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Bollettino U. M. I.
(8) 3-B (2000), 411-429

New Optimal Regularity Results
for Infinite Dimensional Elliptic Equations.

ENRICO PRIOLA - LORENZO ZAMBOTTI

Sunto. – In questo articolo si ottengono stime di Schauder di tipo nuovo per equazioni
ellittiche infinito-dimensionali del secondo ordine con coefficienti Hölderiani a
valori nello spazio degli operatori Hilbert-Schmidt. In particolare si mostra che la
derivata seconda delle soluzioni è Hilbert-Schmidt.

1. – Introduction and setting of the problem.

In this paper we are concerned with the infinite dimensional elliptic
equation

lu(x)2
1

2
Tr [Q(x) D 2 u(x) ] 4 f (x) , x�H , lD0 ,(1.1)

where H is a real separable Hilbert space and f , u : HOR belong to Cb (H ),
the space of all real bounded uniformly continuous functions.

Elliptic equations with infinitely many variables have applications in sev-
eral domains as Field Theory, Dirichlet Forms and Statistical Mechanics (see
Ma and Röckner [14], Stroock [19], Berezansky and Kondratiev [1]). A further
motivation to study equation (1.1) comes from the well known connection with
the stochastic differential equation

dX(t) 4Q 1/2 (X(t) ) dW(t) .(1.2)

Equations like (1.2) can be treated by usual techniques if Q(x) is Lipschitz con-
tinuous with respect to x , see for instance [6]. However, solving directly equa-
tion (1.1), allows to establish existence and uniqueness in law for solutions of
(1.2) also when the coefficients are only Hölder continuous (we refer to [23],
[24] for details).

Equation (1.1) has been studied by Gross [8] and Dalecky (see [4]) in case
when Q(x) 4Q , Q being a positive self-adjoint trace-class operator. They
proved existence and uniqueness of solutions by probabilistic arguments. Lat-
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er A. Piech (see [15]) has constructed a fundamental solution in the case:

Q(x) 4Q 1/2 (I1F(x) ) Q 1/2 , x�H ,(1.3)

where F(x) is a family of trace-class operators, satisfying strong smoothness
assumptions. Let us remark that existence and uniqueness of viscosity sol-
utions for equation (1.1) can be established (see [9], [12], [20]).

Cannarsa and Da Prato (see [2] and [3]) have studied equation (1.1) when F
is Hölder-continuous from H with values in the space L1 (H ) of trace class op-
erators. They show that when f�CQ

u (H ) (the set of all functions that are u2

Hölder continuous in the directions of Q 1/2 H , u�]0 , 1[), the solution u of (1.1)
belongs to C Q

2 (H ) (see below for a precise definition) and its second Q-deriva-
tive, DQ

2 u , is a Q-Hölder continuous map with values in the space L(H ) of all
bounded linear operators in H . However they give no informations about a
typical regularity problem arising in infinite dimensions: whether, for a sol-
ution u of (1.1), the bounded linear operator D 2

Q u(x), x�H , is compact, or of
Hilbert-Schmidt type, or of trace class, etc. Because of this lack, in [2], very re-
strictive hypotheses on F are required.

In this paper we prove that D 2
Q u(x) is in fact of Hilbert-Schmidt type. Note

that in light of the Gross results (see [8]), this seems to be the best possible
regularity result for D 2

Q u(x) even when F40. Using this result we are able to
relax the hypotheses on the coefficients F of (1.1) obtaining again existence
and uniqueness theorems for solutions.

Another important phenomenon, typical of the infinite dimensions, is the
difficulty of characterizing the domain of the generator A of the heat semi-
group in Cb (H ) and its interpolation spaces (Cb (H ), D(A) )u/2 , Q . This problem
arises in the study of the spatial regularity for solutions of elliptic equations
like (1.1). When H4Rn , it is well known that the following interpolatory re-
sult holds

(Cb (Rn ), D(A) )u/2 , Q4C u
b (Rn ) ,(1.4)

for u�]0 , 1[. We stress that (1.4) is a key step in the modern treatment of
Schauder estimates for (1.1) (see for instance Lunardi [13] and Triebel
[22]).

On the contrary, in infinite dimensions, we have the strict inclusion

(Cb (H ), D(A) )u/2 , Q%C u
Q (H )(1.5)

and it is a long standing problem the characterization of (Cb(H ), D(A))u/2, Q.
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In the case of the equation with constant coefficients

lc(x)2
1

2
Tr [QD 2 c(x) ] 4 f (x) , x�H , lD0 ,(1.6)

we prove that, for all N� L2 (H ), Tr [NDQ
2 c] � (Cb (H ), D(A) )u/2 , Q and

sup
VNVL2G1

VTr [NDQ
2 c]V(Cb (H ), D(A) )u/2 , Q

GCV f Vu , Q ,(1.7)

where C4C(l , u , Q). It is a deep fact that this sharp form of Schauder esti-
mates allows to obtain for the general equation (1.1) that Tr [NDQ

2 u] �C u
Q (H )

and

sup
VNVL2G1

VTr [NDQ
2 u]VC u

Q (H ) GCV f Vu , Q(1.8)

which is weaker than (1.7) but nonetheless sufficient in order to prove exis-
tence of solutions for (1.1).

