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Reduced commutative monoids
with two Archimedean components.

J. C. ROSALES - P. A. GARCIA-SANCHEZ (*)

Sunto. — St studiano 1 monoidi commutativi ridotti con due componenti archimedee e
st forniscono det teoremi di strutture. St presta particolare attenzione a quei mo-
noidi che sono finitamente generati, e st danno degli algoritmi che permettono di
ottenere informazioni a partire da un delle loro presentazioni.

1. — Introduction.

Every Archimedean commutative monoid is an Abelian group. We study
commutative monoids all of whose elements except the identity are
Archimedean. We call this kind of monoids quasi-Archimedean monoids and
pay special attention to those which are finitely generated.

The contents of this paper are organized as follows. In the preliminary sec-
tion we recall the concepts and results required to develop the statements pre-
sented later. In Section 3 we give a characterization of the presentations of
finitely generated quasi-Archimedean monoids. This characterization yields
an algorithmic method for deciding whether a monoid given by a presentation
is quasi-Archimedean. Section 4 is devoted to providing a procedure for decid-
ing whether a quasi-Archimedean monoid given by a presentation is cancella-
tive. In Section 5 we present a structure theorem for quasi-Archimedean sepa-
rative monoids, which states that they are identity extensions of Abelian
groups or Tamura’s N-semigroups. Applying this theorem to the finitely gen-
erated case we obtain algorithms for determining whether a finitely generated
commutative semigroup is a N-semigroup or an Abelian group, and for decid-
ing whether a finitely generated commutative monoid given by a presentation
is a quasi-Archimedean separative monoid.

2. — Preliminaries.

All semigroups and monoids considered here are commutative, whence we
will suppress the adjective commutative every time we refer to a semigroup or

(*) This paper was supported by the project DGES PB96-1424.
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to a monoid. The binary operation defined over any semigroup is denoted by +
and if it has an identity element, then we denote it by 0.
Given an element a e NP, the Apéry set of a in N? is the set

ap(N\P, @) = {beNﬂb—aef_\Tp}

For a4, ..., a, € I\N?, we denote the set ﬂ ap(N” a;) by ap(INP, ay, ..., az).
Let o be a congruence on NP, The o—class of a e \? is the set
[a] ={beN’|(a, b)eoc}.

Let < a linear admissible order on IN? (an order such that for every a, b e \?
either a<b or b<a, and so that if a<b, then a + c<b+ ¢ for all a, b, ce\?
and 0 <a for all a e \?). Since [a] is a nonempty subset of IN?, the set of mini-
mal elements of [a] is finite (Dickson’s lemma), which implies that the mini-
mum of [a] with respect to < exists. The function minimum associated to o
with respect to < is defined by

pu: NP=NP () = ming ([«]).

Let o be a subset of IN? x N?. The congruence generated by o, denoted by
(0), is the least (with respect to inclusion) congruence on N containing o. The
next result shows that (o) always exists (see [1,5]).

ProPOSITION 1. — Let ¢ be a subset of NP x NP and

“={(a, b)|(b, ) eo}, AN?) = {(a, a) |a e N}.
Define
0o=0Upo tUANN?), o;={(w+u,w+u)|(v, w)egy, ueN’}.
Then (o) is the set of pairs (v, w) e NP X NP such that there exist ke N and
Vg, oy V€ NP with vy=v, v,=w and (v;, v; )€ for all 0 <i<k—1
If o={0) we say that ¢ is a system of generators of o.
A subset 0= {(ay, by), ...,(a,, b,)} of NP XN\ is reduced with respect to < if
1. b, <a;,
2. a;eap(NP, aqy ooy @1, Qg vy onny @),
3) bjeap(DN?, ay, ..., a,),

for every 1 <i<r. In this case we can define the map NF,: N/ — N recur-
rently by

1. if xeap(NN’, ay, ..., a,), then NF,(x) =z,

2.if vxeap(N’, ay, ..., a;) and x¢ap(N’, a;,,), then NF,(x)=
NF@(90_ai+1+bi+1)~
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A finite reduced subset ¢ of NP x N? is a canonical system of generators of
o with respect to a linear admissible order < if

1. (o) =0,
2. for all xeN?, we have that NF,(x) = u(x).

