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Groups Generated by two Mutually Engel Periodic Elements.

H. HEINEKEN

Dedicated to Professor Mario Curzio
on the occasion of his seventieth birthday.

Sunto. – Scriviamo [x , y] 4 [x ,1 y] ed [[x ,k y], y] 4 [x ,k11 y]. Cerchiamo gruppi
SL(2 , q) con generatori x , y tali che [x ,m y] 4x ed [y ,n x] 4y per alcuni numeri
naturali m , n.

Introduction.

As usual we put x 21 y 21 xy4 [x , y] and we define successively for all inte-
gers [x , y] 4 [x ,1 y] and [[x ,k y], y] 4 [x ,k11 y]. Two elements x and y shall be
called mutually Engel periodic or shorter a mep-pair if there are integers m
and n such that [x ,m y] 4x and [y ,n x] 4y. We would like to know for which in-
tegers m , n a mep-pair will generate a nontrivial group, and we modify this
question by asking in which cases this group has a quotient group (proper or
not) isomorphic to some SL(2 , q). This question and related ones have for in-
stance been considered in the context of finite varieties by Rolf Brandl [1] who
asked there if mep-pairs exist in all minimal simple groups and who showed
the existence of epimorphisms of groups defined by mep-pairs onto SL(2 , p)
for some selected cases. Lemma 1 will show us that this is the case if and only
if the same is true for PSL(2 , q). The first example of a mep-pair was found
quite some time ago in A5 or rather PSL(2 , 5 ) with two elements of order 5
and m4n45. This is the first member of a family which is treated in section 4
and which leads to mep-pairs in SL(2 , p) for all primes p of the form 518 t
and some of the form 118 t. In this case the mep-pair consists of elements
with trace 22. Later we will find mep-pairs for SL(2 , q) where q is a prime
such that q 3 2q is divisible by 7, for the remaining primes p we find mep-pairs
for q4p 3. The main task will be to solve a functional equation in two variables;
this is done here under the further assumption that one of the variables has
the period two. This leads to an equation which is connected with the seventh
roots of unity. A special role is played by mep-pairs of elements of order 10 (or
5 if the characteristic of the field is 2). They always generate a subgroup iso-
morphic to SL(2 , 5 ) (SL(2 , 4 ) ).
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1. – Elementary properties.

We collect here statements of general nature.

LEMMA 1. – Assume that (x , y) is a mep-pair. Then:

(1) ax , yb is perfect,

(2) x , xy 21 and y 21 are conjugate in ax , yb,

(3) if G is perfect, G is generated by a mep-pair if and only if G/Z(G) is.

PROOF. – (1) is trivial since the generators are commutators. For (2)
assume

y4 [y ,m x] 4 [[y ,m21 x], x] .

Then

yx 21 4 [y ,m21 x]21 x 21 [y ,m21 x]

and so yx 21 and x 21 are conjugate in ax , yb. By symmetry, the same is true for
y 21 and xy 21, and, by taking inverses, for y and yx 21. Being generated by a
mep-pair is of course inherited by quotient groups so for (3) it suffices that G
has the property if G/Z(G) has it. So let (aZ(G), bZ(G) ) be a mep-pair generat-
ing G/Z(G). Then there are elements z1 , z2 �Z(G) such that

[a ,n b] 4az1 ; [b ,m a] 4bz2 .

Now (az1 , bz2 ) is a mep-pair generating G.

COROLLARY 1. – (1) The two elements of a mep-pair have the same
order,

(2) the elements of a mep-pair can not have order 2,

(3) whenever SL(2 , q) is perfect, the existence of a generating mep-pair
is equivalent to the existence of a generating mep-pair for PSL(2 , q).

2. – Consequences for 232-matrices.

It seems easier to consider the groups SL(2 , q) since we have the matrix
presentation here. We are in the position to consider a «normal form», and this
form we will use throughout.

LEMMA 2. – (1) Assume that x , y�SL(2 , q) is a mep-pair and the eigen-
values of x , y belong to GF(q). If l is an eigenvalue of x, the elements x , y can
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be described in matrix form in the following way:

x4gl

0

t

l21h , y4gl21

1

0

l
h ,

with t4l 2 1l22 2l2l21 .

(2) Every mep-pair (x 8 , y 8 ) in SL(2 , q) with the same eigenvalue l is
conjugate to (x , y) by an element of GL(2 , q).

(3) For a mep-pair with eigenvalue l we have

(l21)(l 2 11)(l 2 1l11)(l 2 2l11) c0 .