It seems that our considerations are a new and consistent contribution to
the difficult problem of studying the regularity of domains of differential oper-
ators in infinite dimensions.

The paper is organized as follows. In Section 2 we study some regularity
properties of the heat semigroup in Cb (H ). In Section 3 we present the main
results. The first one asserts that the inclusion in (1.5) is strict (see Theorem
3.1). This clarifies that condition (1.7) is stronger than (1.8). The proof uses a
recent result by van Neerven and Zabczyk (see [21]). In our second theorem
we prove the optimal regularity (1.7) for solutions of equation (1.6) (see Theo-
rem 3.3). To this purpose we use only analytic tools: estimates on the heat
semigroup (see Proposition 2.2) and Interpolation Theory (as in [2] and [5]).

Using this result, in Section 4, we are able to treat equations (1.1) when F
is only a Q-Hölder-continuous map with values in the space L2 (H ) of Hilbert-
Schmidt operators in H . We prove the a priori estimates (1.8) for solutions of
(1.1) (see Theorem 4.2). The proof of this result requires a new method and relies
on a non standard interpolation lemma of independent interest (see Lemma 4.3),
involving Hilbert-Schmidt norms of second derivatives of mappings.

Once we have proved the a priori estimates, by adapting the Maximum Prin-
ciple and the Continuity Method used in [2], we obtain a theorem of existence,
uniqueness and optimal regularity for solutions u of (1.1) (see Theorem 4.6).

We point out that arguments of this paper can be used to improve in the
same direction the results of [16] and [23].

Let H be a real separable Hilbert space with inner product aQ , Qb and norm
N QN . We denote by L(H ) the Banach space of all bounded linear operators on
H , endowed with the norm: VTVL (H ) 4 sup

NvNG1
NTvN , T� L(H ). L1 (H ) denotes the
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subspace of L(H ) of all trace class operators, i.e.

L1 (H ) »4mT� L(H ) : )ak , bk �H , k�N , !
k41

Q

Nak NNbk NEQ ,

Tx4 !
k41

Q

ak Ex , bk b, x�Hn
If T� L1 (H ), the trace norm VTV1 is the infimum of !

k41

Q

NakNNbkN over all possi-

ble representations. L1 (H ) is a Banach space endowed with the trace norm. If
T� L1 (H ), then the trace of T , Tr (T), is defined by:

Tr (T) »4 !
k41

Q

aTgk , gk b

where ( gk ) is a complete orthonormal basis in H . This definition is indepen-
dent of the choice of the basis. L2 (H ) denotes the subspace of L(H ) of all
Hilbert-Schmidt operators. L2 (H ) is a Banach space endowed with the norm

VLV2 4g !
k41

Q

NLgkN2h1/2

, L� L2 (H ).

Let Q be a strictly positive self-adjoint trace class operator in H . This
means, that there exists a complete orthonormal basis of H , ]ek (kF1 and a se-
quence l k D0, such that

Qx4 !
k41

Q

l k ax , ek b ek (x�H , !
k41

Q

l k EQ .

Moreover 8(x , tQ) denotes the Gaussian measure in H with mean x�H and
covariance operator tQ (we refer to [6] for definitions and main properties of
Gaussian measures in Hilbert spaces).

We introduce some functions spaces. Let (E , V QVE ) be a real Banach space,
Cb (H , E) stands for the Banach space of all uniformly continuous and bound-
ed functions f : HKE , endowed with the sup norm V QV0 (i.e. V f V0 4

sup
x�H

V f (x)VE .) When we want to emphasize E , we will write V f VE , 0 instead of

V f V0 , f� Cb (H , E).
C b

u (H , E), u� (0 , 1 ), denotes the subspace of Cb (H , E) consisting of all
functions which are u-Hölder continuous from H into E .

Let f� Cb (H , E), the modulus of continuity of f will be indicated by v f .
When E4R , we set Cb (H ) 4 Cb (H , R). This convention will be used for all
functions spaces. We define other functions spaces related to the operator Q .

DEFINITION 1.1. – C Q
1 (H ) is the set of all f� Cb (H ) such that:

(i) for any v�H , x�H , there exists the derivative of f at x , in the direc-
tion Q 1/2 v that we denote by DQ 1/2 v f (x);
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(ii) for any x�H , there exists DQ f (x) �H such that:

DQ 1/2 v f (x) 4 aDQ f (x), vb , (v�H ;

(iii) the mapping HKH , xODQ f (x) belongs to Cb (H , H ).

It is easy to prove that if f� C Q
1 (H ), defining the partial derivatives Dk f4

Dek
f , kF1, we have DQ f (x) 4 !

k41

Q

kl k Dk f (x) ek , x�H .

