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Reduced commutative monoids
with two Archimedean components.

J. C. ROSALES - P. A. GARCÍA-SÁNCHEZ (*)

Sunto. – Si studiano i monoidi commutativi ridotti con due componenti archimedee e
si forniscono dei teoremi di strutture. Si presta particolare attenzione a quei mo-
noidi che sono finitamente generati, e si danno degli algoritmi che permettono di
ottenere informazioni a partire da un delle loro presentazioni.

1. – Introduction.

Every Archimedean commutative monoid is an Abelian group. We study
commutative monoids all of whose elements except the identity are
Archimedean. We call this kind of monoids quasi-Archimedean monoids and
pay special attention to those which are finitely generated.

The contents of this paper are organized as follows. In the preliminary sec-
tion we recall the concepts and results required to develop the statements pre-
sented later. In Section 3 we give a characterization of the presentations of
finitely generated quasi-Archimedean monoids. This characterization yields
an algorithmic method for deciding whether a monoid given by a presentation
is quasi-Archimedean. Section 4 is devoted to providing a procedure for decid-
ing whether a quasi-Archimedean monoid given by a presentation is cancella-
tive. In Section 5 we present a structure theorem for quasi-Archimedean sepa-
rative monoids, which states that they are identity extensions of Abelian
groups or Tamura’s 8-semigroups. Applying this theorem to the finitely gen-
erated case we obtain algorithms for determining whether a finitely generated
commutative semigroup is a 8-semigroup or an Abelian group, and for decid-
ing whether a finitely generated commutative monoid given by a presentation
is a quasi-Archimedean separative monoid.

2. – Preliminaries.

All semigroups and monoids considered here are commutative, whence we
will suppress the adjective commutative every time we refer to a semigroup or

(*) This paper was supported by the project DGES PB96-1424.
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to a monoid. The binary operation defined over any semigroup is denoted by 1

and if it has an identity element, then we denote it by 0.
Given an element a�Np, the Apéry set of a in Np is the set

ap (Np , a) 4 ]b�NpNb2a�Np ( .

For a1 , R , ak �Np, we denote the set 1
i41

k

ap (Np , ai ) by ap (Np , a1 , R , ak ).
Let s be a congruence on Np. The s-class of a�Np is the set

[a] 4 ]b�NpN(a , b) �s( .

Let ] a linear admissible order on Np (an order such that for every a , b�Np

either a]b or b]a, and so that if a]b, then a1c]b1c for all a , b , c�Np

and 0 ]a for all a�Np). Since [a] is a nonempty subset of Np, the set of mini-
mal elements of [a] is finite (Dickson’s lemma), which implies that the mini-
mum of [a] with respect to ] exists. The function minimum associated to s
with respect to ] is defined by

m : Np KNp , m(x) 4min] ( [x] ) .

Let r be a subset of Np 3Np. The congruence generated by r, denoted by
arb, is the least (with respect to inclusion) congruence on Np containing r. The
next result shows that arb always exists (see [1, 5]).

PROPOSITION 1. – Let r be a subset of Np 3Np and

r21 4 ](a , b)N(b , a) �r(, D(Np ) 4 ](a , a)Na�Np ( .

Define

r 0 4rNr21 ND(Np ) , r 1 4 ](v1u , w1u)N(v , w) �r 0 , u�Np ( .

Then arb is the set of pairs (v , w) �Np 3Np such that there exist k�N and
v0 , R , vk �Np with v0 4v , vk 4w and (vi , vi11 ) �r 1 for all 0 G iGk21.

If s4 arb, we say that r is a system of generators of s.
A subset r4](a1 , b1 ), R , (ar , br)( of Np3Np is reduced with respect to ] if

1. bi Tai ,

2. ai � ap (Np , a1 , R , ai21 , ai11 , R , ar ),

3) bi � ap (Np , a1 , R , ar ),

for every 1 G iGr. In this case we can define the map NFr : Np KNp recur-
rently by

1. if x� ap (Np , a1 , R , ar ), then NFr (x) 4x,

2. if x� ap (Np , a1 , R , ai ) and x� ap (Np , ai11 ), then NFr (x) 4

NFr (x2ai11 1bi11 ).
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A finite reduced subset r of Np 3Np is a canonical system of generators of
s with respect to a linear admissible order ] if

1. arb 4s,

2. for all x�Np, we have that NFr ( x ) 4m( x ).