From every system of generators of a congruence ¢ we can obtain, apply-
ing the Knuth-Bendix algorithm, a canonical system of generators of ¢ with
respect to a given linear admissible order. Furthermore, if o=
{(ay, by), ..., (a4, by)} is a canonical system of generators of o, then Im (1) =
ap(N?, a4, ..., a;) and (a, b) eo if and only if NF,(a) = NF,(b)(see [6] for
details).

Let A be a monoid generated by {n, ..., n,}. Define the map

P
p: NP—=A,  gay, ..., x,) = ,Elxmi.
P

Then A is isomorphic to \N?/g, where o is the kernel congruence of A. Rédei
shows in [5] that every congruence of N? is finitely generated. Thus there
exists a finite subset ¢ of o for which (o) = 0. We will refer to ¢ as a presenta-
tion of A.

The monoid A is cancellative if for all a, b, ce A, a + ¢ =b + ¢ implies a =
b. Let o be a congruence on NP, Define

M,={a-"0b|(a,b)ec}cZ?,

where a — b denotes the subtraction in Z” performed componentwise. Since o
is a congruence, it follows easily that M is a subgroup of Z”. Conversely, given
a subgroup H of 7*, define the binary relation

~p={(a,b)e NP xN|a—beH}.
Clearly, ~y is a congruence on N\, In [5] the following two results, showing
the relationship between o, ~j; and the property of being cancellative, are
proved.
LEMMA 2. — Let o be a congruence on NP,
1. oC ~M,-
2. For every (a, b) e ~y,, there exists ce NP such that (a+c, b+c)eo.

PROPOSITION 3. — Let o be a congruence on INP. The monoid IN? /o is can-
cellative if and only if 0=~y .

A monoid A is reduced if its only unit is the identity element, that is, if
a,beA and a+b=0, then a=b=0. The following characterization of re-
duced finitely generated monoids in terms of its presentation appears in [7].
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Let o be a congruence on N\? and ¢ be a canonical system of generators of o.
Let ¢; be the element of I\? all of whose coordinates are equal to 0 except the i-
th which is equal to 1. Note that if (¢;, 0) € g, then (e;, 0) must be in ¢ (this
does not hold for systems of generators in general, o must be a canonical sys-
tem of generators). Observe also that if this is the case, then the i-th coordi-
nate of all a; (different from e¢;) and b; must be zero (since o is reduced). We
can construct from o a subset o’ of NP 71 x NP~ 1 by eliminating from o the ele-
ment (e;, 0) and suppressing the i-th coordinate of the rest of the elements in
0. Define o' by

O” :{((xl, ceey xk_l),(yl, ceey yk_l))ENp71 XNp71|
((xla ey Lj—1, Oa Liy ovny xk*l)a(yly o Yi-1, 05 Yiy «ovs yk*l))eg} -

It is not difficult to prove the next result.

PROPOSITION 4. — The set o' is a reduced canowical system of generators of
o' and NP /o is isomorphic to NP~ 1/o".

This result enables us to eliminate the elements of the form (e;, 0) in 0. In
the sequel we assume that ¢ does not contain any such elements. Under these
conditions it is straightforward to prove the following statement.

PropOSITION 5. — Let o be a congruence on NP and o=
{(ay, b)), ..., (a, by)} be a canonical system of generators of o. The following
conditions are equivalent:

1. N?/o is reduced,
2. for all ie{1, ..., s}, b;=0.

Thus once we know a canonical system of generators of o, we can decide
whether N? /o is reduced.

3. — Quasi-Archimedean monoids.

Let S be a semigroup. An element x e S is Archimedean if for every y e S,
there exist zeS and keN\{0} such that kx=y+2. A semigroup is
Archimedean if all its elements are Archimedean. We say that a monoid is
Archimedean if it is Archimedean as semigroup. If A is an Archimedean
monoid, then its identity element 0 is Archimedean, which means that for
every y € A, there exist ze S and k e N\{0} such that k0 =0 =y + 2. Thus if A
is an Archimedean monoid, then it is a group. The converse is straightforward
to prove, whence we have the following result.
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ProposiTION 6. — A is an Archimedean monoid if and only if A
18 a group.

Thus Archimedean monoids have familiar structure. A monoid A is quasi-
Archimedean if every nonzero element of A is Archimedean and the zero ele-
ment is not Archimedean. Next we see that a quasi-Archimedean monoid has
no units (except of course the identity element), in contrast with Archimedean
monoids for which every element is a unit.

PROPOSITION 7. — Every quasi-Archimedean monoid is reduced.

