since D(X) Ft and WO O
Un * is a nonempty open set of (X , R) we have that NWO OUn *NFt; further, as
both the sets An * and B0 have cardinality Et, we have that NAn * NBONEt.
Then we conclude that Vn * OOc¯.

(B): The proof of this fact repeats the proof of case (A) almost wordwise.
Now the hypothesis that X0Y is dense in (X , R) is used instead of the condi-
tion that X has dispersion character greater or equal to t to prove that every
neighbourhood O of p in (X , RYt ) intersects every Vn * 4Un * 0An *, where in
this case An * %Y.

PROPOSITION 3.3. – Let (X , R) be a space and t a cardinal. We have
that

(A) if D(X) Ft and (X , R) is H-closed, then (X , Rt ) is H-closed;

(B) if Y is a subset of X such that X0Y is dense in (X , R) and (X , R) is
H-closed, then (X , RYt ) is H-closed.

PROOF. – (A): Let V 4 ]Vl(l�L be an open cover of (X , Rt ). For every l�L
assume Vl4Ul 0Al, where Ul�R and Al%X, NAlNEt. The family ]Ul : l�L(

is an open cover of the H-closed space (X , R); then there exists a finite subset



PARTIAL DISCRETIZATION OF TOPOLOGIES 493

L 0 %L such that clR (N]Ul : l�L 0 () 4X. By Proposition 2.1 (A), we have that
clR (N]Ul : l�L 0 () 4clRt

(N]Vl : l�L 0 () and hence (X , Rt ) is H-closed.

(B): The proof of this fact repeats the proof of case (A) almost wordwise,
using case (B) of Proposition 2.1 instead of case (A).

3.2. – ...Lindelöf-type properties.

Recall that the Lindelöf number l(X) of a space X is the smallest cardinal t
such that every open cover of X has a subcover of cardinality Gt. It is conve-
nient to consider also the following cardinal function:

DEFINITION 3.4. – Let X be a topological space.

l *(X) 4min ]t : every open cover of X has a subcover of cardinalityEt( .

Of course (l(X) )1F l *(X) F l(X); further, l *(X) 4 l(X)1, if l(X) is a non-
limit cardinal, and l *(X) can equal either l(X) or l(X)1 if l(X) is a limit
cardinal.

PROPOSITION 3.5. – Let t be a regular cardinal. If l *( (X , R) ) Gt, then
l *( (X , RYt ) ) Gt for every Y%X.

PROOF. – Let V be an open cover of (X , RYt ). Without loss of generality we
can assume that V % Bt . For each V� V we fix the sets UV �R and AV %Y,
NAVNEt such that V4UV 0AV. Then U 4 ]UV : V� V( is an open cover of
(X , R). Since l *( (X , R) ) Gt, U contains a subcover U0 of cardinality Et. De-
note A4N]AV : UV � U0 (. Since NAVNEt for every V� V, NU0NEt and t is a
regular cardinal, we have that NANEt. Denote V0 4 ]V� V : UV � U0 (; then
NV0NEt. Put H4X0N V0 . Then we have H%A and then NHNEt. For each
x�H we choose Wx � V so that x�Wx. Then V0 N ]Wx : x�H( is a subfamily of
V of cardinality Et that covers X. So l *( (X , Rt ) ) Gt. r

COROLLARY 3.6. – If (X , R) is Lindelöf, then (X , RYv 1
) is Lindelöf for every

subset Y%X.

COROLLARY 3.7. – If (X , R) is Lindelöf, then (X , Rv 1
) is Lindelöf.

Motivated by previous results, it is natural to ask which Lindelöf-type
properties weaker than Lindelöfness – say, near-Lindelöfness, almost-Lin-
delöfness and weak-Lindelöfness, are preserved by operations T KRt and
RKRYt . Recall the definitions: a space X is said to be nearly-Lindelöf [1] pro-
vided every cover of X by regular open sets admits a countable subcover; X is
said to be almost-Lindelöf [28] provided for every open cover ]Ul(l�L there
exists a countable subset L 0 of L such that X4N]cl Ul : l�L 0 (; X is said to
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be weakly-Lindelöf [9] provided for every open cover ]Ul(l�L there exists a
countable subset L 0 of L such that X4cl (N]Ul : l�L 0 (). The following im-
plications are true (see [7]): nearly-Lindelöf ¨ almost-Lindelöf ¨ weakly-
Lindelöf.

Under our usual assumptions, near-Lindelöfness, almost-Lindelöfness and
weak-Lindelöfness are preserved by operations RKRt and RKRYt as the fol-
lowing propositions shows.

