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Bollettino U. M. 1.
(8) 3-B (2000), 411-429

New Optimal Regularity Results
for Infinite Dimensional Elliptic Equations.

ENRICO PRIOLA - LORENZO ZAMBOTTI

Sunto. — In questo articolo si ottengono stime di Schauder di tipo nuovo per equaziont
ellittiche infinito-dimensionali del secondo ordine con coefficienti Holderiani a
valori nello spazio degli operatori Hilbert-Schmidt. In particolare si mostra che la
derivata seconda delle soluzioni ¢ Hilbert-Schmidt.

1. — Introduction and setting of the problem.

In this paper we are concerned with the infinite dimensional elliptic
equation

1.1) Au(x) — %Tr[Q(w) D%u(x)] =f(x), wxeH, i>0,

where H is a real separable Hilbert space and f, u : H—R belong to C,(H),
the space of all real bounded uniformly continuous functions.

Elliptic equations with infinitely many variables have applications in sev-
eral domains as Field Theory, Dirichlet Forms and Statistical Mechanics (see
Ma and Réckner [14], Stroock [19], Berezansky and Kondratiev [1]). A further
motivation to study equation (1.1) comes from the well known connection with
the stochastic differential equation

(1.2) dX(t) = Q2 (X(t)) dW(t).

Equations like (1.2) can be treated by usual techniques if Q(«x) is Lipschitz con-
tinuous with respect to x, see for instance [6]. However, solving directly equa-
tion (1.1), allows to establish existence and uniqueness in law for solutions of
(1.2) also when the coefficients are only Holder continuous (we refer to [23],
[24] for details).

Equation (1.1) has been studied by Gross [8] and Dalecky (see [4]) in case
when Q(x) =@, @ being a positive self-adjoint trace-class operator. They
proved existence and uniqueness of solutions by probabilistic arguments. Lat-
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er A. Piech (see [15]) has constructed a fundamental solution in the case:
(1.3) Qx) =RV +F)QY™, xeH,

where F(x) is a family of trace-class operators, satisfying strong smoothness
assumptions. Let us remark that existence and uniqueness of viscosity sol-
utions for equation (1.1) can be established (see [9], [12], [20]).

Cannarsa and Da Prato (see [2] and [3]) have studied equation (1.1) when F'
is Holder-continuous from H with values in the space £;(H ) of trace class op-
erators. They show that when fe Cg (H) (the set of all functions that are 0 —
Hoélder continuous in the directions of Q2 H, 6 €10, 1), the solution » of (1.1)
belongs to @%(H ) (see below for a precise definition) and its second @-deriva-
tive, Déu, is a Q-Holder continuous map with values in the space £2(H ) of all
bounded linear operators in H. However they give no informations about a
typical regularity problem arising in infinite dimensions: whether, for a sol-
ution % of (1.1), the bounded linear operator Dé u(x), x € H, is compact, or of
Hilbert-Schmidt type, or of trace class, etc. Because of this lack, in [2], very re-
strictive hypotheses on F' are required.

In this paper we prove that D§u(x) is in fact of Hilbert-Schmidt type. Note
that in light of the Gross results (see [8]), this seems to be the best possible
regularity result for Du(x) even when F = 0. Using this result we are able to
relax the hypotheses on the coefficients F' of (1.1) obtaining again existence
and uniqueness theorems for solutions.

Another important phenomenon, typical of the infinite dimensions, is the
difficulty of characterizing the domain of the generator @ of the heat semi-
group in G,(H) and its interpolation spaces (Cy,(H ), D(Q))ys, . This problem
arises in the study of the spatial regularity for solutions of elliptic equations
like (1.1). When H = R", it is well known that the following interpolatory re-
sult holds

(1.4) (Co(R™), D(A)) g, = = C (R"),

for 6e]0, 1[. We stress that (1.4) is a key step in the modern treatment of
Schauder estimates for (1.1) (see for instance Lunardi [13] and Triebel
[22)).