Proor. — Let A be a quasi-Archimedean monoid. Assume that there exists
a, be A\{0} such that a + b= 0. Take ceA. Since a is an Archimedean ele-
ment of A, then there exists de A and ke N\{0} such that ka = ¢ + d. Hence
kO =ka+kb=c+ (d+ kb). Thus 0 is an Archimedean element of A, contra-
dicting the fact that A is a quasi-Archimedean semigroup. ™=

Let S be a semigroup. Define on S the following binary relation: a N b if
there exits ¢, de S and k, [e N\{0} such that ka = b + ¢ and b = a + d. This
binary relation is an equivalence relation. An Archimedean component of S is
an element of S/N. If @ and b are in the Archimedean component C, then 1(a +
b)=a+band (k+1)a=a+ka=(a+ b)+ ¢, which means that a + b belongs
to C as well. Hence we have the following result.

PROPOSITION 8. — Every Archimedean component of a semigroup is one of
its subsemigroups.

With this notation it is straightforward to prove the following statement.

PROPOSITION 9. — The monoid A is quasi-Archimedean if and only if its
Archimedean components are {0} and A\{0}.

Inspired in this new restatement of the condition of being quasi-
Archimedean, we obtain the following characterization.

THEOREM 10. — Let o be a congruence on \N? such that (e;, 0) ¢ o forall 1 <
1< p. Let o= {(ay, by), ...,(a;, by)} be a canonical system of generators of o.
Then IN? /o is a quasi-Archimedean monoid if and only if o fulfills the follow-
g conditions:

@ b; =0 for all ie{1, ..., t},

(ii) for every montrivial proper subset X of {1,...,p} there exists
(a, B)eoUo " such that supp (a)cX and supp () ¢X.
(supp (xy, ..., x,) ={ie{l, ..., p}|e;=0})
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PROOF. — Necessity. By Proposition 7, IN?/o is reduced. Condition (i) fol-
lows from Proposition 5.

For proving Condition (ii), let X = {4, ..., %4} be a nontrivial proper subset
of {1, ..., p}. Take x =¢; + ... +¢;.. By Proposition 9, the Archimedean com-
ponents of N?/g are {[0]} and (N?/g)\{[0]}. Since [x] = [0] and [e; + ... +
e,] # [0] (this is deduced from Condition (i) if k¥ =2 and if k¥ = 1, from the as-
sumption (e;, 0) ¢ o for allie {1, ..., p}), both [x] and [e; + ... + ¢,] are in the
same Archimedean component of N?/g. Thus there exist [y] e N?/o and ke
N\{0} for which

klx] =[kx]l =[e; + ... +te, ]+ [yl =le;+... + ¢, +yl.

By Proposition 1, there exists vy, ..., v;€ N? such that vy =kx, v,=¢, + ... +
e, +y and (v;, v;,1) €0, for all ie {0, ..., —1}. Since

supp (kx) = X #supp(e; + ... +e,+y) = {1, ..., p},

we have that there exists ie{0,...,l—1} for which supp(v;)cX and
supp (v; ;1) ¢X. By the definition of ¢, there exist (a, f)eoUo 1 UANP)
and deN’ such that (v;, v;.;) = (a, B)+ (d, d). It follows that (a, ) ¢
A(NP), supp (a) X and supp () ¢X.

Sufficiency. We prove that the Archimedean components of INP/o are
{[01} and (N?/o)\{[ 01}, which by Proposition 9 implies that N\ /o is a quasi-
Archimedean monoid.

® Assume that [x] # [0] is in the same Archimedean component con-
taining [0]. Hence there exist [y]eN’/o and ke N\{0} such that k[0] =
[£]+ [y]. However k[0] = [k0] = [0], which leads to [0] =[] + [y] contra-
dicting the fact that N /o is reduced (by Condition (i) and Proposition 5). Thus
{[0]} is an Archimedean component of N\?/o.