PROPOSITION 3.8. – Let (X , R) be a space and t a cardinal. We have
that

(A) if D(X) Ft and (X , R) is nearly-Lindelöf (almost-Lindelöf, weakly
Lindelöf), then (X , Rt ) is nearly-Lindelöf (almost-Lindelöf, weakly Linde-
löf);

(B) if Y is a subset of X such that X0Y is dense in (X , R) and (X , R) is
nearly-Lindelöf (almost-Lindelöf, weakly Lindelöf ), then (X , RYt ) is nearly-
Lindelöf (almost-Lindelöf, weakly Lindelöf ).

PROOF. – In case of near-Lindelöfness, the proof follows by definition be-
cause (X , R) and (X , Rt ) (respectively, (X , R) and (X , RYt )) have the same
regular open sets. In cases of almost- and weak Lindelöfness, the proofs are
similar to the proof of Proposition 3.3. r

So we see that, in some sense, near-, almost- and weak-Lindelöfness are
better preserved by partial t-discretization and by t-discretization than Lin-
delöfness. Indeed, Lindelöfness is preserved only by partial v 1-discretization:
if we take a space (X , R) such that NXNDv and tDv 1, then after t-discretiza-
tion (and hence after partial t-discretization) we obtain a space containing un-
countable, closed and discrete subspaces which is impossible for Lindelöf
spaces. On the other hand, Proposition 3.8 confirms that near-, almost- and
weak-Lindelöfness are preserved by arbitrary t-discretizations and partial t-
discretizations, the only condition is the restriction on the dispersion charac-
ter and on the complement of the subspace Y, respectively. By means of a dis-
cretization, from a Lindelöf space one can easly construct a nearly-Lindelöf
space with arbitrarily big extent. For example, consider the space (X , R),
where X4D t and R is the usual Tychonoff product topology on X. Let Y be a
closed, nowhere dense subspace of (X , R) of cardinality 2t. By Proposition 3.8
we have that the space (X , RY(2t )1 ) is nearly-Lindelöf; while this space has the
extent equal to 2t.

However, in another sense, Lindelöfness behaves better: in Proposition 3.5
we did not use the assumption about the dispersion character, while in Propo-
sitions 3.8 this assumption was essential as the following example demon-
strates.
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EXAMPLE 3.9. – A nearly-Lindelöf space the v 1-discretization of which is
not weakly-Lindelöf.

Let R be the usual topology on the real line R and P the set of irrationals.
By Proposition 3.8, the space (R , RPc1 ) is nearly-Lindelöf. The space
(R , (RPc1 )v 1

) is discrete and hence not weakly-Lindelöf.

3.3. – ...inverse compactness.

Recall that a space X is said to be inversely compact [14] provided for
every open cover U 4 ]Ua : a�A( of X there exist a finite subset B of A and a
family V 4 ]Va : a�B( such that for every a�B, either Va4Ua or Va4X0Ua

and V covers X.
The space of the Example 5.1 in [14] was the v-modification of the space

(X , R), where X4v 1 and R4 ]¯(N ][0 , a): aGv 1 (. It is trivial that (X , R)
is inversely compact and non-compact. It is proved in [14] that (X , Rv ) is also
inversely compact. Then it is natural to ask the following question

QUESTION 3.10. – Let (X , R) be an inversely compact space. Is (X , Rv ) in-
versely compact?

3.4. – ...other cardinal functions.

Let f be a cardinal function. It is easy to prove that if f is the cellularity or
the density, then

f ( (X , Rt ) ) c max ] f ( (X , R) ), t( .

Indeed, consider the usual Isbell Mrówka C-space (X , R) where X4

vN R, R is a maximal almost disjoint family of infinite subsets of v with
NRN4c. We have that d( (X , R) ) 4c( (X , R) ) 4v; however, the space (X , Rv 1

)
is discrete and so d( (X , R) ) 4c( (X , R) ) 4NXN4c.

However, under our usual assumptions cellularity is preserved by (partial)
t-discretization:

PROPOSITION 3.11. – Let (X , R) be a space, Y be a subspace of X and t be a
cardinal.

(A) If D(X) Ft, then c( (X , Rt ) ) 4c( (X , R) ).