From every system of generators of a congruence s we can obtain, apply-
ing the Knuth-Bendix algorithm, a canonical system of generators of s with
respect to a given linear admissible order. Furthermore, if r4

](a1 , b1 ), R , (at , bt )( is a canonical system of generators of s, then Im (m) 4

ap (Np , a1 , R , at ) and (a , b) �s if and only if NFr (a) 4NFr (b)(see [6] for
details).

Let A be a monoid generated by ]n1 , R , np (. Define the map

W : Np KA , W(x1 , R , xp ) 4 !
i41

p

xi ni .

Then A is isomorphic to Np /s, where s is the kernel congruence of A. Rédei
shows in [5] that every congruence of Np is finitely generated. Thus there
exists a finite subset r of s for which arb 4s. We will refer to r as a presenta-
tion of A.

The monoid A is cancellative if for all a , b , c�A, a1c4b1c implies a4

b. Let s be a congruence on Np. Define

Ms4 ]a2bN(a , b) �s( ’Zp ,

where a2b denotes the subtraction in Zp performed componentwise. Since s
is a congruence, it follows easily that Ms is a subgroup of Zp. Conversely, given
a subgroup H of Zp, define the binary relation

AH 4 ](a , b) �Np 3NpNa2b�H( .

Clearly, AH is a congruence on Np. In [5] the following two results, showing
the relationship between s, AMs

and the property of being cancellative, are
proved.

LEMMA 2. – Let s be a congruence on Np.

1. s’AMs
.

2. For every (a , b) �AMs
, there exists c�Np such that (a1c , b1c)�s.

PROPOSITION 3. – Let s be a congruence on Np. The monoid Np /s is can-
cellative if and only if s4AMs

.

A monoid A is reduced if its only unit is the identity element, that is, if
a , b�A and a1b40, then a4b40. The following characterization of re-
duced finitely generated monoids in terms of its presentation appears in [7].



J. C. ROSALES - P. A. GARCÍA-SÁNCHEZ474

Let s be a congruence on Np and r be a canonical system of generators of s.
Let ei be the element of Np all of whose coordinates are equal to 0 except the i-
th which is equal to 1. Note that if (ei , 0 ) �s, then (ei , 0 ) must be in r (this
does not hold for systems of generators in general, r must be a canonical sys-
tem of generators). Observe also that if this is the case, then the i-th coordi-
nate of all aj (different from ei ) and bj must be zero (since r is reduced). We
can construct from r a subset r 8 of Np21 3Np21 by eliminating from r the ele-
ment (ei , 0 ) and suppressing the i-th coordinate of the rest of the elements in
r . Define s 8 by

s 84]((x1 , R , xk21 ), (y1 , R , yk21 ) )�Np21 3Np21N

((x1 , R , xi21 , 0 , xi , R , xk21 ), (y1 , R , yi21 , 0 , yi , R , yk21 ) )�s( .

It is not difficult to prove the next result.

PROPOSITION 4. – The set r 8 is a reduced canonical system of generators of
s 8 and Np /s is isomorphic to Np21 /s 8 .

This result enables us to eliminate the elements of the form (ei , 0 ) in r. In
the sequel we assume that r does not contain any such elements. Under these
conditions it is straightforward to prove the following statement.

PROPOSITION 5. – Let s be a congruence on Np and r4

](a1 , b1 ), R , (as , bs )( be a canonical system of generators of s. The following
conditions are equivalent:

1. Np /s is reduced,

2. for all i� ]1, R , s(, bi c0.

Thus once we know a canonical system of generators of s, we can decide
whether Np /s is reduced.