PROOF. – Since l�GF(q), the eigenvectors of x and y exist in the vector
space. No eigenvector of x can be an eigenvector of y at the same time, other-
wise (x , y) do not generate a perfect group. By conjugation in GL(2 , q) we are

able to modify (x , y) in such a way, that g1

0
h is eigenvector of x to the eigen-

value l while g0

1
h is eigenvector of y to the eigenvalue l. The second eigenval-

ue is clearly l21. Also (by conjugation with a diagonal matrix) it is possible to
obtain 1 in the lower left corner of y. The value of t now follows from the fact
that xy 21 must have the same trace as x and y by conjugacy, see Lemma 1(2).
This shows (1), and also (2) can be seen from this argument. For (3) we see
that t40 for l41 and l 2 1l11 40. For l 2 11 40 we obtain for ax , yb a
quaternion group of order 8, which is impossible. Finally, if l 2 2l11 40, the
images of all the three elements x , y , xy 21 in PSL(2 , q) would have order 3,
while the image of xy would have order 2. This leads to a group isomorphic to
A4 (see Coxeter and Moser [2], p. 137), and we have again a contradiction, and
the inequality is shown.

COROLLARY 2. – For a mep-pair in SL(2 , q) with (minimal) periods m
and n, always m4n, and it suffices to prove one of the two commutator
equations.

PROOF. – By Lemma 2(2) there is an element z�GL(2 , q) such that
z 21 xz4y ; z 21 yz4x.

In Lemma 2 we assumed the scalar field GF(q) to be «big enough» to have
all eigenvalues of x , y in GF(q). We will now consider the case in which the
trace l1l21 is contained in a proper subfield GF(r) of GF(q). In this case
there are matrices in SL(2 , r) with the same characteristic polynomial as x.
We want to decide where the subgroup ax , yb is situated.
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LEMMA 3. – Let x , y�SL(2 , q) be a mep-pair with eigenvalue l. Then
ax , yb is isomorphic to a subgroup of SL(2 , r), where r is the order of the
smallest subfield of GF(q) that contains l1l21.

PROOF. – If l�GF(t) with t minimal, then x and y are written as elements
of SL(2 , t) if they are in the form given in Lemma 2. Assume that rE t; in this
case we have r 2 4 t . The 2-dimensional vector space over GF(t) on which x and
y act can also be considered as a 4-dimensional vector space over GF(r), and x
and y act on 2-dimensional subspaces of this vector space since they have char-
acteristic polynomials with coefficients in GF(r). It has to be shown that there
is a 2-dimensional subspace which is left invariant both by x and by y. For this

we begin with a vector d4g1

a
h and we want to choose the value of a�GF(t) in

such a way that the vectors d , xd , yd are linearly dependant with coefficients
in GF(r). In other words, we are looking for a�GF(t) together with a , b , c�

GF(r) such that ad1bxd1cyd4g0

0
h. We obtain the following equations for

the components:

a1b(l1ta)1cl21 40 ,

aa1bl21 a1c(11la) 40 .

If r is a power of 2, we multiply the first equation with a and obtain b((l1

l21 ) a1ta 2 )1c(11 (l1l21 ) a)40, and this is satisfied by b4c ; ta 2 41.
Substituting this in the first equation yields a1b(l1l21 1ta) 40. We see
furthermore that t , a and l1l21 belong to GF(r), and so a , b , c can also be
chosen from GF(r).

If r is odd, we will use the automorphism mapping every element onto its
r-th power to find two further equations. This automorphism fixes a , b , c and
t, it maps l onto l21. The two new equations are

a1b(l21 1ta r )1cl40 ,

aa r 1bla r 1c(11l21 a r ) 40 .

Multiplying the first of the four equations by a r and subtracting from the
fourth leads to c4bta r11, on the other hand, subtracting the first from the
third equation leads to b(l2l21 1t(a2a r ) )1c(l21 2l) 40 or c4b(11

t(a2a r )(l2l21 )21 ) . Comparing the coefficients and rearranging yields

(a1 (l2l21 )21 )r11 4t21 2 (l2l21 )22 .

Inserting c in the first equation leads to a1b(l21 1ta r 1lta r11 ) 40, and by
the preceding equation on a it follows that the coefficient of b is contained in
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GF(r), so a , b , c can be chosen in GF(r), and we have found a 2-dimensional
GF(r) subspace which is left invariant by both x and y, in particular, ax , yb is
isomorphic to a subgroup of SL(2 , r).