® We prove next that [e],...,[e,],[e;+ ... +e,] are in the same
Archimedean component C of IN?/g. By Proposition 8, we have that C is a sub-
semigroup of N?/o. Thus proving that [e,], ...,[e,] are in C we obtain that C =
(N?/o)\{[0]}. We show that [e;] and [e;+...+e,] are in the same
Archimedean component (for [e;], i # 1, the proof is similar). Take X; = {1}.
By Condition (ii) there exists (a;, ;) such that supp(a,)c{1l} and
supp (B1) ¢{1}. By Condition (i), it follows that a; = k; e; for some k; € N\{0}.
Take ¢ esupp(B1)\{1}. Then B;—e;, e\’ and ki[e;] =[a]=[B1—e;,]+
[e;,]. Thus

— 1([er +e;,]) = [eg] + [e; ],
- (ki + Dle]=les ]+ [B1—e, ]+ [e;]=1[e; +e,]1+[8,—¢e;],
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which implies that [e;] and [e; + ¢; ] are in the same Archimedean component
of N?/o. Set X, = {1, 1, }. Using once more Condition (ii), we obtain that there
exists (a, B2) such that supp (as) ¢ {1, %, } and supp (B2) ¢{1, 4 }. It follows
that there is a positive integer k, such that k(e; +e;) = (ay + y,) for some
v2€ NP, Choose e;,esupp (82)\{1, 7; }. Then

- 1[81 + eil + 67;2] = [61 + 6711] + [eiz],

— (ke +Dley+e,1=[e; +e; 1+ [az]l+[y2]=[es+e; 1+ B2 —e,]+[e;,]+
[yol=lei+e;+e,]+[Bs—e,+v2l,

which implies that [e; +¢; ] and [e; + ¢; +e;,] are in the same Archimedean
component of N” /o (the one containing [e; ]). Repeating this procedure several
times we obtain that [e;] and [e; + ... + ¢,] are in the same Archimedean com-
ponent. ™

4. — Quasi-Archimedean cancellative monoids.

Let o be a congruence on N? such that (¢;, 0) ¢ o for all ie {1, ..., p}. As-
sume that N?/o is a quasi-Archimedean monoid and that ¢ is a canonical sys-
tem of generators of o with respect to the linear admissible order <. Under
this assumption, ¢ fulfills Conditions (i) and (ii) of Theorem 10. We focus now
our attention on describing a procedure that enables us to determine from o
whether N /o is cancellative. Recall that IN? /o is cancellative if and only if 0 =
~u, (in [9] an algorithm for deciding whether a finitely generated monoid is
cancellative is presented; here we give an alternative method for the quasi-
Archimedean case).

LEMMA 11. — Let o be a congruence on NP such that INP/o is a quasi-
Archimedean monoid. If (a, b) € ~y, and (a, b) ¢ 0, then there exists x4 €
NP such that (a +x, b + x) ¢ o implies that x < x(,, ) (with respect to the usu-
al order defined on \N?).

PrOOF. — Since (a, b) € ~y, , Lemma 2 asserts that there exists ¢ e N” such
that (a + ¢, b + ¢) e o (this implies that [¢] # [0], since (@, b) ¢ 0). By hypothe-
sis N?/o is a quasi-Archimedean monoid and thus for every ie {1, ..., p}
there exists k;e N\{0} and z;e N? such that k;[e;] = [c] + [2;]. Take x(,, 4 =
(ky, ..oy k). If 2 £ %, v, then there exists e {1, ..., p} for which the i-th co-
ordinate of x is greater than or equal to k;, whence x = k; ¢; + d for some d e I\NP,
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It follows that
[a+x]=[al+[x]=[a]l+[ke;]+[d]=[al+[c]+[z]+[d]=[a+c]l+[z]+[d]=
=[b+cl+ 2]+ [d]l=[b]+[c]+[2]+[d]l=1[b]+ [kie;]1+[d]=1[b]+ [x],

which means that (a +x,b+x)coc. =

With this result we are able to sharpen for the quasi-Archimedean case,
the characterization of cancellative monoids given in Proposition 2.

PROPOSITION 12. — Let o be a congruence on NP such that N? /o is a quasi-
Archimedean monoid. The monoid NP /o is cancellative if and only if (a +
e, b+e)eoforallie{l, ..., p}, implies that (a, b) .

PRrROOF. — Necessity. Trivial.

Sufficiency. Assume that N /o is not cancellative. Then there exist (a, b) €
NP x N? and ¢ e \N? for which (¢ +¢, b +c¢)eo and (a, b) ¢ 0. By Lemma 11,
there exists %, ;) € \? fulfilling that if (a + &, b + x) ¢ o for some x € \N?, then
X < &, p. Since the set of elements in IN” less than or equal to x, ;) is finite,
we have that for a fixed linear admissible order < there exists the element

d=max-{xeN’|(a+x,b+x)¢o}.