C Q
2 (H ) is the set of all functions in C Q

1 (H ) such that:

(i) there exists, for any v�H , x�H , the directional derivative

DQ 1/2 v [DQ f ](x) 4 lim
sK01

DQ f (x1sQ 1/2 v)2DQ f (x)

s
in H ;

(ii) for any x�H , there exists DQ
2 f (x) � L(H ), such that

DQ 1/2 v [DQ f ](x) 4DQ
2 f (x)(v) , v�H ;

(iii) the map HK L(H ), xOD 2
Q f (x) belongs to Cb (H , L(H ) ) .

Setting Deh
(Dk f ) 4Dhk f , h , kF1, we can easily show that

aDQ
2 f (x) u , vb 4 !

h , k41

Q

kl h l k Dhk f (x) uk vh , x , u , v�H , f� C Q
2 (H ) .

In a similar way it is possible to define the spaces C Q
n (H ) and the differential

operators D n
Q . Moreover C Q

Q (H ) 4 1
nF1

C Q
n (H ). Every C Q

n (H ), nF1, turns out

to be a Banach space with respect to the norm

V f Vn , Q 4V f V0 1 !
j41

n

VDQ
j f V0 , f� C Q

n (H ) . r

Let now (E , V QVE ) be a Banach space. C Q
u (H , E), u� (0 , 1 ) is the set of all func-

tions f� Cb (H , E) such that there exists M4M(u , Q , f ) D0 and for any
z , w�H : V f (Q 1/2 z)2 f (Q 1/2 w)VE GMNz2wNu .

C Q
u (H , E) is a Banach space endowed with the norm

V f Vu , Q , E 4V f V0 1 [ f ]u , Q , [ f ]u , Q 4 sup
z , w�H

V f (Q 1/2 z)2 f (Q 1/2 w)VE

Nz2wNu
,

where f� C Q
u (H , E). When E4R , we set C Q

u (H ) 4 C Q
u (H , R), u� (0 , 1 ). Fi-

nally we define C 11u
Q (H ) 4 ] f� C 1

Q (H ) : DQ f� C Q
u (H , H )( that is a Banach

space equipped with the norm:

VhV11u , Q 4VhV1, Q 1VDQ hVu , Q , h� C 11u
Q (H ) . r

Some comments on Definition 1.1 are in order. The space C Q
1 (H ) was intro-
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duced in [3]. The spaces C Q
n (H ), nF2 are considered in [16], they are a slight

modification of those used in [2].
H can be considered as an abstract Wiener space, i.e. (H0 , H , i) where

H0 4Q 1/2 H is the reproducing kernel space of the Gaussian measure 8(0 , Q)
and i : H0 KH is the natural embedding (H0 is a Hilbert space is based on vis-
cosity solutions endowed with the inner product au , vbH0

4
def

aQ 21/2 u , Q 21/2 vbH ,
u , v�H0 , see [8] and [11] for more details).

It is not difficult to verify that C Q
1 (H ) coincides with the space of all func-

tions g� Cb (H ), such that g is H0-differentiable on H in the Gross sense (see
[8] § 3) and its H0-derivative: DH0

g� Cb (H , H0 ). The same happens for the
higher order H0-derivatives (an analysis of these connections is given in [17]
and in Zabczyk [10]). Another equivalent definition for the spaces C Q

n (H ) is
contained in [23]. Finally the space C Q

u (H ) is introduced in [2].

2. – Regularity properties of the heat semigroup.

We denote by Ot the heat semigroup on Cb (H ), defined as follows,

Ot f (x) 4s
H

f (x1y) 8(0 , tQ) dy , f� Cb (H ), x�H , tD0 .(2.1)

It is well known that Ot , is a strongly continuous semigroup on Cb (H ). The in-
finitesimal generator of Ot will be denoted by A.

We briefly review the basic Cameron-Martin formula. It asserts that the
measures 8(0 , tQ) and 8(x , tQ), tD0, x�H , are either equivalent or singu-
lar. They are equivalent if and only if x�Q 1/2 H . Further if x4Q 1/2 h , h�H ,
the Radon-Nikodym derivative of 8(Q 1/2 h , tQ) with respect to 8(0 , tQ), is
given, for any tD0, by the following formula:

(2.2)
d8(Q 1/2 h , tQ)

d8(0 , tQ)
(y) 4

exp y2
1

2 t
NhN2 1

1

kt
a(tQ)21/2 y , hbz , y�H , 8(0 , tQ)2a.e. ,

where a(tQ)21/2 (Q), hb is a Gaussian random variable, i.e. it is normally dis-
tributed with mean 0 and covariance NhN2 with respect to 8(0 , tQ), tD0.
Moreover the map: HKL 2 (H , 8(0 , tQ) ) , hO a(tQ)21/2 (Q), hb is a linear
isometry.