Lemma 3 shows that the extension of the scalar field does not lead to any
new difficulties, we will therefore keep to the tactics of Lemma 2; the field is
taken big enough to contain the eigenvalues of x.

3. – The functional equation.

We will use the form for x and y we have laid down for a mep-pair. First we
will show that for a matrix which is a commutator with y all information is con-
tained in the right hand column provided the upper right position is non-zero
(since in this case there can not be an engel period, this restriction is not seri-
ous). This will then allow us to find a system of two functional equations in two
functions as variables.

LEMMA 4. – Let y be as in Lemma 2 and w�SL(2 , q). The matrix [w , y] is
completely defined by the right hand column provided the upper right hand
position is non-zero.

PROOF. – Let [w , y] 4ga

c

b

d
h. We have det ( [w , y] ) 41, also [w , y]y 21 is

conjugate to y 21 and has the same trace as y. This yields

ad2bc41 ,

al2b1dl21 4l1l21 .

Now the statement follows easily.

In the following we will modify the notation of the preceding lemma by

putting w(i) 4ua(i)

c(i)

b(i)

d(i)
v.

LEMMA 5. – Let y be as in Lemma 2 and w(i) �SL(2 , q) such that w(0) 4x
and w(i11) 4 [w(i), y] for iD0. Then

b(i11) 4b(i) (lb(i)1 (l 2 21) d(i) ) ,

d(i11) 4l 2 2 (11l22 1l21 b(i)2l22 d(i) )(lb(i)1 (l 2 21) d(i) ) .

PROOF. – The first equation is obtained by direct computation. As for the
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second, we have

d(i11) 42 l 2 c(i) b(i)2la(i) b(i)1a(i) d(i) 4

l 2 (12a(i) d(i) )2la(i) b(i)1a(i) d(i) .

Now d(i11) 4l 2 1a(i) ((12l 2 ) d(i)2lb(i) ) , and the equation follows by
eliminating a(i).

4. – The special case l42 1.

The not so transparent system of functional equations becomes much easi-
er if l42 1. This case was considered much earlier (coming from considera-
tions in A5, then in SL(2 , 5 ) ) by Professor Rolf Brandl and the author. The au-
thor is indebted to R. Brandl for many discussions regarding this question.

LEMMA 6. – Let 24 be an element of odd multiplicative order in GF(p),
where p is a prime. Then:

(a) There is a mep-pair of eigenvalue 21 generating SL(2 , p).

(b) The (minimal) period of this mep-pair is kp or k, where k is mini-
mal such that 2k 21 is a multiple of the order of 24 modulo p.

PROOF. – For l421 the equations reduce to

b(i11) 42 b(i)2 ,

d(i11) 4112b(i)2b(i)2 2b(i) d(i) .

with initial values b(0) 44; d(0) 42 1. The first equation is restricted to the
function b(i) and we obtain b(i) 42 (24)2i

. We see that b(0) 4b(k) if and only
if (24)(2k21) 41, and this happens for some k if and only if 24 is of odd order.
Also we have b(i) 4b(i1k) for all i if b(0) 4b(k) is true. We consider now the
second equation. We have d(k) 4Rd(0)1S(0) where R4

(21)k »
i40

k21

b(i)41 and S(0) can be written as a polynomial in d(0). Now d(sk) 4

d(0)1S(0)1S(k)1R1S((s21) k)4d(0)1sS(0), and so b(0)2b(pk) 4

d(0)2d(pk) 40. From Corollary 2 we see that we have a mep-pair with period
of length pk (or k, if S(0) 40).

SL(2 , p) is generated by this pair since SL(2 , p) is always generated by
two different Sylow-p-subgroups of it.

THEOREM 1. – If p is a prime such that p25 is divisible by 8, then
SL(2 , p) possesses a mep-pair with eigenvalue 21.

PROOF. – We have to show that 24 is an element of odd order. If p is as as-
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sumed in the theorem, 21 is a square and not a fourth power, also 2 is not a
square and its square 4 is not a fourth power. The product is a fourth power
and therefore of odd order.

REMARK. – The condition of Lemma 6 is also satisfied for some primes p
having the property that p21 is divisible by 8, for instance by 41 and by 113,
but never by Fermat primes different from 5.

5. – The functional equation, rearranged.

In this section we shall assume throughout that l 2
c1.

We will try to simplify the system of equations by taking the factor ap-
pearing in the first equation as a new variable, so we put e(i) 4lb(i)1

(l 2 21) d(i). For l 2
c1 the pairs of functions (b(i), d(i) ) and (b(i), e(i) ) can be

computed from one another, and periodicity of one gives periodicity with the
same period for the other. The new equations are

b(i11) 4b(i) e(i) ,

e(i11) 4l 4 2l 2 1 ((l22 2l 2 )1l22 e(i) ) e(i) .