(Note that this set is not empty because (a, b) ¢ 0.) Then (¢ + d, b + d) ¢ o and
by the maximality of d, we have that (o« +d+¢;,, b+d+¢;)eo for all 1e
{1, ..., p} which contradicts the hypothesis. =

From Proposition 12 it is derived that if IN? /o is a non-cancellative quasi-
Archimedean monoid, then there exists (a, b) e N” X INP such that (a +¢;, b +
e;)eoforalie{l, ..., p} and (a, b) ¢ 0. Let ¢ be a canonical system of gen-
erators of o with respect to the linear admissible order < (we assume as usual
that (e;, 0) does not belong to o). Since (a, b) ¢ o, we have that (u(a), u(b)) ¢ o
(where u is the function minimum associated to o with respect to <). Further-
more (u(a)+e;, u(b) +e;)eo for all ie{1, ..., p}, since (a+¢;,b+¢;)e0.
Because of (u(a), u(b)) ¢ o, we have that u(a) #= u(b). We can assume without
loss of generality that u(b) < u(a), whence u(b) + e; < u(a) + ¢;. It follows that
u(a) + e; # u(a + ¢;), that is u(a) + ¢; ¢ Im (u) (observe also that trivially u(a) €
Im (u)). As a consequence of this remark we obtain the following result.

ProposITION 13. — Let o be a congruence on NP such that NP /o is a quasi-
Archimedean monoid and (e;, 0)¢o for all ie{l,...,p} Let o=
{(ay, by), ...,(a;, b))} be a canonical system of generators of o with respect to
the linear admissible order <. Then NP /o is not cancellative if and only if
there exists an element (x, y) e NP X NP such that
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@ (x,y) ¢o,

(i) ceap(DN?; ay, ..., ap),

(iii) v +e;¢ ap(N?, ay, ..., ay),

(iv) (x+e,y+e)eo, forallie{l, ..., p},
) y<ua.

We see next that there are finitely many elements fulfilling Conditions (ii)
and (iii) of Proposition 13. Let x = (x, ..., ), ¥ = (41, ..., ¥,) € NP, define

vV y=max{x, ¥}, ..., max{wx,, ¥,}).
We denote the i-th coordinate, 1 < i < p, of x e \? by (x);.

PROPOSITION 14. — Let o be a congruence on NP such that N? /o is a quasi-
Archimedean monoid and (e;, 0)¢o for all ie{l,...,p}. Let o=
{(ay, by), ..., (ays, by)} be a canonical system of generators of o with respect to
the linear admissible order <. If x is an element in NP such that xe
ap(N?, ay, ..., ) and x +e;¢ ap(N\?, @y, ..., ay) for all ie {1, ..., p}, then
there exists {a, ..., a; } C{ay, ..., a;} fulfilling the following conditions:

@ #{a;, ..., aip} = p (#A denotes the cardinality of A),
(i) for every j, ke {1, ..., p}, we have that j #k, (aij)j > (a;,);,
(i) © = ((a;,), — 1, s (@), — 1).
PRrOOF. — Since x +¢;¢ ap(N?, ay, ..., a;), there exists 4;e {1, ..., t} and

d;e N such that x + ¢; = =a;+ d;. From the fact that x e ap (Np a; ) 1t can be
easﬂy deduced that a; —¢; e NP, It follows that

X = (all_el)+d1: eee — (alp—ep)-i-dp,

whence x = ((a;, —e;) V... V (a;, — ¢,)) + y for some y € N’. We show that y =
0. Assume that this is not the case, that is ¥ # 0. Then there exists je
{1, ..., p} such that y — ¢;e N?. Hence y = (y — ¢;) + ¢;, which implies that

xz((ail—el)\/...\/aif\/...\/(aip—ep))+ (y—e)

and this leads to x — a; € NP contradicting the fact that x € ap (N?, a4, ..., a;).
Therefore

1) ac=((ail—el)\/...\/(aip—ep)).

1) If ;= a;, and j =k, then ac>(a —¢)V (a, ek)=(aij—e]-)\/
(a —e,) = a;, Wthh contradicts the fact that xeap(N?, ay, ..., a;). There-
fore #{ai, .., 4} =p.
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(i) From (1) it is deduced that (x); = (a;);, for k#j and that (x);=
(ai;)j —-1.If (a,i].)j < (a;,); for some k # j, then

(@;); — 1 <(a;); smax{(a;);, ...,(a;); — 1, ..., (a;);} = (),

which implies x = iy contradicting x € ap (N, a4, ..., a,).