Applying the Cameron-Martin formula as in Proposition 9 of [8] or in [11],
§ II.6.2, one derives the next result.
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PROPOSITION 2.1. – Let f� Cb (H ), then Ot f� C Q
Q (H ), tD0, with the first

and second derivatives given by

(2.3)

.
`
`
/
`
`
´

aDQ Ot f (x), vb 4
1

kt
s

H

f (x1y)a(tQ)21/2 y , ub 8(0 , tQ) dy ,

aD 2
Q Ot f (x) u , vb 4

1

t
s

H

f (x1y)a(tQ)21/2 y , uba(tQ)21/2 y , vb 8(0 , tQ) dy2

1

t
Ot f (x)au , vb , u , v , x�H , tD0 .

Moreover one has

VDQ Ot f V0 G
1

kt
V f V0 , VDQ

2 Ot f V0, L(H ) G
k2

t
V f V0 , f� Cb (H ) .(2.4)

Notice that for any g� C Q
1 (H ), there results for x , u , v�H , tD0,

(2.5) aDQ
2 Ot g(x) u , vb 4

1

kt
s

H

aDQ g(x1y), vba(tQ)21/2 y , ub 8(0 , tQ) dy ,

so that, since s
H

Na(tQ)21/2 y , ubN2 8(0 , tQ) dy4NuN2 , u�H , we infer

VDQ
2 Ot gV0, L(H ) G

1

kt
VgV1, Q , g� C Q

1 (H ), tD0 .

We need the following fact on Hilbert-Schmidt operators (see for instance p.
1098 of [7]). Denote by F1 the subspace of L(H ) of all finite rank operators N ,
such that VNVL2(H )G1. Let L� L(H ), then L� L2 (H ) if and only if

sup
N� F1

NTr (NL)N4cEQ .(2.6)

Moreover if (2.6) holds then VLV2 4c . The next result can be deduced by [8].
However we present here a direct and simpler proof (another proof is given in
Zabczyk [10]).

PROPOSITION 2.2. – For any f� Cb (H ), we have that D 2
Q Ot f�
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Cb (H , L2 (H ) ) , tD0 and moreover

(i) VDQ
2 Ot f V0, L2 (H ) G

2

t
V f V0 , f� Cb (H ) ,

(ii) VDQ
2 Ot gV0, L2 (H ) G

1

kt
VgV1, Q , g� C Q

1 (H ) .

PROOF. – First notice that by setting Ot f4Ot/2 Ot/2 f and using formula
(2.5), we obtain

(2.7) aDQ
2 Ot f (x) u , vb 4

k2

kt
s

H

aDQ Ot/2 f (x1y), vb »g t

2
Qh21/2

y , u« 8g0,
t

2
Qh dy ,

where u , v , x�H . We want to apply (2.6) in order to obtain that DQ
2 Ot f (x) �

L2 (H ), x�H , tD0. To this end we fix N� F1 .
In Im N we fix an othonormal basis (lk ), k41, R n . Then we set, for con-

venience, (k2Okt)a( (t/2 ) Q)21/2 y , ub 4Ru (y), u�H , y�H . Now applying
first the Hölder inequality and then the Schwarz inequality we obtain from
(2.7):

(2.8) Tr (ND 2
Q Ot f (x) )N2 4 N!

k41

n

aD 2
Q Ot f (x)(lk ), N * lk b N

2

4

N!
k41

n
k2

kt
s

H

aDQ Ot/2 f (x1y), lk b »g t

2
Qh21/2

y , N * lk« 8g0,
t

2
Qh dyN

2

G

2

t
s

H
N !

k41

n

aDQ Ot/2 f (x1y), lk b RN * lk
(y) N

2

8g0,
t

2
Qh dyG

2

t
s

H

g!
k41

n

NaDQ Ot/2 f (x1y), lk bN2hg !
k41

n

NRN * lk
(y)N2h 8g0,

t

2
Qh dyG

2

t
VDQ Ot/2 f V0

2 !
k41

n

s
H

NRN * lk
(y)N2 8g0,

t

2
Qh dy4

2

t
VDQ Ot/2 f V0

2 !
k41

n

NN * lkN2 4

2

t
VDQ Ot/2 f V0

2
VN * V2

2 4
2

t
VDQ Ot/2 f V0

2 , x�H , tD0 .
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Now using formula (2.4) it follows

NTr (ND 2
Q Ot f (x) )NG

k2

kt

k2

kt
V f V0 4

2

t
V f V0 ,

so that by (2.6) we have D 2
Q Ot f (x) � L2 (H ) and VD 2

Q Ot f V0, L2 (H ) G

(2 /t)V f V0 .
To verify the uniform continuity of D 2

Q Ot f , we proceed as in (2.8) in order
to obtain, for any x , z�H , N� F1 ,

NTr (N[D 2
Q Ot f (x)2D 2

Q Ot f (z) ] )NG
2

t
v f (Nx2zN) , x , z�H .

Invoking (2.6) we find

VD 2
Q Ot f (x)2D 2

Q Ot f (z)VL2 (H ) G
2

t
v f (Nx2zN)

and the uniform continuity follows. To deduce (ii), we start from

aDQ
2 Ot g(x) u , vb 4

1

kt
s

H

aDQ g(x1y), vba(tQ)21/2 y , ub8(0 , tQ) dy ,

where g� C Q
1 (H ), and proceed as in (2.8). The proof is complete. r

3. – Optimal regularity results: constant coefficients.