(B) If X0Y is dense in (X , R), then c( (X , RYt ) ) 4c( (X , R) ).
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PROOF. – (A): We only have to prove that c( (X , Rt ) ) Gc( (X , R) ). Put
c( (X , R) ) 4l. By contraposition, suppose there exists a family ]Aa(a�k, with
kDl, of pairwise disjoint open sets in (X , Rt ). We can assume that for every
a�k, Aa4Ua 0Ca, where Ua�R and Ca%X, with NCaNEt. Now we prove that
for every a , a 8�k such that aca 8, we have that UaOUa 84¯; this will imply
that c( (X , R) ) Dl, a contradiction. Suppose, by contradiction, that there exists
a , a 8�k such that UaOUa 8c¯. Since UaOUa 8�R and D(X) Ft, we have
that NUaOUa 8NFt. So, as Ca and Ca 8 have cardinality less than t, we have
that N(UaOUa 8 )0CaNFt and N(UaOUa 8 )0Ca 8NFt; then AaOAa 8c¯, a
contradiction.

(B): Since cellularity is hereditary with respect to dense subspaces and
X0Y is dense in both topologies R and RYt , we have the following equalities:
c( (X , R) ) 4c( (X0Y , RNX 0Y ) ) 4c( (X0Y , RYtNX 0Y ) ) 4c( (X , TYt ) ). r

Also we have the following

PROPOSITION 3.12. – Let (X , R) be a topological space and Y be a subset of
X. If every point of clR Y is a complete accumulation point of some set of car-
dinality t in (X , R), then d( (X , RYt ) ) G max ]d( (X , R) ), t(.

PROOF. – Let A be a dense subset of (X , R) such that NAN4d( (X , R) ). For
each x�AOcl Y, fix a set Bx %X such that NBxN4t and x is a complete accu-
mulation point of Bx in (X , R); for each x�AO (X0clR Y ), put Bx 4 ]x(. Con-
sider the set B4N]Bx : x�A(. Then NBNGtNAN. B is dense in (X , RYt ). In-
deed, let V� BYt be a nonempty set. Then there exist UV �R and AV %Y such
that NAVNEt and V4UV 0AV . Since A is dense in (X , R), there exists a point
x�UV OA. Then, if x�UV O (AOclR Y ), we have that x is a complete accumu-
lation point of the set Bx in (X , R) and then NUV OBxN4NBxN4t; so, since
NUV 0VNEt, there exists a point z� (UV OBx )0(UV 0V) 4VOBx %VOB, that
is VOBc¯. If x�UV O (AO (X0clR Y ) ), we have that x�BOUV and, since
x�X0clR Y, we have that x�AV . So x�BOV, that is BOVc¯. r

In particular

COROLLARY 3.13. – Let (X , R) be a topological space. If every point of
(X , R) is a complete accumulation point of some set of cardinality t, then
d( (X , Rt ) ) 4 max ]d( (X , R) ), t(.

COROLLARY 3.14. – Let (X , R) be a topological space and Y a subset of X. If
D(X) Ft and x(x , (X , R) ) Gt, for every x�clR Y, then d( (X , RYt ) ) G

max ]d( (X , R) ), t(.
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PROOF. – It is enough to check that every point x�clR Y is a complete accu-
mulation point of some set of cardinality t in (X , R). Fix a local base Bx of
(X , R) at x such that NBxNGt. For each U� Bx, fix a subset AU %U such that
NAUN4t. Put A4N]AU : U� Bx (. Then NAN4t and x is a complete accumu-
lation point of A in (X , R).

COROLLARY 3.15. – Let (X , R) be a topological space. If D(X) Ft and
x( (X , R) ) Gt, then d( (X , Rt ) ) 4 max ]d( (X , R) ), t(.

4. – t-discretization and other operations.

In this section we consider how the operation of the (partial) t-discretiza-
tion commutates with other operations on topological spaces.

4.1. – Subspaces.

Let Y and Z be subspaces of a space X, and let R be a topology on X.
Then

(Z , (RNZ )t )4 (Z , RtNZ ) ,

and more general,

(Z , (RNZ )YOZt )4 (Z , RYtNZ ) .

This means that the result of the two consequent operations, (partial) t-dis-
cretization and taking a subspace, does not depend on the order in which we
do this operations. With operations other than taking a subspace, in general, it
is not so.

4.2. – Products.

Let X and Y be two sets, R and S topologies on X and Y, respectively, and
let R7 S denote the Tychonoff product topology. Is it true that

(X3Y , (R7 S)t )B (X , Rt )3 (Y , St ) ?

Typically, it is not. The reason can be seen from the following simple example:
let X4Y4R, R4 S is the usual topology of the real line, and t4v 1 . Then the
set (X0Q)3Y is open in the space (X , Rt )3 (Y , St ), but it is not open in the
space (X3Y , (R7 S)t ).

4.3. – Hyperspace.