(iii) The fact that a« = ((a;); — 1, ...,(aip)p— 1) follows easily from (ii)
and (1). =

With all this information we are ready to present the algorithm for decid-
ing whether a finitely presented quasi-Archimedean monoid is cancellative.

ALGORITHM 15. — The input of the algorithm is a (finite) presentation o ¢
NP x NP of a quasi-Archimedean monoid A such that (e;, 0) & (0). The output
is true if A is cancellative and false otherwise.

1. Compute a canonical system of generators k= {(ay, by), ..., (a, by)}
of (o) with respect to a linear admissible order < (for instance take < to be the
total degree order on I\P),

2. Compute the set
X={xeN|xeap \?,ay,...,a), x +e;¢ap (N, ay,...,a,) for all 1<i<p}.

3. For every element & € X construct A, = {ze[x +e ], |z<x + e }.

4. For every y+e; eA,, check whether (x,y)eo or (x,y)e¢o; if
(x, y) ¢ o, return false.

5. Return true.

5. — Quasi-Archimedean separative monoids.

A monoid A is separative if for all x, y € A, the fact that 2e =2+ y =2y
implies that « = y. The following characterization of the property of being sep-
arative in terms of the Archimedean components appears in [4].

PROPOSITION 16. — A monoid is separative if and only if its Archimedean
components are cancellative semigroups.

An element & in a semigroup S is idempotent if 2x = x. An Archimedean
cancellative semigroup without idempotents is called a N-semigroup. This
kind of semigroup has been widely studied and was introduced by Tamura in
[10].

Let S be a semigroup and x be an element not belonging to S. We extend
the addition on S to S U {x} in the following way: x + s=s=s+« for all se
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SU {«}. The resulting semigroup SU {x} is an identity extension of S. It
is clear that:

® identity extensions of a semigroup are reduced monoids,

® identity extensions of isomorphic semigroups are isomorphic.

We obtain the following restatement of the condition of being quasi-
Archimedean.

PROPOSITION 17. — A is a quasi-Archimedean monoid if and only if A is an
identity extension of an Archimedean semigroup.

PROOF. — Necessity. By Proposition 9 and 8, we have that A\{0} is an
Archimedean semigroup. Clearly, A is an identity extension of A\{0}.

Sufficiency. Assume that A=SU {0} is an identity extension of the
Archimedean semigroup S. Clearly, the Archimedean components of A are
{0} and S=A\{0}, which by Proposition 9 implies that A is quasi-
Archimedean. =

For quasi-Archimedean cancellative monoids, we can improve this charac-
terization.

PrOPOSITION 18. — A s a quasi-Archimedean cancellative monoid if and
only if A is an identity extension of a N-semigroup.

PROOF. — Necessity. As in Proposition 17, we have that A\{0} is an
Archimedean semigroup. Since A is cancellative, A\{0} is also cancellative. If
2x¢=x for xe€A, then &+ x =x, which by cancellativity implies that x = 0.
Thus A\{0} has no idempotents. Therefore A\{0} is a N-semigroup and
clearly A is an identity extension of A\{0}.

Sufficiency. Assume that A=SU {0} is an identity extension of the N-
semigroup S. By Proposition 5, we already know that A is a quasi-
Archimedean semigroup. Take a, b, ce A such that a +c=b+c. If a, beS,
then a = b, since S is cancellative (it does not matter whether ¢ belongs to S or
c=0). If agS or beS, then we have an equality of the form « + y = a, with
x, ¥ € S. By induction on #, it can be deduced that x + ny = « for all n e . The
semigroup S is Archimedean and for this reason there exists ke N\{0} and
se S such that ky =x + s. Hence 2(x +s) =x + ky + s = x + s, which contra-
dicts the fact that S has no idempotent elements. =

For the non-cancellative separative case, we obtain a similar characteriza-
tion.
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ProposITION 19. — A s a quasi-Archimedean separative non-cancellative
monoid if and only if A is an identity extension of a group.

PROOF. — Necessity. It suffices to show that A\{0} is a group. By Proposi-
tions 8, 9 and 16, A\{0} is an Archimedean cancellative semigroup. Since A is
not cancellative, it can be deduced that there exists «, y e A\{0} such that x +
y = . As in the proof of Proposition 18, from this fact we can deduce A\{0}
has an idempotent, say t. Take a € A\{0}. Since 2t = ¢, we have that a +t =
a+ 2t =a +t + t, which implies that @ = a + t. Thus ¢ is the identity element of
A\{0}. In addition, since A\{0} is an Archimedean semigroup, we have that
there exists ke N\{0} and b e S such that kt = a + b. Since kt = ¢, we conclude
that t = a@ + b. Therefore A\{0} is a group.