In this section we are dealing with the following equation

lu(x)2
1

2
Tr [QD 2 u(x) ] 4 f (x) , x�H , lD0 ,

that we write as

lu2 A u4 f ,(3.1)

where A is the generator of the heat semigroup Ot on Cb (H ) and f� C Q
u (H ),

u� (0 , 1 ).
We briefly review the real interpolation spaces which will be used (see [22]

for details).
Let (E , V QVE ), (F , V QVF ) be Banach spaces, such that F is continuously

embedded in E . For any u� (0 , 1 ),

(E , F)u , Q4
def

]x�E such that [x]u , Q4 sup
tD0

t 2u K(t , x) EQ( ,(3.2)
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where K(t , x) 4 inf ]VaVE 1 tVbVF : x4a1b , a�E , b�F(. (E , F)u , Q is a Ba-
nach space endowed with the norm V QVu , Q4V QVE 1 [Q]u , Q .

We use the following result, proved in [2], § 5.1,

C Q
u (H ) 4 ( Cb (H ), C Q

1 (H ) )u , Q , u� (0 , 1 ) .(3.3)

Moreover we define DA (u , Q) 4
def

( Cb (H ), D(A) )u , Q , u� (0 , 1 ), where A is the
generator of Ot .

It is well known that: f� DA (u , Q) if and only if [ f ]u , A 4 sup
t� (0 , 1 ]

VOt f2

f V0 t 2uEQ . Moreover in DA (u , Q) a norm equivalent to V QVu , Q is the
following:

V QVu , A 4V QV0 1 [Q]u , A .

The next result is proved in [3], § 5.1:

DA (u/2 , Q) %K C Q
u (H ), u� (0 , 1 ) , with a continuous embedding .(3.4)

Our next result shows that the inclusion in (3.4) is strict.

THEOREM 3.1. – For any u� (0 , 1 ), we have: DA (u/2 , Q) c C Q
u (H ).

PROOF. – Assume, by contraddiction, that there exists a u× � (0 , 1 ) such
that

DA (u× /2 , Q) 4 C Q
u× (H ) .(3.5)

By (3.4) and (3.5), applying the Open Mapping Theorem, we obtain that the
norms V QVu× /2 , A and V QVu×, Q are equivalent.

Now we will use the following recent result, proved in [21],

VOt1h 2Ot VL (C b (H ) )42 , tF0, hD0 .(3.6)

Fix any tD0. By (3.6), for any hD0, there exists a map fh � Cb (H ) such that
V fh VCb (H) G1 and moreover

22hEVOt1h fh 2Ot fh V0 4VOh Ot fh 2Ot fh V0 G [Ot fh ]u× /2 , A h u× /2 .(3.7)

Therefore once we have proved that

sup
hD0

[Ot fh ]u×/2 , A EQ ,(3.8)

we will obtain a contradiction, letting hK01 in (3.7). Now we check (3.8).
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Using the fact that V QVu× /2 , A is equivalent to V QVu×, Q and Proposition 2.1, we
infer

VOt fh Vu× /2 , A GC1 VOt fh Vu×, Q

GCVOt fh V1, Q G
C

kt
V fh V0 G

C

kt
, hD0 .

(3.9)

Thus (3.8) is verified and the assertion follows. r

Now we prove a preliminary non optimal regularity result for (3.1).

PROPOSITION 3.2. – Consider u4R(l , A) f , f� C u
Q (H ) lD0, u� (0 , 1 ).

Then u� C 2
Q (H ) and D 2

Q u� Cb (H , L2 (H ) ) . Moreover there exists a constant
c4c(l , Q , u) D0, such that:

VuV2, Q 1VD 2
Q uV0, L2 (H ) GcV f Vu , Q .(3.10)

PROOF. – We have, by the Hille-Yosida Theorem,

u4s
0

Q

e 2lt Ot f dt .(3.11)

By the first estimate of (2.4), differentiating under the integral sign in (3.11)
and taking into account that

(3.12) NaDQ Ot f (x)2DQ Ot f (z), ubN2 G

1

t
v f (Nx2zN)2s

H

Na(tQ)21/2 y , ubN2 8(0 , tQ) dyG

1

t
v f (Nx2zN)2 NuN2 , x , z , u�H , tD0 ,

we deduce easily that u� C Q
1 (H ). To get more regularity for u , consider that

from Proposition 2.2, there results for tD0:

VDQ
2OthV0, L2(H )G

2

t
VhV0, VDQ

2OtgV0, L2(H )G
1

kt
VgV1, Q, h�Cb(H ), g�C Q

1 (H ) .