On the contrary, in infinite dimensions, we have the strict inclusion

(1.5) (Cy(H), D(@))gz, = CG(H )

and it is a long standing problem the characterization of (Cy(H), D(Q))gs, -
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In the case of the equation with constant coefficients
1
(1.6) Ap(w) — ETr[QDzw(x)] =fx), weH, i>0,

we prove that, for all Ne Ly (H), Tr [NDéw] e (Cy(H), D(A))gp, » and

(1.7 HNSUIl 1||Tr [NDéw] ”(Ch(H), D(@))op, «» < C”f”e, Q»

where C' = C(4, 6, Q). It is a deep fact that this sharp form of Schauder esti-
mates allows to obtain for the general equation (1.1) that Tr [NDéu] e Cg (H)
and

(1.8) sup | Tr [NDGulllcgr < Cllfllo, @

[V, <1

which is weaker than (1.7) but nonetheless sufficient in order to prove exis-
tence of solutions for (1.1).

It seems that our considerations are a new and consistent contribution to
the difficult problem of studying the regularity of domains of differential oper-
ators in infinite dimensions.

The paper is organized as follows. In Section 2 we study some regularity
properties of the heat semigroup in C,(H ). In Section 3 we present the main
results. The first one asserts that the inclusion in (1.5) is strict (see Theorem
3.1). This clarifies that condition (1.7) is stronger than (1.8). The proof uses a
recent result by van Neerven and Zabezyk (see [21]). In our second theorem
we prove the optimal regularity (1.7) for solutions of equation (1.6) (see Theo-
rem 3.3). To this purpose we use only analytic tools: estimates on the heat
semigroup (see Proposition 2.2) and Interpolation Theory (as in [2] and [5]).

Using this result, in Section 4, we are able to treat equations (1.1) when #
is only a Q-Hoélder-continuous map with values in the space £, (H ) of Hilbert-
Schmidt operators in H. We prove the a priori estimates (1.8) for solutions of
(1.1) (see Theorem 4.2). The proof of this result requires a new method and relies
on a non standard interpolation lemma of independent interest (see Lemma 4.3),
involving Hilbert-Schmidt norms of second derivatives of mappings.

Once we have proved the a priori estimates, by adapting the Maximum Prin-
ciple and the Continuity Method used in [2], we obtain a theorem of existence,
uniqueness and optimal regularity for solutions % of (1.1) (see Theorem 4.6).

We point out that arguments of this paper can be used to improve in the
same direction the results of [16] and [23].

Let H be a real separable Hilbert space with inner product (-, -) and norm
|| . We denote by £2(f) the Banach space of all bounded linear operators on
H, endowed with the norm: ||T||‘@<H) = sup |Tv|, T e L£(H). £(H) denotes the

v <1
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subspace of L(H) of all trace class operators, i.e.

£y (H) = {Te£(H): Jay, e H, keN, S |ax|[be] < © ,
k=1

Te= 2 o<, bk>,er}
k-1

If T'e £,(H ), the trace norm ||T||; is the infimum of X |a;||b;| over all possi-
k=1

ble representations. .2, (H) is a Banach space endowed with the trace norm. If
Te £,(H), then the trace of T, Tr(T), is defined by:

Te(D) = 3 (Tgi, gi)

where (g;) is a complete orthonormal basis in H. This definition is indepen-
dent of the choice of the basis. £, (H) denotes the subspace of L£(H) of all
Hilbert-Schmidt operators. £,(H ) is a Banach space endowed with the norm

o 1/2
L= (2 10i?)  Les.

Let @ be a strictly positive self-adjoint trace class operator in H. This
means, that there exists a complete orthonormal basis of H, {e; };>; and a se-
quence Aj >0, such that

Qr= 2 Az, e)e YoeeH, 2 1,<x.
k=1 k=1

Moreover N(x, tQ) denotes the Gaussian measure in H with mean x e H and
covariance operator tQ (we refer to [6] for definitions and main properties of
Gaussian measures in Hilbert spaces).

We introduce some functions spaces. Let (%, |-||z) be a real Banach space,
©,(H, E) stands for the Banach space of all uniformly continuous and bound-
ed functions f:H—E, endowed with the sup norm |-, G.e. [fl=
sup||f(x)|z.) When we want to emphasize E, we will write | f|z, o instead of

H

I£llo, fe Co(H, B.

CY(H,E), 0 (0, 1), denotes the subspace of C,(H, E) consisting of all
functions which are 6-Hoélder continuous from H into E.

Let fe C,(H, E), the modulus of continuity of f will be indicated by w .
When E =R, we set C,(H) = ©,(H, R). This convention will be used for all
functions spaces. We define other functions spaces related to the operator Q.