3. – Quasi-Archimedean monoids.

Let S be a semigroup. An element x�S is Archimedean if for every y�S,
there exist z�S and k�N0]0( such that kx4y1z. A semigroup is
Archimedean if all its elements are Archimedean. We say that a monoid is
Archimedean if it is Archimedean as semigroup. If A is an Archimedean
monoid, then its identity element 0 is Archimedean, which means that for
every y�A, there exist z�S and k�N0]0( such that k0 40 4y1z. Thus if A
is an Archimedean monoid, then it is a group. The converse is straightforward
to prove, whence we have the following result.
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PROPOSITION 6. – A is an Archimedean monoid if and only if A
is a group.

Thus Archimedean monoids have familiar structure. A monoid A is quasi-
Archimedean if every nonzero element of A is Archimedean and the zero ele-
ment is not Archimedean. Next we see that a quasi-Archimedean monoid has
no units (except of course the identity element), in contrast with Archimedean
monoids for which every element is a unit.

PROPOSITION 7. – Every quasi-Archimedean monoid is reduced.

PROOF. – Let A be a quasi-Archimedean monoid. Assume that there exists
a , b�A0]0( such that a1b40. Take c�A. Since a is an Archimedean ele-
ment of A, then there exists d�A and k�N0]0( such that ka4c1d. Hence
k0 4ka1kb4c1 (d1kb). Thus 0 is an Archimedean element of A, contra-
dicting the fact that A is a quasi-Archimedean semigroup. r

Let S be a semigroup. Define on S the following binary relation: a 8 b if
there exits c , d�S and k , l�N0]0( such that ka4b1c and lb4a1d. This
binary relation is an equivalence relation. An Archimedean component of S is
an element of S/8. If a and b are in the Archimedean component C, then 1(a1

b) 4a1b and (k11)a4a1ka4 (a1b)1c, which means that a1b belongs
to C as well. Hence we have the following result.

PROPOSITION 8. – Every Archimedean component of a semigroup is one of
its subsemigroups.

With this notation it is straightforward to prove the following statement.

PROPOSITION 9. – The monoid A is quasi-Archimedean if and only if its
Archimedean components are ]0( and A0]0(.

Inspired in this new restatement of the condition of being quasi-
Archimedean, we obtain the following characterization.

THEOREM 10. – Let s be a congruence on Np such that (ei , 0 ) �s for all 1 G

iGp. Let r4 ](a1 , b1 ), R , (at , bt )( be a canonical system of generators of s.
Then Np /s is a quasi-Archimedean monoid if and only if r fulfills the follow-
ing conditions:

(i) bi c0 for all i� ]1, R , t(,
(ii) for every nontrivial proper subset X of ]1, R , p( there exists

(a , b) �rNr21 such that supp (a) ’X and supp (b) ’OX.
(supp (x1 , R , xp ) 4 ]i� ]1, R , p(Nxi c0(.)
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PROOF. – Necessity. By Proposition 7, Np /s is reduced. Condition (i) fol-
lows from Proposition 5.

For proving Condition (ii), let X4 ]i1 , R , ik ( be a nontrivial proper subset
of ]1, R , p(. Take x4ei1

1R1eik
. By Proposition 9, the Archimedean com-

ponents of Np /s are ][0]( and (Np /s)0][0](. Since [x] c [0] and [e1 1R1

ep ] c [0] (this is deduced from Condition (i) if kF2 and if k41, from the as-
sumption (ei , 0 ) �s for all i� ]1, R , p(), both [x] and [e1 1R1ep ] are in the
same Archimedean component of Np /s. Thus there exist [y] �Np /s and k�
N0]0( for which

k[x] 4 [kx] 4 [e1 1R1ep ]1 [y] 4 [e1 1R1ep 1y] .