Interpolating between these estimates, since f�(Cb(H ), C Q
1 (H ))u , Q , one has

VDQ
2 Ot f V0, L2 (H ) Gcu t u/221

V f Vu , Q , tD0 .(3.13)

Using this estimate, we can readly derive that there exists DQ
2 u(x) � L(H ) for

any x�H and

aDQ
2 u(x)(u), vb 4s

0

Q

e 2lt aDQ
2 Ot f (x)(u), vb dt , x , u , v�H .
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To get that DQ
2 u(x) � L2 (H ), we use formula (2.6). Let N� F1 , where F1 de-

notes the subspace of L(H ) of all finite rank operators, such that VNVL2 (H ) G1,
there results

(3.14) NTr (NDQ
2 u(x) )NGs

0

Q

e 2lt NTr (NDQ
2 Ot f (x) )NdtG

Gcu V f Vu , Qs
0

Q

e 2lt t u/221 dt4Cu , l V f Vu , Q ,

so that DQ
2 u(x) � L2 (H ), x�H and moreover VDQ

2 uV0, L2 (H ) GCu , l V f Vu , Q .
It remains to establish the uniform continuity of DQ

2 u . This is equivalent to
show that for any sequence (zn ) %H such that zn K0 as nKQ , we have:

lim
nKQ

sup
x�H

VDQ
2 u(x1zn )2DQ

2 u(x)VL2 (H ) 40 .(3.15)

Let us fix a countable dense subset L of H . Since L2 (H ) is separable, we
choose also a countable dense subset M of F1 . Now using that for any N� F1

the linear map: L2 (H ) KR , AO Tr (NA) is continuous, we obtain

VTV2 4 sup
N� F1

NTr (NT)N4 sup
N� M

NTr (NT)N , T� L2 (H ) .(3.16)

From this formula it follows readly that the maps g n : ]0 , Q[KR ,

g n (t)4 sup
x�H

VDQ
2 Ot f (x1zn )2DQ

2 Ot f (x)VL2 (H )

4 sup
x�L , N� M

NTr (N[DQ
2 Ot f (x1zn )2DQ

2 Ot f (x) ] )N , tD0 ,

are Borel for any nF1. Thus we can write

sup
x�H

VDQ
2 u(x1zn )2DQ

2 u(x)VL2 (H ) Gs
0

Q

e 2lt g n (t) dt .

Now lim
nKQ

g n (t) 40, tD0, by Proposition 2.2. Hence letting nKQ in right-

hand side of the last formula, we find (3.15) by the Dominated Convergence

Theorem. This completes the proof. r

In the next result we present Schauder estimates for (3.1) and improve

Theorem 5.1 of [2]. To this end we will use the space F1 , introduced in

(2.6).

THEOREM 3.3. – Consider u4R(l , A) f , f� C u
Q (H ) lD0, u� (0 , 1 ). Then

u� C Q
2 (H ) and D 2

Q u� Cb (H , L2 (H ) ) . Moreover for any N� F1 , one has that
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Tr (ND 2
Q u) � DA (u/2 , Q) and there exists a constant c4c(l , Q , u) D0, such

that:

VuV2, Q 1 sup
N� F1

VTr (NDQ
2 u)Vu/2 , A GcV f Vu , Q .(3.17)

In particular (3.17) implies that DQ
2 u�CQ

u (H , L2 (H ) ) and it holds:

VuV2, Q 1VDQ
2 uVu , Q , L2

G c× V f Vu , Q .(3.18)

PROOF. – We take N� F1 and prove that Tr (ND 2
Q u) �DA (u/2 , Q) with

norm independent of N . For any function h� C Q
2 (H ), we set:

Uh(x) 4 Tr (NDQ
2 h)(x) , x�H .(3.18)

Thus for any for j� [0 , 1 ], we have to estimate Ij4 sup
x�H

NOj Uu(x)2Uu(x)N ,

j� [0 , 1 ]. Remark that, differentiating under the integral sign in (2.1), we
find:

UOt h(x) 4Ot Uh(x) h� C Q
2 (H ) , x�H , tF0 .

This yields, applying (3.13),

Ij4 sup
x�H

Ns
0

Q

e 2lt (UOt1j f (x)2UOt f (x) ) dtN

4 sup
x�H

N(e lj21)s
0

Q

e 2lt UOt f (x) dt2e ljs
0

j

e 2lt UOt f (x) dtN

GcV f Vu , Q
y(e lj21)s

0

Q

e 2lt t u/221 dt1e ljs
0

j

e 2lt t u/221 dtz
G C× V f Vu , Q ju/2 , j� [0 , 1 ] ,

(3.19)

where C× 4 C×(l , Q , u).
Hence by (3.19) and (3.4) we obtain that

Tr (ND 2
Q u) �DA (u/2 , Q) % C Q

u (H )

and

VTr (ND 2
Q u)VC Q

u (H ) GC1 VTr (ND 2
Q u)VDA (u/2 , Q) GC2 V f Vu , Q

where C1 and C2 do not depend on N . Then, taking the supremum over
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N� F1 , we infer

VDQ
2 uVu , Q , L2

G2C1 sup
N� F1

VTr (NDQ
2 u)Vu/2 , A G2C2 V f Vu , Q .(3.20)

Combining (3.20) with Proposition 3.2, the thesis follows. r

4. – Elliptic equations with variable coefficients.