Again we have one equation on only one variable, this time on e(i). We will
consider the situation that e(i) has a short given period.

LEMMA 7. – e(0)4e(1) if and only if e(0)4l 4 if and only if l 5421cl .

PROOF. – The second equation of the system leads to

e(0)2 1 (12l 2 2l 4 ) e(0)1l 6 2l 4 40

which reduces to the alternatives e(0) 4l 4 and e(0) 4l 2 21. From b(0) 4t4

l 2 1l22 2l2l21 and d(0) 4l21 we find e(0) 4l 3 2l 2 1l21. Now e(0) 4

l 2 21 leads to l 3 22l 2 1l40 which is impossible. The other case e(0) 4l 4

leads to the equation 2l 4 1l 3 2l 2 1l21 40 which is equivalent to the
given one.

COROLLARY 3. – A mep-pair of elements of order 10 in SL(2 , q) for q odd
generates a subgroup isomorphic to SL(2 , 5 ), a pair of order 5 in SL(2 , 2m )
generates a subgroup isomorphic to SL(2 , 4 ).

It is well known that SL(2 , q) with q odd possesses a subgroup isomorphic
to SL(2 , 5 ) whenever it possesses elements of order 5, and that SL(2 , 2m ) pos-
sesses a subgroup isomorphic to SL(2 , 4 ) under the same circumstances, i.e. if
m is even. The statement of Corollary 3 now follows from the uniqueness stat-
ed in Lemma 2: a mep-pair can always be brought into the «canonical form»
given there, and the subgroups SL(2 , 5 ), SL(2 , 4 ) possess these mep-pairs. It
can be seen easily that the period is always 5.
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We will now consider the case that e(i) is of period 2. It shows to be helpful
to exclude period 1 at the same time.

LEMMA 8. – Let e(0) 4e(2) ce(1). Then

l22 2l 2 111l22 (e(0)1e(1) )40 ,

e(1)e(0) 4l 2 ,

and, for t4l1l21 , t 3 22 t 2 2 t11 40.

PROOF. – Let a4l22 ; b4l22 2l 2 ; g4l 4 2l 2 . Then e(i11) 4ae(i)2 1

be(i)1g and e(2)2e(0) 4e(2)2e(1)1e(1)2e(0) 4a(e(1)2 2e(0)2 )1

(b11)(e(1)2e(0) ) . Division by e(1)2e(0) leads to the first statement:

a(e(1)1e(0) )1b11 40 .

We multiply this with e(0) and obtain 0 4ae(1) e(0)1ae(0)2 1be(0)1e(0) 4

ae(1) e(0)1e(1)1e(0)2g , and, by the previous result,

e(1) e(0) 4 (b11)a22 1ga21 .

The first two equations now follow by elimination of a , b , g . If further e(1) is
eliminated in the first equation and if we use e(0) 4l 3 2l 2 1l21 we
obtain

l 6 22l 5 12l 4 23l 3 12l 2 22l11 40 ,

and t 3 22 t 2 2 t11 40 for t4l1l21 .
We will now have a special look at the polynomial just mentioned.

LEMMA 9. – The polynomial P(t) 4 t 3 22 t 2 2 t11 over GF(q) is product of
three linear factors if q 3 2q is divisible by 7 and irreducible for all other q. If
r is a zero of P(t), the other two are r 2 22r and 2r 2 1r12.

PROOF. – For q a power of 7 we see t 3 22 t 2 2 t11 4 (t23)3 . In all other
cases choose u42t 21. Then u 3 P(2u 21 ) 4u 3 1u 2 22u21 is the polynomi-
al to be considered, and the zeros of this polynomial are the sums s1s21 ,
where s is a primitive seventh root of unity. The polynomial is product of three
linear factors if q 2 21 is divisible by 7 and irreducible otherwise; the same ap-
plies obviously for the polynomial of the lemma. The statement on the roots is
checked easily.

6. – Consequences.

We state the existence of mep-pairs for period 2 of the function e(n).

THEOREM 2. – (a) There is a mep-pair generating SL(2 , p) for all
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primes p with the property that p 3 2p is divisible by 7. For all other
primes p there is a mep-pair generating SL(2 , p 3 ).

(b) If k is the order of the elements of the mep-pair, the (minimal) per-
iod of the mep-pair is k if k is even and 2k if k is odd.