By Proposition 1, there exists v0 , R , vl �Np such that v0 4kx, vl 4e1 1R1

ep 1y and (vi , vi11 ) �r 1 for all i� ]0, R , l21(. Since

supp (kx) 4Xcsupp (e1 1R1ep 1y) 4 ]1, R , p( ,

we have that there exists i� ]0, R , l21( for which supp (vi ) ’X and
supp (vi11 ) ’OX. By the definition of r 1 , there exist (a , b) �rNr21 ND(Np )
and d�Np such that (vi , vi11 ) 4 (a , b)1 (d , d). It follows that (a , b) �
D(Np ), supp (a) ’X and supp (b) ’OX.

Sufficiency. We prove that the Archimedean components of Np /s are
][0]( and (Np /s)0][0](, which by Proposition 9 implies that Np /s is a quasi-
Archimedean monoid.

l Assume that [x] c [0] is in the same Archimedean component con-
taining [0]. Hence there exist [y] �Np /s and k�N0]0( such that k[0] 4

[x]1 [y]. However k[0] 4 [k0] 4 [0], which leads to [0] 4 [x]1 [y] contra-
dicting the fact that Np /s is reduced (by Condition (i) and Proposition 5). Thus
][0]( is an Archimedean component of Np /s.

l We prove next that [e1 ], R , [ep ], [e1 1R1ep ] are in the same
Archimedean component C of Np /s. By Proposition 8, we have that C is a sub-
semigroup of Np /s. Thus proving that [e1 ], R , [ep ] are in C we obtain that C4

(Np /s)0][0](. We show that [e1 ] and [e1 1R1ep ] are in the same
Archimedean component (for [ei ], ic1, the proof is similar). Take X1 4 ]1(.
By Condition (ii) there exists (a 1 , b 1 ) such that supp (a 1 ) ’ ]1( and
supp (b 1 ) ’O]1(. By Condition (i), it follows that a 1 4k1 e1 for some k1 �N0]0(.
Take i1 �supp (b 1 )0]1(. Then b 1 2ei1

�Np and k1 [e1 ] 4 [a 1 ] 4 [b 1 2ei1
]1

[ei1
]. Thus

– 1( [e1 1ei1
] ) 4 [e1 ]1 [ei1

],

– (k1 11)[e1 ] 4 [e1 ]1 [ b 1 2ei1
]1 [ei1

] 4 [e1 1ei1
]1 [b 1 2ei1

],



REDUCED COMMUTATIVE MONOIDS WITH ETC. 477

which implies that [e1 ] and [e1 1ei1
] are in the same Archimedean component

of Np /s. Set X2 4 ]1, i1 (. Using once more Condition (ii), we obtain that there
exists (a 2 , b 2 ) such that supp (a 2 ) ’ ]1, i1 ( and supp (b 2 ) ’O]1, i1 (. It follows
that there is a positive integer k2 such that k2 (e1 1ei1

) 4 (a 2 1g 2 ) for some
g 2 �Np. Choose ei2

�supp (b 2 )0]1, i1 (. Then

– 1[e1 1ei1
1ei2

] 4 [e1 1ei1
]1 [ei2

],

– (k2 + 1)[e1 + ei1
] = [e1 + ei1

] + [a 2 ] + [g 2 ] = [e1 + ei1
] + [b 2 2 ei2

] + [ei2
] +

[g 2 ] = [e1 + ei1
+ ei2

] + [b 2 2 ei2
+ g 2 ],

which implies that [e1 1ei1
] and [e1 1ei1

1ei2
] are in the same Archimedean

component of Np /s (the one containing [e1 ]). Repeating this procedure several
times we obtain that [e1 ] and [e1 1R1ep ] are in the same Archimedean com-
ponent. r

4. – Quasi-Archimedean cancellative monoids.

Let s be a congruence on Np such that (ei , 0 ) �s for all i� ]1, R , p(. As-
sume that Np /s is a quasi-Archimedean monoid and that r is a canonical sys-
tem of generators of s with respect to the linear admissible order ]. Under
this assumption, r fulfills Conditions (i) and (ii) of Theorem 10. We focus now
our attention on describing a procedure that enables us to determine from r
whether Np /s is cancellative. Recall that Np /s is cancellative if and only if s4

AMs
(in [9] an algorithm for deciding whether a finitely generated monoid is

cancellative is presented; here we give an alternative method for the quasi-
Archimedean case).