We consider now the following elliptic equation

lu(x)2 A u(x)2
1

2
Tr (F(x) DQ

2 u(x) )4 f (x) , x�H , lD0 ,(4.1)

where f� C Q
u (H ), u� (0 , 1 ) and F satisfies the following assumptions:

HYPOTHESIS 1.

(i) F : HK L2 (H ),

(ii) F(x) is self-adjoint and non negative, x�H,

(iii) F� C Q
u (H , L2 (H ) ) .

A solution of (4.1) is, by definition, a map u�D(A)O C Q
2 (H ), such that

D 2
Q u� C Q

u (H , L2 (H ) ) and in addition satisfies (4.1).
We first have the following Maximum Principle for (4.1), which can be

proved as in ([2], Theorem A.1):

THEOREM 4.1. – Let lD0, f�Cb (H ) and u�D(A)OC 2
Q (H ) be a solution of

equation (4.1), where F fulfills Hypothesis 1. Then:

VuV0 G
1

l
V f V0 .(4.2)

A priori estimates for (4.1) are proved in the next result, that improves
Theorem 6.2 of [2].

THEOREM 4.2. – Assume that F satisfies Hypothesis 1 and f� C Q
u (H ). Let u

be a solution of (4.1). Then there exists a constant c4c(l , Q , u , VFVu , Q ) D0,
such that:

lVuVu , Q 1V A uVu , Q 1VuV2, Q 1VD 2
Q uVu , Q , L2 (H ) GcV f Vu , Q .

We need two preliminary Lemmas. The first one is a non standard interpo-
lation estimate.

LEMMA 4.3. – Let v�C 2
Q (H ) such that D 2

Q v� C b (H , L2 (H ) ) . Assume that
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for any N� F1 , Tr [NDQ
2 v] �DA (u/2 , Q) and

VD 2
Q vVu/2 , A, L2

4
def

sup
N� F1

VTr [NDQ
2 v]Vu/2 , A E1Q .(4.3)

Then, for any tD0, the following interpolatory inequality holds:

VDQ
2 vV0, L2

GCu VvV0
u/(21u)

VD 2
Q vVu/2 , A, L2

2 /(21u) .(4.4)

PROOF. – First notice that

VDQ
2 vV0, L2

4 sup
x�H

sup
N� F1

NTr [NDQ
2 v](x)N .

Then for any N� F1 and tD0 we have:

VTr [NDQ
2 v]V0 GVOt (Tr [NDQ

2 v] )2Tr [NDQ
2 v]V0 1VOt (Tr [NDQ

2 v] )V0

G t u/2
VTr [NDQ

2 v]Vu/2 , A 1VTr [NDQ
2 Ot v]V0

G t u/2 sup
N� F1

VTr [NDQ
2 v]Vu/2 , A 1VDQ

2 vV0, L2

G t u/2
VD 2

Q vVu/2 , A, L2
1

1

t
VvV0 .

In the last passage we have used Proposition 2.2. Taking the infimum over tD

0 in the last term, we obtain the thesis. r

Let F� L2 (H ), F4F *, F nonnegative, and let S»4Q 1/2 (I1F) Q 1/2 . By
Proposition 5.1 in [2], we obtain that C u

Q (H ) 4 C u
S (H ) and C k

Q (H ) 4 C k
S (H ),

kF1, u� (0 , 1 ), with equivalence of norms. Denote by Ot
S the heat semigroup

in Cb (H ) associated with S , obtained replacing Q by S in (2.1), and by
( AS , D(AS ) ) its infinitesimal generator. Using the core D(A0 ) given in [18], it
is not difficult to verify that

] f�D(A) : A f�C u
Q (H )( 4 ] f�D(AS ) : AS f�C u

Q (H )(

and on this space AS 4 A 1(1 /2) Tr (FD 2
Q ). Moreover we have:

LEMMA 4.4. – Let S»4Q 1/2 (I1F) Q 1/2 , where F� L2 (H ), F4F * and F is
nonnegative. Let v satisfy the hypotheses of Lemma 4.3. Then for any N� F1 ,
we have Tr [NDS

2 v] �DA (u/2 , Q) and

VD 2
S vVu/2 , A, L2

4
def

sup
N� F1

VTr [NDS
2 v]Vu/2 , A GCVD 2

Q vVu/2 , A, L2
(4.5)
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where C4C(S , Q , u). Moreover:

VDS
2 vV0, L2

GCu VvV0
u/(21u)

VD 2
S vVu/2 , A, L2

2 21u r(4.6)

For any x�H , rD0 we denote by r x , r a function in C Q
b (H ) (1) such

that

0 Gr x , r G1 r x , r (z) 4
.
/
´

1 if z�B(x , r)

0 if z�B(x , 2r) .