Now it is reasonable to ask the question similar to the one we have just an-
swered for products about the hyperspace. Which topology is stronger: the Vi-



M. BONANZINGA - F. CAMMAROTO - M. V. MATVEEV498

etoris topology on the hyperspace of the space to which the t-discretization
has been applied, or the t-discretization of the Vietoris topology? However,
stated like this, the question is formally non correct because after the t-dis-
cretization we, in general, obtain new closed sets, so the two topologies are de-
fined on two different groundsets (recall that the Vietoris topology is defined
on the set of all closed subsets of the space). However, if the consideration is
restricted to the set of all finite subsets (let us assume that the space is T1, so
that finite subsets are closed), then the question becomes reasonable.

Let (X , R) be a space, J(X) denote the set of all nonempty finite subsets of
X, and E(R) be the Vietoris topology on J(X), i.e. the topology generated by the
base consisting of all sets of the following form (as usual we use «F» or «(F)»
to denote a subset of X or a point of the corresponding set J(X), respect-
ively)

aU1 , R , Un b 4 ](F) �J(X): F%U1 NRNUn , FOU1 c¯ , R , FOUn c¯(

where U1 , RUn �R. Similary, E(Rt ) also is the Vietoris topology, but now
U1 , R , Un �Rt .

PROPOSITION 4.1. – (E(R) )t% E(Rt ) whenever R is a Hausdorff topology.

PROOF. – It is enough to show that every basic open set in the topology
(E(R) )t is open in the topology E(Rt ). Let U 4 aU1 , RUn b0A� (E(R) )t and let
(F) � U. We have to find a basic E(Rt )-neighbourhood, V, of (F) contained in U.
We have F4 ]x1 , R , xm ( for some m. There are pairwise disjoint neighbour-
hoods R�Vi �xi for i41, Rm such that each Vi is contained in some Uj(i) . Put
B4N]H0F : (H) �A(, then NBNEt. Further, put V 4 aV1 0B , R , Vm 0Bb.
V is a basic open set of E(Rt ) and (F) � V since x1 �V1 0B , R , xm �Vm 0B.
Further, V % aU1 , R , Un b since each Vi is in some Uj(i) and for each Uj there
is a point xi( j) �Vi( j) contained in Uj . It remains to check that V OA4¯. Let
(H) �A. Since (F) �U, we have FcH, and so there are only two possibilities:

Case 1. H0Fc¯. Then HOBc¯, and hence (H) � V.

Case 2. H is a proper subset of F. Then (H) � V since V consists of the
points corresponding to Fm-point subsets of X. r

EXAMPLE 4.2. – The two topologies are different.

Let t4v 1, X4R and let R be the usual topology of R. Then the
set of the irrationals, P, is open in the topology Rt, so aPb � E(Rt ). Note
that aPb 4 ](F): ¯cF%P(. Now we show that aPb � (E(R) )t. Pick x�P,
then (]x() � aPb. We check that no (E(R) )t-neighbourhood of (]x() is contined
in P. It is enough to consider a basic neighbourhood of the form aUb0A
where x�U�R and NANEt. Note that NaUb0aPbN4c since U contains
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c many points (K) with KOQc¯. So aUb0aPb + A and thus aUb0A + aPb.
By a slight modification of this argument, one can show even some more:

Int(E(R) )t (aPb) 4¯.

5. – Some applications.

In this section we observe that several constructions known in the litera-
ture are in fact special cases of t-discretizations. Also we give some new
applications.

5.1. – The extent of Hausdorff separable spaces.

By means of the t-discretization, one can show that the extent of a Haus-
dorff, separable space can be as big as 2c (clearly it can not be bigger, because
the cardinality can not be bigger). Let R be the usual Tychonoff product topol-
ogy of X4D c and Y a dense, countable subspace of D c. Then (X , RX 0Y(2c )1 ) is a
Hausdorff, separable space (Y remains dense), and X0Y is a closed discrete
subspace of cardinality 2c.

The same result can be obtained in another way: let R be the usual topolo-
gy of bv, then kv4 (bv , Rbv0v(2c )1 ) is nothing else but the Katetov extension
of v (see [10], 3.12.6), the set bv0v has cardinality 2c and is closed in kv and
discrete.

5.2. – A pseudocompact (a)-space which is not countably compact.