LEMMA 11. – Let s be a congruence on Np such that Np /s is a quasi-
Archimedean monoid. If (a , b) �AMs

and (a , b) �s, then there exists x(a , b) �
Np such that (a1x , b1x) �s implies that xEx(a , b) (with respect to the usu-
al order defined on Np ).

PROOF. – Since (a , b) �AMs
, Lemma 2 asserts that there exists c�Np such

that (a1c , b1c) �s (this implies that [c] c [0], since (a , b) �s). By hypothe-
sis Np /s is a quasi-Archimedean monoid and thus for every i� ]1, R , p(

there exists ki �N0]0( and zi �Np such that ki [ei ] 4 [c]1 [zi ]. Take x(a , b) 4

(k1 , R , kp ). If xEO x(a , b), then there exists i� ]1, R , p( for which the i-th co-
ordinate of x is greater than or equal to ki, whence x4ki ei 1d for some d�Np.
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It follows that

[a1x]4[a]1[x]4[a]1[kiei]1[d]4[a]1[c]1[zi]1[d]4[a1c]1[zi]1[d]4

4 [b1c]1 [zi ]1 [d] 4 [b]1 [c]1 [zi ]1 [d] 4 [b]1 [ki ei ]1 [d] 4 [b]1 [x] ,

which means that (a1x , b1x) �s. r

With this result we are able to sharpen for the quasi-Archimedean case,
the characterization of cancellative monoids given in Proposition 2.

PROPOSITION 12. – Let s be a congruence on Np such that Np /s is a quasi-
Archimedean monoid. The monoid Np /s is cancellative if and only if (a1

ei , b1ei ) �s for all i� ]1, R , p(, implies that (a , b) �s.

PROOF. – Necessity. Trivial.
Sufficiency. Assume that Np /s is not cancellative. Then there exist (a , b) �

Np 3Np and c�Np for which (a1c , b1c) �s and (a , b) �s. By Lemma 11,
there exists x(a , b) �Np fulfilling that if (a1x , b1x) �s for some x�Np, then
xEx(a , b) . Since the set of elements in Np less than or equal to x(a , b) is finite,
we have that for a fixed linear admissible order ] there exists the element

d4max]]x�Np N(a1x , b1x) �s( .

(Note that this set is not empty because (a , b) �s.) Then (a1d , b1d) �s and
by the maximality of d, we have that (a1d1ei , b1d1ei ) �s for all i�
]1, R , p( which contradicts the hypothesis. r

From Proposition 12 it is derived that if Np /s is a non-cancellative quasi-
Archimedean monoid, then there exists (a , b) �Np 3Np such that (a1ei , b1

ei ) �s for all i� ]1, R , p( and (a , b) �s. Let r be a canonical system of gen-
erators of s with respect to the linear admissible order ] (we assume as usual
that (ei , 0 ) does not belong to s). Since (a , b) �s, we have that (m(a), m(b) )�s
(where m is the function minimum associated to s with respect to ]). Further-
more (m(a)1ei , m(b)1ei ) �s for all i� ]1, R , p(, since (a1ei , b1ei ) �s.
Because of (m(a), m(b) )�s, we have that m(a) cm(b). We can assume without
loss of generality that m(b) Tm(a), whence m(b)1ei Tm(a)1ei . It follows that
m(a)1ei cm(a1ei ), that is m(a)1ei �Im (m) (observe also that trivially m(a) �
Im (m)). As a consequence of this remark we obtain the following result.

PROPOSITION 13. – Let s be a congruence on Np such that Np /s is a quasi-
Archimedean monoid and (ei , 0 ) �s for all i� ]1, R , p(. Let r4

](a1 , b1 ), R , (at , bt )( be a canonical system of generators of s with respect to
the linear admissible order ]. Then Np /s is not cancellative if and only if
there exists an element (x , y) �Np 3Np such that
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(i) (x , y) �s,

(ii) x� ap (Np , a1 , R , at ),

(iii) x1ej � ap (Np , a1 , R , at ),

(iv) (x1ei , y1ei ) �s, for all i� ]1, R , p(,

(v) yTx.