It is easy to prove that

LEMMA 4.5. – Let u�D(A). Then r x , r u�D(A), for any x�H , rD0.
Moreover

A(r x , r u) 4r x , r A u1 aDQ u , Q 1/2 Dr x , r b1
1

2
Tr [QD 2 r x , r ] .(4.7)

PROOF OF THEOREM 4.2. – Let f�C u
Q (H ) and let u be a solution of equation

(4.1). Fix x0 �H, rD0 and set v4r x0 , r u4ru. We shall denote by Ci , i�N,
constants depending only on l, Q, u, F. By Lemma 4.5 we have

lv2 A v2
1

2
Tr (F(x0 ) D 2

Q v)4 f1 1 f2 1 f3 ,

where

f1 (x) 4r(x) f (x) , f2 (x) 4
1

2
Tr [(F(x)2F(x0 ) ) DQ

2 v(x)]

f3 (x) 42 a(I1F(x) ) DQ u(x), DQ r(x)b2
1

2
Tr [(I1F(x) ) DQ

2 r(x)] .

By Theorem 3.3 and Lemma 4.4 we deduce, setting S»4Q 1/2 (I1

F(x0 ) )Q 1/2,

VvV2, Q 1VD 2
Q vVu/2 , AS , L2

GC(V f1Vu , Q 1V f2 Vu , Q 1V f3 Vu , Q ) .(4.8)

Notice that

V f1Vu , Q GKr V f Vu , Q .(4.9)

(1) C b
Q (H ) denotes the subspace of Cb (H ) of all functions having uniformly conti-

nuous and bounded Fréchet derivatives of any order.
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Let us estimate V f2 Vu , Q . First we have

V f2 V0 GC1 VD 2
Q vV0, L2 (H ) .

Then, denoting by v F the modulus of continuity of F, there results

[ f2 ]u , Q GC2g sup
x�B(x0 , 2r)

VF(x)2F(x0 )VL2
[D 2

Q v]u , Q , L2
1MVDQ

2 vV0, L2h
GC3 (v F (2r)[DQ

2 v]u , Q , L2
1MVDQ

2 vV0, L2
) .

By Lemma 4.3 and by (3.20) it follows that

V f2Vu , QGC4 (v F (2r)[DQ
2 v]u , Q , L2

1VDQ
2 vV0, L2

)

GC41 (v F (2r)[DQ
2 v]u , Q , L2

1VvV0
u/(21u)

VD 2
Q vVu/2 , AS , L2

2 /(21u) )

GC5g(v F (2r)1r u/2 )VD 2
Q vVu/2 , AS , L2

1
1

r
VvV0h .

Using the Maximum Principle we obtain

V f2 Vu , Q GC6g(v F (2r)1r u/2 )VD 2
Q vVu/2 , AS L2

1
1

r
V f V0h .(4.10)

As for V f3 Vu , Q , we easily obtain the following estimate:

V f3 Vu , Q GC7 (V f Vu , Q 1Er VuV11u , Q ) .(4.11)

Collecting (4.8)—(4.11) we deduce

VvV2, Q 1VD 2
Q vVu/2 , AS , L2

GC(V f1 Vu , Q 1V f2 Vu , Q 1V f3 Vu , Q ) G

C8g(v F (2r)1r u/2 )VD 2
Q vVu/2 , AS , L2

1g11
1

r
h V f Vu , Q 1Er VuV11u , Qh .

Now we choose rD0 such that C8 (v F (2r)1r u/2 )E1/2 . This way, by using
also (3.20), we infer

VvV2, Q 1VD 2
Q vVu , Q , L2

GVvV2, Q 12VDQ
2 vVu/2 , AS , L2

GC9 (V f Vu , Q 1VuV11u , Q ) .

Since v4ru , we obtain

VuVC 2
Q (B(x0 , r) )1VD 2

Q uVu , Q , L2 (B(x0 , r) )GVvV2, Q 1VD 2
Q vVu , Q , L2 (H )

GC9 (V f Vu , Q 1VuV11u , Q ) .
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Since C9 is independent of x0 , it follows that

VuV2, Q 1VD 2
Q uVu , Q , L2

GC9 (V f Vu , Q 1VuV11u , Q ) .

Now notice that, in a standard way, one proves that

VuV11u , Q GC11 VuV0
1/(21u) (VuV2, Q 1VD 2

Q uVu , Q , L(H ) )(11u) /(21u)

GC11 VuV0
1/(21u) (VuV2, Q 1VD 2

Q uVu , Q , L2 (H ) )(11u) /(21u) ,

from which it results

VuV2, Q 1VD 2
Q uVu , Q , L2

GC12 (V f Vu , Q 1Ke VuV0 1e(VuV2, Q 1VD 2
Q uVu , Q , L2 (H ) ) ) .

Choosing e small enough and using again the Maximum Principle, we finally
get

VuV2, Q 1VD 2
Q uVu , Q , L2

GC13 V f Vu , Q

and the thesis is proved. r

From Theorem 4.2 we can deduce our final result:

THEOREM 4.6. – Assume that F fulfills Hypothesis 1 and let f�CQ
u (H ).

Then there exists a unique solution of equation (4.1).

PROOF. – One can adapt, without difficulties, the classical Continuity
Method, used in Theorem 6.2 of [2]. r
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