DEFINITION 1.1. — CH(H) is the set of all fe G,(H) such that:

(i) for any ve H, x € H, there exists the derivative of f at «, in the direc-
tion @'*v that we denote by Dguz, f(x);
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(ii) for any x e H, there exists Dy f(x) € H such that:
Dgie, f(x) = (Dq f(®), v), YveH;
(iii) the mapping H—H, x— Dy f(x) belongs to C,(H, H).
It is easy to prove that if fe C,(H ), defining the partial derivatives Dy, f=
D, f, k=1, we have D f(x) = é‘,lkaf(x) ey, xeH.
CH(H) is the set of all functions in C4,(H) such that:

(i) there exists, for any ve H, x € H, the directional derivative

D 1/2 -D
W 0 P e A S e EAGU

s—0* S

(ii) for any x e H, there exists D§ f(x) e £(H), such that
Dqiz,[ Do f1(x) = D§ flx)(v), wveH;
(i) the map H— £(H), x—D§ f(x) belongs to C,(H, £L(H)).
Setting D,, (D, f) =Dy, f, h, k=1, we can easily show that

(D§ f(x) u, v) = } %:—1 VA3 A Dy f() wpvy, @, w, ve H, fe CH(H).
In a similar way it is possible to define the spaces C;(H) and the differential
operators D(. Moreover Cj (H) = D1 Cy(H). Every C4(H), n =1, turns out

to be a Banach space with respect to the norm

17 o=l + 100 fhy  fe i),

Let now (&, HHE) be a Banach space. Gg(H, E), 0e (0, 1) is the set of all func-
tions fe @, (H, E) such that there exists M = M(0, @, f) >0 and for any
e, weH: [|fQ"2) — fQw)ls < M|z —w]|".

CY(H, E) is a Banach space endowed with the norm

17(Q"*2) = Q" w)|
I./llo, @, 5= lfllo + [f1o, @ [f1o, g = sup ’ 5
z,weH |Z — ?/Ul
where fe C)(H, E). When E =R, we set CH(H) = C)(H, R), 6€(0, 1). Fi-
nally we define C,"(H) = {fe CL(H): Dy fe CH(H, H)} that is a Banach
space equipped with the norm:

)

Bl + 0,0 = B, g + Do Rlly, g,  heCL’(H). m

Some comments on Definition 1.1 are in order. The space @b(H ) was intro-
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duced in [3]. The spaces C{(H ), n = 2 are considered in [16], they are a slight
modification of those used in [2].

H can be considered as an abstract Wiener space, i.e. (H,, H, 1) where
H,= Q2 H is the reproducing kernel space of the Gaussian measure N(0, Q)
and i : Hy— H is the natural embedding (H, is a Hilbert space is based on vis-
cosity solutions endowed with the inner product (u, v)y, =(Q 2u, Q vy,
u, ve Hy, see [8] and [11] for more details).

It is not difficult to verify that C{(H) coincides with the space of all fune-
tions g € C,(H ), such that g is Hy-differentiable on H in the Gross sense (see
[8] § 3) and its H\-derivative: Dy, g € C,(H, H;). The same happens for the
higher order Hj-derivatives (an analysis of these connections is given in [17]
and in Zabezyk [10]). Another equivalent definition for the spaces C{(H) is
contained in [23]. Finally the space @g(H ) is introduced in [2].

2. — Regularity properties of the heat semigroup.

We denote by O; the heat semigroup on ©G,(H), defined as follows,
@) 0@ = [ f@+y NO, @ dy, feCyH), weH, t>0.
H

It is well known that Oy, is a strongly continuous semigroup on &, (H ). The in-
finitesimal generator of O; will be denoted by Q.

We briefly review the basic Cameron-Martin formula. It asserts that the
measures N(0, tQ) and N(x, tQ), t >0, x e H, are either equivalent or singu-
lar. They are equivalent if and only if x € Q> H. Further if x = Q'?h, he H,
the Radon-Nikodym derivative of N(Q'?%h, tQ) with respect to N(0, tQ), is
given, for any ¢ >0, by the following formula:

0y W@PHQ
' o, V-

1
Vi

where ((tQ)’”z(-), h) is a Gaussian random variable, i.e. it is normally dis-
tributed with mean 0 and covariance |k|* with respect to N(0, {Q), t > 0.
Moreover the map: H—L%(H, N(0, tQ)), h—((tQ) Y2(:), h) is a linear
isometry.