We see next that there are finitely many elements fulfilling Conditions (ii)
and (iii) of Proposition 13. Let x4 (x1 , R , xp ), y4 (y1 , R , yp ) �Np, define

xSy4 ( max ]x1 , y1 (, R , max ]xp , yp () .

We denote the i-th coordinate, 1 G iGp, of x�Np by (x)i .

PROPOSITION 14. – Let s be a congruence on Np such that Np /s is a quasi-
Archimedean monoid and (ei , 0 ) �s for all i� ]1, R , p(. Let r4

](a1 , b1 ), R , (at , bt )( be a canonical system of generators of s with respect to
the linear admissible order ]. If x is an element in Np such that x�
ap (Np , a1 , R , at ) and x1ei � ap (Np , a1 , R , at ) for all i� ]1, R , p(, then
there exists ]ai1

, R , aip
( ’ ]a1 , R , at ( fulfilling the following conditions:

(i) J]ai1
, R , aip

( 4p (JA denotes the cardinality of A),

(ii) for every j , k� ]1, R , p(, we have that jck, (aij
)j D (aik

)j ,

(iii) x4 ((ai1
)1 21, R , (aip

)p 21).

PROOF. – Since x1ej � ap (Np , a1 , R , at ), there exists ij � ]1, R , t( and
dj �Np such that x1ej 4aij

1dj . From the fact that x� ap (Np , aij
), it can be

easily deduced that aij
2ej �Np. It follows that

x4 (ai1
2e1 )1d1 4R4 (aip

2ep )1dp ,

whence x4 ((ai1
2e1 )SRS (aip

2ep ) )1y for some y�Np. We show that y4

0. Assume that this is not the case, that is yc0. Then there exists j�
]1, R , p( such that y2ej �Np. Hence y4 (y2ej )1ej , which implies that

x4 ((ai1
2e1 )SRSaij

SRS (aip
2ep ) )1 (y2ej )

and this leads to x2aij
�Np, contradicting the fact that x� ap (Np , a1 , R , at ).

Therefore

x4 ((ai1
2e1 )SRS (aip

2ep ) ) .(1)

(i) If aij
4aik

and jck, then xF (aij
2ej )S (aik

2ek ) 4 (aij
2ej )S

(aij
2ek ) 4aij

, which contradicts the fact that x� ap (Np , a1 , R , at ). There-
fore J]ai1

, R , aip
( 4p.
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(ii) From (1) it is deduced that (x)k F (aij
)k for kc j and that (x)j F

(aij
)j 21. If (aij

)j G (aik
)j for some kc j, then

(aij
)j 21 E (aik

)j Gmax ](ai1
)j , R , (aij

)j 21, R , (aip
)j ( 4 (x)j ,

which implies xFaij
, contradicting x� ap (Np , a1 , R , ap ).

(iii) The fact that x4 ((ai1
)1 21, R , (aip

)p 21) follows easily from (ii)
and (1). r

With all this information we are ready to present the algorithm for decid-
ing whether a finitely presented quasi-Archimedean monoid is cancellative.

ALGORITHM 15. – The input of the algorithm is a (finite) presentation r’
Np 3Np of a quasi-Archimedean monoid A such that (ei , 0 ) � arb. The output
is true if A is cancellative and false otherwise.

1. Compute a canonical system of generators k4 ](a1 , b1 ), R , (at , bt )(
of arb with respect to a linear admissible order ] (for instance take ] to be the
total degree order on Np ).

2. Compute the set

X4]x�NpNx�ap (Np, a1,R, at), x1ei�ap (Np, a1,R, at) for all 1GiGp( .