PROOF. – For primes p with p 3 2p divisible by 7 we have by Lemma 8 and
Lemma 9 that there are elements x , y forming a mep-pair of period 2 with l1

l21 �GF(p), since e(0) 4e(2) and b(2) 4l 2 b(0) we have (b(0), e(0) )4

(b(2k), e(2k) ) where 2k is the smallest even number that is divisible by the or-
der of l. For the other primes the same argument leads to a mep-pair of period
2 generating a subgroup of SL(2 , p 3 ), which, in addition, has to be perfect. By
the famous theorem of Dickson (see for instance Huppert [3], p. 213), we know
that the only perfect subgroups of PSL(2 , p f ) are isomorphic to PSL(2 , p g )
for divisors g of f and possibly PSL(2 , 5 ), the corresponding statement is true
for SL(2 , p f ). Since e(0) ce(1), and because of Lemma 2(3), the order of l is
different from 10 and higher than 6, the mep-pair does not generate a sub-
group isomorphic to SL(2 , 5 ). This clears the first case, in the second case, the
mep-pair can not generate a subgroup isomorphic to SL(2 , p) since the trace
l1l21 is not contained in GF(p). The proof is complete.

We can also say something about the orders of the elements of a mep-pair.
This is collected in

PROPOSITION 1. – Let p be a prime.

(a) If p 3 2p is prime to 7, there are three mep-pairs mapped onto each
other by the field automorphism of GF(p 3 ). The order of the elements of the
mep-pairs divides p 3 21 if p is a square modulo 13; it divides p 3 11 if p is
not a square modulo 13.

(b) If p47, there is one mep-pair for SL(2 , p) and the order of the ele-
ments is 8.

(c) If p413, there are three mep-pairs for SL(2 , p), the orders of the
elements are 12, 7, 26.

(d) In the remaining cases for p there are three mep-pairs with differ-
ent traces l1l21. If p is a square modulo 13, there is at least one pair with
order dividing p21; if not, there is at least one pair with order dividing
p11.

(e) Except for the third case in (c), where Lemma 6 applies, the (mini-
mal) period is k if the order k of the element is even and 2k if k is
odd.

PROOF. – The statement (b) follows directly from P(t) f (t23)3 modulo 7,
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while for statement (c) we have P(t) f (t29)(t28)(t12) modulo 13 and
tg2 2 since lc2 1. (For this case Theorem 1 applies.)

For statements (a) and (d) we state first that t4l1l21 and l belong to
the field GF(q) if and only if t 2 24 is a square in GF(q). If t1 , t2 , t3 are the
three zeros of P(t), then »(ti

2 24) 413, and there is an odd number of squares
(nonsquares) among these expressions ti

2 24 whenever p is a square (non-
square) modulo 13. Statement (e) follows as in Theorem 2.

REMARK. – Using the second equation in the proof of Lemma 4 we have

11l22 1l22 e(i) 4a(i)1d(i) .

So if e(0) 4e(h), we have by Lemma 2(2) that there is an element u�GL(2 , q)
commuting with y such that [x ,h y] 4u 21 xu . Since the order of u is a divisor
of q21 (resp. of q11) if the order of y is, and since it follows that [x ,hk y] 4

u 2k xu k, we obtain a restriction for the possible periods as multiples of h and
divisors of h(q21) or h(q11). In the case of Theorem 2 and of Lemma 7 we
find by arguing on its order that u must be a power of y.

We close with a list of possible period lengths found with the methods indi-
cated. The first is a list following Theorem 1

prime 5 13 29 37 41 53 61 101 109 113 137
length of period 5 26 87 222 164 636 244 2020 654 339 1096

Using Theorem 2 we find the following cases:

length of period 8 12 14 18 20 22 26 28 30 30
order of scalar field 7 13 13 8 41 43 27 29 29 29
order of elements 8 12 14 9 20 11 13 28 15 30

For elements of order 16 and 24 no examples can be found using Theorem 2.

R E F E R E N C E S

[1] R. BRANDL, Finite Varieties, manuscript, distributed about 1988.
[2] H. S. M. COXETER - W. O. J. MOSER, Generators and Relations for Discrete Groups,

Berlin-Heidelberg-New York 1980.
[3] B. HUPPERT, Endliche Gruppen I, Berlin-Heidelberg-New York 1967.

Mathematisches Institut, Universitaet Wuerzburg, Am Hubland
97074 Wuerzburg, Germany

Pervenuta in Redazione
il 15 marzo 1999