Applying the Cameron-Martin formula as in Proposition 9 of [8] or in [11],
§ I1.6.2, one derives the next result.

exp[— % |B |+ — (@)~ ?y, h>], yeH, N0, Q) —a.e.,
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PrOPOSITION 2.1. — Let fe C,(H), then O, fe C5(H), t >0, with the first
and second derivatives given by

( 1
<DQOtf(x)) 7)> = W ff(ﬂ@ +2/)<(75Q)_1/2?/, /LL> N(Oa tQ) d?/,
H

(DGO, f(w) u, v) =

23 ¢
% ff(x + YNy, uX(tQ) "y, v) N(0, 1Q) dy —
H

1
?Otf(oc)w, v), u,v,xeH,t>0.

L

Movreover one has

2
i,

1
24) ||DgO; fllo < W”f”m DGO, fllo, er) < feC(H).

Notice that for any g e @b(H), there results for x, u, veH, t >0,
1
25) (D3O, g(x) u, v) = i f<DQ9(9C +), vX(Q) Py, u) N(O, tQ) dy ,
H

so that, since f|((tQ)‘1/2y, u) |2 N(0, Q) dy = |u|?, we H, we infer
H

1
—tHQHLQ, ge CyH(H), t>0.

\/’

We need the following fact on Hilbert-Schmidt operators (see for instance p.
1098 of [7]). Denote by J; the subspace of £(H) of all finite rank operators N,
such that ||[Nle,ur)<1. Let Le £(H), then Le £(H) if and only if

HDG%OtgHO,f(H) <

(2.6) sup |Tr(NL)| =c< = .

NeH

Moreover if (2.6) holds then ||L|l, = c. The next result can be deduced by [8].
However we present here a direct and simpler proof (another proof is given in
Zabezyk [10]).

PROPOSITION 2.2. — For any feC(H), we have that DGO, fe
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Cy(H, £5(H)), t>0 and moreover

\]

(1) ”Dé Otf”o,fg(H) S ?”f”o, feC(H),

—

(@) DGO glo, ey < —=lglh, @0 g€ CHEH).

<

Proor. - First notice that by setting O; f= 0,0, f and using formula
(2.5), we obtain

@7 (DEO, f(x) u, vy =

\/_§J<DQOt/2f(x+?!), U><(2Q)m?f’ “> N(O’ éQ) dy

where u, v, x € H. We want to apply (2.6) in order to obtain that Dé O, f(x) e
Lo(H), xeH, t>0. To this end we fix Ne J.

In Im N we fix an othonormal basis ([;), k=1, ... n. Then we set, for con-
venience, (V2/ViX((#/2) @) 2y, u)=R,(y), ueH, yeH. Now applying
first the Holder inequality and then the Schwarz inequality we obtain from
@.7):

2

50, f(@)(L), N*1i.)

2.8) Tr(NDGO, f(x))|*=

,2 V2 f<DQOt/2f<x+y> lk><(t )1/2y,N*lk>N(o, 2 dy
21,

2 2) 5 ) t
;J(AZI |<DQOt/2f(90 + ), lk>| (kgl |RN*lk(y) | ) N (0, EQ) dy <

2
<

=<

<I

I Mx

2 t
DQOt/Zf(x +y) lk>RN*lk(?/) N(O, EQ) dy <

2 " t 2 n
_”DQOt/ZfH(Z)E f|RN*lk(y)|2N 0, —Q)dy= _”DQOt/ZfH%E IN*1.|? =
t k=1, 2 t k=1

2 2
?”DQOt/Zf”%”N*”%: ?”DQOt/ZfH%, xeH, t>0.
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Now using formula (2.4) it follows

S

2 /2 2
—lfllo = =1Alo,
Vit Vi t
so that by (2.6) we have DGO, f(x)e L(H) and [D3O; flb, e,ry <
/t)|lfllo-
To verify the uniform continuity of DO, f, we proceed as in (2.8) in order
to obtain, for any x, ze H, Ne 1,

| Tr (NDG O, f(x))| <

2
| Tr (N[D§ O, f(x) — DGO, f()])| < ?wf(|x—z|), x,zeH.
Invoking (2.6) we find
2
IDG O, f(x) = DGO, f(2) | ey < ;wf(|90_z|)

and the uniform continuity follows. To deduce (ii), we start from

1
(DéOtg(x) u, v) = % f(DQg(ac + ), OXQ) 2y, u)N(0, tQ) dy ,
H

where g e @b(H ), and proceed as in (2.8). The proof is complete. ™

3. — Optimal regularity results: constant coefficients.