A space X is absolutely countably compact [15] — briefly acc — if for every
open cover U of X and every dense subspace Y of X there exists a finite subset
A%Y such that St(A , U) 4X. Recall (see [8]) that a Hausdorff space is count-
ably compact iff it is starcompact i.e. for every open cover U of X, there exists
a finite subset A%X such that St(A , U) 4X. Clearly, a T1 space X is acc iff it is
countably compact and satisfies the following property (a) ([18], see also
[23])

(a) for every open cover U of X and every dense subspace Y%X there
exists a closed in X and discrete subset A%Y such that St(A , U) 4X.

A space with property (a) is said to be an (a) space.

Note that a property which from the first glance is just a little bit weaker
than (a) — for every open cover U of X there exists a discrete subset A%X
such that St(A , U) 4X — is, in fact, a property of almost every topological
space! (see [18]).

Since (a) together with countable compactness gives a property consider-
ably stronger than countable compactness (see [15], [16], [19], [27], [3], [4]) it is
natural to ask what is (a) taken together with compactness-type properties
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weaker than countable compactness – say, pseudocompactness or feebly com-
pactness for non-Tychonoff spaces.

QUESTION 5.1. – When is a pseudocompact, (a) space countably compact
(and hence acc)?

First of all: are there pseudocompact (feebly compact) non-countably com-
pact (a) spaces at all? The answer is «yes» as demonstrates the following
proposition and the example below (a space X is absolutely star-Lindelöf —
briefly a-star-Lindelöf — [5] if for every open cover U and every dense sub-
space Y there is a countable subset A%Y such that St(A , U) 4X).

PROPOSITION 5.2. – A space X is a counterexample (i.e. pseudocompact or
feebly compact, (a) and not countably compact) if it has the following
properties:

(1) X is pseudocompact (or feebly compact),

(2) every countable subset of X is closed and discrete, and

(3) X is absolutely-star-Lindelöf.

PROOF. – Let X be a space with properties (1), (2), (3). By (2) it is not count-
ably compact, and it remains to check that it is an (a) space. Let U be an open
cover of X and Y be a dense subspace of X. By (3) there exists a countable
subset A%Y such that St(A , U) 4X. By (2) A is closed and discrete in
X. r

A Hausdorff counterexample can be constructed quite easy by means of
the t-discretization:

EXAMPLE 5.3. – A Hausdorff, feebly compact (a) space which is not count-
ably compact.

We take the unite interval I with its usual topology R and consider the
space (I , Rv 1

). We have to verify that (I , Rv 1
) has the properties (1), (2), (3).

Property (2) holds by the definition of topology Rv 1
.

Since (I , R) is Lindelöf, by Corollary 3.7 we have that (I , Rv 1
) is Lindelöf;

then (I , Rv 1
) is a-star-Lindelof and (3) is checked.

To verify property (1) we note that (I , R) is a feebly compact space with
dispersion character v 1 . Then, by Proposition 3.2 (I , Rv 1

) is feebly com-
pact. r
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The next proposition is a partial answer to Question 5.1. Recall that a sub-
space Y%X is relatively countably compact in X if every infinite subset of Y has
a cluster point in X.

PROPOSITION 5.4. – If a Hausdorff (a) space X has a dense, relatively
countably compact subspace, then X is countably compact (and hence
acc).

PROOF. – Let Y be a dense relatively countably compact subspace of X and
let U be an open cover of X. By (a), there exists a closed in X, discrete subspace
A%Y such that St(A , U) 4X. Since Y is relatively countably compact in X, the
set A is finite and thus X is starcompact. Since X is Hausdorff, it is countably
compact. r

Every space having a dense, relatively countably compact subspace is fee-
bly compact, and it was an open problem whether every feebly compact space
has such a subspace until a counterexample was constructed in [2]. Later,
there appeared a series of examples [11], [24], [17], [21] of pseudocompact Ty-
chonoff spaces with property (2) (and different sets of other nice properties in-
cluding property (2) from Proposition 5.2). May be, a Tychonoff counterexam-
ple can be found among these spaces.

5.3. – A centered-Lindelöf space which is not star-Lindelöf.

A space is centered-Lindelöf provided every open cover has a s-centered
subcover. It is easy to see that every star-Lindelöf space is centered-Lindelöf.
The converse implication is not true [5], [6]. One of the ways to construct a
counterexample is to apply partial c-discretization to a «fat C» space obtained
by «swelling» the isolated points of the Isbell-Mrowka C-space into the seg-
ments of the real line [5].

5.4. – A space without a dense zero-dimensional subspace

The construction of a Tychonoff space without a dense zero-dimensional
subspace has proved to be quite a difficult problem [12]. However, a Hausdorff
example can be obtained quite easy by means of t-discretizations [13]: one can
just take the c-discretization of the usual real line.
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