3. For every element x�X construct Ax 4 ]z� [x1e1 ]s Nz]x1e1 (.

4. For every y1e1 �Ax , check whether (x , y) �s or (x , y) �s; if
(x , y) �s, return false.

5. Return true.

5. – Quasi-Archimedean separative monoids.

A monoid A is separative if for all x , y�A, the fact that 2x4x1y42y
implies that x4y. The following characterization of the property of being sep-
arative in terms of the Archimedean components appears in [4].

PROPOSITION 16. – A monoid is separative if and only if its Archimedean
components are cancellative semigroups.

An element x in a semigroup S is idempotent if 2x4x. An Archimedean
cancellative semigroup without idempotents is called a 8-semigroup. This
kind of semigroup has been widely studied and was introduced by Tamura in
[10].

Let S be a semigroup and x be an element not belonging to S. We extend
the addition on S to SN ]x( in the following way: x1s4s4s1x for all s�
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SN ]x(. The resulting semigroup SN ]x( is an identity extension of S. It
is clear that:

l identity extensions of a semigroup are reduced monoids,

l identity extensions of isomorphic semigroups are isomorphic.

We obtain the following restatement of the condition of being quasi-
Archimedean.

PROPOSITION 17. – A is a quasi-Archimedean monoid if and only if A is an
identity extension of an Archimedean semigroup.

PROOF. – Necessity. By Proposition 9 and 8, we have that A0]0( is an
Archimedean semigroup. Clearly, A is an identity extension of A0]0(.

Sufficiency. Assume that A4SN ]0( is an identity extension of the
Archimedean semigroup S. Clearly, the Archimedean components of A are
]0( and S4A0]0(, which by Proposition 9 implies that A is quasi-
Archimedean. r

For quasi-Archimedean cancellative monoids, we can improve this charac-
terization.

PROPOSITION 18. – A is a quasi-Archimedean cancellative monoid if and
only if A is an identity extension of a 8-semigroup.

PROOF. – Necessity. As in Proposition 17, we have that A0]0( is an
Archimedean semigroup. Since A is cancellative, A0]0( is also cancellative. If
2x4x for x�A, then x1x4x, which by cancellativity implies that x40.
Thus A0]0( has no idempotents. Therefore A0]0( is a 8-semigroup and
clearly A is an identity extension of A0]0(.

Sufficiency. Assume that A4SN ]0( is an identity extension of the 8-
semigroup S. By Proposition 5, we already know that A is a quasi-
Archimedean semigroup. Take a , b , c�A such that a1c4b1c. If a , b�S,
then a4b, since S is cancellative (it does not matter whether c belongs to S or
c40). If a�S or b�S, then we have an equality of the form x1y4x, with
x , y�S. By induction on n, it can be deduced that x1ny4x for all n�N. The
semigroup S is Archimedean and for this reason there exists k�N0]0( and
s�S such that ky4x1s. Hence 2(x1s) 4x1ky1s4x1s, which contra-
dicts the fact that S has no idempotent elements. r

For the non-cancellative separative case, we obtain a similar characteriza-
tion.
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PROPOSITION 19. – A is a quasi-Archimedean separative non-cancellative
monoid if and only if A is an identity extension of a group.

PROOF. – Necessity. It suffices to show that A0]0( is a group. By Proposi-
tions 8, 9 and 16, A0]0( is an Archimedean cancellative semigroup. Since A is
not cancellative, it can be deduced that there exists x , y�A0]0( such that x1

y4x. As in the proof of Proposition 18, from this fact we can deduce A0]0(

has an idempotent, say t. Take a�A0]0(. Since 2 t4 t, we have that a1 t4

a12 t4a1 t1 t, which implies that a4a1 t. Thus t is the identity element of
A0]0(. In addition, since A0]0( is an Archimedean semigroup, we have that
there exists k�N0]0( and b�S such that kt4a1b. Since kt4 t, we conclude
that t4a1b. Therefore A0]0( is a group.