In this section we are dealing with the following equation
1
Au(xe) — 3 Tr[QD?u(x)] =f(x), xeH, 1>0,

that we write as
3.1) Au—Au=f,

where @ is the generator of the heat semigroup O, on C,(H) and fe C)(H),
6e(0,1).

We briefly review the real interpolation spaces which will be used (see [22]
for details).

Let (E, ||lz), (F, |||lx) be Banach spaces, such that F is continuously
embedded in E. For any 0 (0, 1),

32 (E,F)y .~ {reE such that [«]) . =supt *K(t, x) < ®},
t>0
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where K(t, x) = inf{|a|z + t|b||lr: x=a+b,acE, beF}. (E, F), . is a Ba-
nach space endowed with the norm ||y, o = |-[lz + [-1o, «-
We use the following result, proved in [2], § 5.1,

3.3) COUH) = (Cy(H), C{Q(H))p, », 0e(0,1).

Moreover we define (D (6, w)dg(@b(H), D(@))y, =, 0 (0, 1), where A is the

generator of O;.
It is well known that: fe Mq(0, =) if and only if [fls a= sup [|O,f—
te(0,1]

fllot " < . Moreover in Mq(H, ) a norm equivalent to [|-[|s . is the
following:

||'||0,a = |-l + [1o,a-
The next result is proved in [3], § 5.1:
3.4) M (62, x) C%G%(H), 0e(0,1), with a continuous embedding .

Our next result shows that the inclusion in (3.4) is strict.
THEOREM 3.1. — For any 6 (0, 1), we have: Dq(0/2, ») = CH(H).

PrOOF. — Assume, by contraddiction, that there exists a 0e(0,1) such
that

(3.5) Dq(B/2, ) = CHH).

By (3.4) and (3.5), applying the Open Mapping Theorem, we obtain that the
norms |||z, ¢ and ||-|l5, ¢ are equivalent.
Now we will use the following recent result, proved in [21],

3.6) 01— Oillee,n=2, t=0, h>0.

Fix any ¢ > 0. By (3.6), for any h > 0, there exists a map f;, € G, (H) such that
|f3lle,zn < 1 and moreover

@D 2-h<[01.1fi = 0 fillk =040, fi = Os filh < [0, fili, a2 "
Therefore once we have proved that

3.8) 21113 [O; filop,a <

we will obtain a contradiction, letting #—0" in (3.7). Now we check (3.8).



NEW OPTIMAL REGULARITY RESULTS ETC. 421

Using the fact that |-[lgs q is equivalent to |-l o and Proposition 2.1, we
infer

10: fillare, a < C11l0: il

3.9 C
<0, fill, ¢ < W”fh”o S

C
—, h>0.
Vi

Thus (3.8) is verified and the assertion follows. ®

Now we prove a preliminary non optimal regularity result for (3.1).

PROPOSITION 3.2. — Consider uw=R(A, Q) f, fe CHH)A1>0, 6€(0,1).
Then ue @%(H ) and Déu e C(H, £L5(H)). Moreover theve exists a constant
c=c(A, Q, 0) >0, such that:

(3.10) lleelle, @ + 1DE 2l o, < €l fllo, -

Proor. — We have, by the Hille-Yosida Theorem,

(8.11) u= fe 0, fdt .
0

By the first estimate of (2.4), differentiating under the integral sign in (3.11)
and taking into account that

(3.12)  [{DqO, f(x) — DO, f(2), uy|* <

1
?wf(|x—z|)2f [{Q) 2y, u) |2 N(0, tQ) dy <

H

1
;wf(|ac—z|)2 |u|?, ®,z,ueH,t>0,

we deduce easily that u e Gb(H ). To get more regularity for u, consider that
from Proposition 2.2, there results for ¢ > 0:

2 1
DGO o, o) < ?”h”o, DGO, ¢y < W”QHLQ, heCyH), ge CH(H).