Sufficiency. Assume that A = G U {x} is an identity extension of the group
G. Every group is an Archimedean semigroup, whence from Proposition 5 we
obtain that A is a quasi-Archimedean monoid. Since G and {x} are the
Archimedean components of A and they are cancellative, Proposition 5 asserts
that A is separative. Finally 0 + 0 = 0 = 0 + «, but « # 0, which means that A is
not cancellative. m

In the proof of Proposition 19 we have shown that every Archimedean can-
cellative semigroup with an idempotent is a group, which is a well known fact
(see for instance [3]). As a consequence of these two results we have the fol-
lowing statement.

THEOREM 20. — A is a quasi-Archimedean separative monoid if and only
if A 1s an identity extension of a group or a N-semigroup.

ExAMPLE 21. — The monoid (Z,, V) with

V{01

0(0]1

11111

is an identity extension of the trivial group {1}.
The monoid N is an identity extension of the N-semigroup N* =
N\{0}. =

Let NP* =NP\{0}. Every finitely generated semigroup S is isomorphic
to a quotient N*/R of NP* by a congruence R on N?*, Note that 0 =R U
{(0,0)} is a congruence on N? and that N/o is the identity extension of
NP*/R. Using the results presented in this section, we can apply the methods
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achieved in the preceding sections for obtaining some information about a
finitely generated semigroup.

® By Proposition 17, the semigroup N?* /R is Archimedean if and only if
N? /o is a quasi-Archimedean monoid. Theorem 10 provides us with a method
for deciding, from a system of generators of R, whether NP*/R is
Archimedean.

® Proposition 18 ensures that INP*/R is a N-semigroup if and only if
N?/o is a quasi-Archimedean cancellative monoid. Thus Algorithm 15 enables
us to check whether NP*/R is a N-semigroup from a system of generators of E.

In [8] the authors present a procedure for deciding whether a finitely gen-
erated monoid is separative. The method presented there is based on the com-
putation of the Archimedean components of the given monoids and then on a
decision algorithm for determining whether the quotient of an ideal by a con-
gruence is cancellative (that is, the procedure uses the idea that a monoid is
separative if and only if its Archimedean components are cancellative). Here
we introduce an alternative way for determining whether a finitely generated
quasi-Archimedean monoid is separative once we know one of its presenta-
tions. Assume that ocIN? X N? is a presentation of the quasi-Archimedean
monoid A4, that is A is isomorphic to N\N? /g, where o is the congruence generat-
ed by o (as usual we assume that (¢;, 0) ¢ o for all 1 <1i<p).

1. We can use the results presented in [6] for computing a canonical sys-
tem of generators x of o with respect to a fixed linear admissible order < on
NP, The set x must fulfill Conditions (i) and (ii) of Theorem 10.

2. Algorithm 15 enables us to decide whether A is cancellative. If this is
the case, then A is separative.

3. If A is not cancellative, the we proceed as follows. In the case A is sep-
arative, from the proof of Proposition 19, it is deduced that N\ /o must be an
identity extension of its Archimedean component (N?/0)\{[0]}, which is
NP*/R, with R = 0\{(0, 0)}. Thus if A is separative, N?*/R must be a group.
By Propositions 8 and 9, N?* /R is an Archimedean semigroup. By Proposition
6, \NP*/R is a group if and only if it is a monoid, that is it has an identity ele-
ment. Thus the problem of deciding whether A is separative reduces to deter-
mining whether A has a unit. Let x4 be the function minimum associated to k.
Then [«] is the identity element of \NP* /R if and only if (u + ¢;, ¢;) € o for all
e {1, ..., p}. We can assume that u = u(u) (we take it to be the minimum of
its o-class). Note that ¢; < u + ¢; (0 # u, since u € NP*), which means that u +
e;¢ Im(u) for all te {1, ..., p}. By Proposition 14 there is a finite number of
elements « fulfilling these conditions and we know how to compute them. Thus
we only have to check whether one of them fulfills that (v + ¢;, ¢;) € o for all

te{l,...,p}
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