Sufficiency. Assume that A4GN ]x( is an identity extension of the group
G. Every group is an Archimedean semigroup, whence from Proposition 5 we
obtain that A is a quasi-Archimedean monoid. Since G and ]x( are the
Archimedean components of A and they are cancellative, Proposition 5 asserts
that A is separative. Finally 010 40 401x, but xc0, which means that A is
not cancellative. r

In the proof of Proposition 19 we have shown that every Archimedean can-
cellative semigroup with an idempotent is a group, which is a well known fact
(see for instance [3]). As a consequence of these two results we have the fol-
lowing statement.

THEOREM 20. – A is a quasi-Archimedean separative monoid if and only
if A is an identity extension of a group or a 8-semigroup.

EXAMPLE 21. – The monoid (Z2 , S) with

S 0 1

0 0 1

1 1 1

is an identity extension of the trivial group ]1(.
The monoid N is an identity extension of the 8-semigroup N*4

N0]0(. r

Let Np*4Np 0]0(. Every finitely generated semigroup S is isomorphic
to a quotient Np* /R of Np* by a congruence R on Np*. Note that s4RN
](0 , 0 )( is a congruence on Np and that Np /s is the identity extension of
Np* /R. Using the results presented in this section, we can apply the methods
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achieved in the preceding sections for obtaining some information about a
finitely generated semigroup.

l By Proposition 17, the semigroup Np* /R is Archimedean if and only if
Np /s is a quasi-Archimedean monoid. Theorem 10 provides us with a method
for deciding, from a system of generators of R, whether Np* /R is
Archimedean.

l Proposition 18 ensures that Np* /R is a 8-semigroup if and only if
Np /s is a quasi-Archimedean cancellative monoid. Thus Algorithm 15 enables
us to check whether Np* /R is a 8-semigroup from a system of generators of R.

In [8] the authors present a procedure for deciding whether a finitely gen-
erated monoid is separative. The method presented there is based on the com-
putation of the Archimedean components of the given monoids and then on a
decision algorithm for determining whether the quotient of an ideal by a con-
gruence is cancellative (that is, the procedure uses the idea that a monoid is
separative if and only if its Archimedean components are cancellative). Here
we introduce an alternative way for determining whether a finitely generated
quasi-Archimedean monoid is separative once we know one of its presenta-
tions. Assume that r’Np 3Np is a presentation of the quasi-Archimedean
monoid A, that is A is isomorphic to Np /s, where s is the congruence generat-
ed by r (as usual we assume that (ei , 0 ) �s for all 1 G iGp).

1. We can use the results presented in [6] for computing a canonical sys-
tem of generators k of s with respect to a fixed linear admissible order ] on
Np. The set k must fulfill Conditions (i) and (ii) of Theorem 10.

2. Algorithm 15 enables us to decide whether A is cancellative. If this is
the case, then A is separative.

3. If A is not cancellative, the we proceed as follows. In the case A is sep-
arative, from the proof of Proposition 19, it is deduced that Np /s must be an
identity extension of its Archimedean component (Np /s)0][0](, which is
Np* /R, with R4s0](0 , 0 )(. Thus if A is separative, Np* /R must be a group.
By Propositions 8 and 9, Np* /R is an Archimedean semigroup. By Proposition
6, Np* /R is a group if and only if it is a monoid, that is it has an identity ele-
ment. Thus the problem of deciding whether A is separative reduces to deter-
mining whether A has a unit. Let m be the function minimum associated to k.
Then [u] is the identity element of Np* /R if and only if (u1ei , ei ) �s for all
i� ]1, R , p(. We can assume that u4m(u) (we take it to be the minimum of
its s-class). Note that ei Tu1ei (0 cu, since u�Np*), which means that u1

ei � Im (m) for all i� ]1, R , p(. By Proposition 14 there is a finite number of
elements u fulfilling these conditions and we know how to compute them. Thus
we only have to check whether one of them fulfills that (u1ei , ei ) �s for all
i� ]1, R , p(.
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[7] J. C. ROSALES - P. A. GARCÍA-SÁNCHEZ, On normal affine semigroups, Linear Al-

gebra Appl., 286 (1999), 175-186.
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