Interpolating between these estimates, since fe (G, (H), (:’b(H ))s. «, One has

(3.13) IDGO; fllo, cyiary < cot”* M| fllo. g0 £>0.
Using this estimate, we can readly derive that there exists Dju(x) e £(H) for
any xe H and

(D§ula)(w), vy = fe DGO, fa)(w), vydt, w®,u,veH.
0
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To get that Dju(x) e Ly(H), we use formula (2.6). Let N e 7y, where J; de-
notes the subspace of L2(H ) of all finite rank operators, such that |N||g,m) <1,
there results

0

(314) | Tr (ND3u(@)| < [ e 7| Tr (NDZO, f(@))|dt <
0

< ¢yl flly, Qf@ M2 dE = Cy il fllo.
0

so that DEu(x) e £,(H ), x € H and moreover [D3ully, o,ir) < Co. 2| fllo. o-
It remains to establish the uniform continuity of D§u. This is equivalent to
show that for any sequence (z,) c H such that z,—0 as n— o, we have:

(3.15) lim sup ||D3u(x + z,) — Du(®) || oyr) =0 .
=% veH

Let us fix a countable dense subset L of H. Since £, (H) is separable, we
choose also a countable dense subset I of J;. Now using that for any N e &
the linear map: £(H)—R, A— Tr(NA) is continuous, we obtain

(3.16) [Tl = sup | Tr(NT)| = sup |Tr(NT)|, TeLy(H).
N N

eR eI

From this formula it follows readly that the maps y,:]0, ©[—R,
¥ u(t) = sup|| DGO, f(x + 2,) — DGO f(2) |, 1)
reH

= sup |Tr NIDGO, f(x +2,) — DGO, f(x)])|, t>0,

xelL,Nedlt

are Borel for any n =1. Thus we can write

sugHDéu(ac +2,) = DGu) e,y < f@ "My, dt .
re 0

Now nli_r)rgo y.(t) =0, t>0, by Proposition 2.2. Hence letting n— o in right-
hand side of the last formula, we find (3.15) by the Dominated Convergence

Theorem. This completes the proof. =

In the next result we present Schauder estimates for (3.1) and improve
Theorem 5.1 of [2]. To this end we will use the space &, introduced in
(2.6).

THEOREM 3.3. — Consider w=R(1, Q) f, fe CQ(H)A>0, 0 (0, 1). Then
ue CH(H) and Diue Cy(H, £5(H)). Moreover for any N e Ty, one has that
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Tr (NDé u) € Wq(6/2, ) and there exists a constant ¢ =c(A, Q, 0) >0, such
that:

(3.17) ldlly, ¢ + sup [ Tr (NDGu)lloe, a < el £llo, o-

Ned&
In particular (3.17) implies that Dgue C§(H, £,(H)) and it holds:
(3.18) ullz, @ + DG ully, q, &, < llfls, o-
Proor. — We take N e J and prove that Tr(NDGu) e Dq(6/2, ) with
norm independent of N. For any function h e @%(H ), we set:
(3.18) Uh(x) = Tr (NDC% h)(x), xeH.

Thus for any for £e[0, 1], we have to estimate I = sup | O Uu(x) — Uu(x) |,
veH

£e[0, 1]. Remark that, differentiating under the integral sign in (2.1), we
find:

UO,(x) = O, Uh(x) he CH(H), xeH,t=0.

This yields, applying (3.13),

0

I.=suwp| [ (WO, fo) - UO, fla)) dt ‘
xeH |
ool E
=sup |(e* — l)fe MU0, f(x) dt — e’lgfe MU0, f(x) dt ‘
(319) reH 0 0

- 3
SC||f”a,Ql(e“f— l)fe"“tm‘ldtnteiﬁfe—ute/z—ldt]
0 0
S EHf”e,QSH/Z, gelo0, 1],

where C = C(4, Q, 0).
Hence by (3.19) and (3.4) we obtain that

Tr(ND3u) € Dq(6/2, »)c C4(H)
and
||TT(ND5@L)||@21(H> < ||TT(ND5M)||DQ1(0/2, =y < Callfllo. o

where C; and C, do not depend on N. Then, taking the supremum over
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N e 5, we infer

(3.20) DG ullo, g, ¢, <2C, sup [Tr (NDGw) |lgz, 0 < 2Csllf o, o-

e Ty

Combining (3.20) with Proposition 3.2, the thesis follows. =

4. — Elliptic equations with variable coefficients.

We consider now the following elliptic equation
1
4.1)  Au(x) — Qulx) — > Tr (F(x) Déu(m)) =f(x), xeH, A>0,

where fe CH(H), 6e(0,1) and F satisfies the following assumptions:

HypoTHESIS 1.
@) F:H— L (H),
(i) F(x) is self-adjoint and non negative, x e H,
(ili) Fe CHH, Ly(H)).

A solution of (4.1) is, by definition, a map v e D(A) N @?Q(H ), such that
Diue CH(H, £,(H)) and in addition satisfies (4.1).

We first have the following Maximum Principle for (4.1), which can be
proved as in ([2], Theorem A.1):

THEOREM 4.1. — Let 2 > 0, fe C,(H) and ue D(A) N C§(H) be a solution of
equation (4.1), where F fulfills Hypothesis 1. Then:

1
(4.2) (1S I”fHO

A priori estimates for (4.1) are proved in the next result, that improves
Theorem 6.2 of [2].

THEOREM 4.2. — Assume that F satisfies Hypothesis 1 and fe C)(H). Let u
be a solution of (4.1). Then there exists a constant ¢ =c(1, Q, 0, HFHg @) >0,
such that:

Allly, ¢ + llully, @ + llelle, @ + 1DG %l g, 21, < cllfllo, -

We need two preliminary Lemmas. The first one is a non standard interpo-
lation estimate.

LEMMA 4.3. — Let ve C5(H) such that Dgve C,(H, £y(H)). Assume that
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for any N e &, Tr[NDjvle Dq(6/2, ) and

de
4.3) ID§vllo2, a, ¢, = SUP [ Tr [ND§v]llgg, a < + o .

Ned
Then, for any t=>0, the following interpolatory inequality holds:

(4.4) IDGlo, e, < Collollg>* 2 IDG IG5 %,

ProOF. — First notice that

”DQQ)”O o= sup sup | Tr [NDQv](ac)|

H Ned

Then for any N e J; and t >0 we have:
| Tr [INDE ]|y < [|0,(Tr IND§v]) — Tr[ND§ 1|y + ||0,(Tr [INDGv1)||o
<t”|Tr[NDGv1llge, a + | Tr [INDG O, 1|y

<t% sup | Tr INDG1llg, a + [|DGoll, o,

Ned

1
<t ”Dc% Vg, q, & T 7 [

In the last passage we have used Proposition 2.2. Taking the infimum over ¢ >
0 in the last term, we obtain the thesis. ™

Let Fe £(H), F=F*, F nonnegative, and let S:= QI + F) Q. By
Proposition 5.1 in [2], we obtain that CH(H) = C4(H) and CH(H) = C&(H),
k=1, 60e(0, 1), with equivalence of norms. Denote by O the heat semigroup
in C,(H) associated with S, obtained replacing @ by S in (2.1), and by
(@%, D(@%)) its infinitesimal generator. Using the core D({,) given in [18], it
is not difficult to verify that

{feD@: AfeC{(H)} ={feD(@%): A5 fe C{(H)}
and on this space @¥=@a +(1/2) Tr (FDQ) Moreover we have:
LEMMA 4.4. — Let S:=Q'?(I + F) Q?, where F e £5(H), F = F* and F is

nonnegative. Let v satisfy the hypotheses of Lemma 4.3. Then for any N e J,
we have Tr[NDZv] e Dq(0/2, ) and

(4.5) ||DS? 7)”9/2, A, £ “ sup ||TY' [NDS v]”e/z as C”DQ 7)”9/2 a, £

NeH
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where C=C(S, Q, 0). Moreover:
(4.6) IDEll, ¢, < Collll§ = DGV o, oy 2+6 ™

For any xeH, r>0 we denote by ¢, , a function in C;* (H)(® such
that

1 if zeB(x, r)

0<o,.,<1 e (2) =
O, e, {0 if z¢ B(x, 27).

It is easy to prove that

LeEMMA 45. — Let ue D(Q). Then o, ,ueD(Q), for any xeH, r>0.
Movreover

1
(47) a(Qx,ru) = Qx,rau + <DQu’ QI/ZDQx, r> + E Tr[QDZQx,r] .

PRrOOF OF THEOREM 4.2. — Let fe C§(H) and let u be a solution of equation
(4.1). Fix xye H, »>0 and set v=0,, ,u = ou. We shall denote by C;, ieN,
constants depending only on A, @, 6, F. By Lemma 4.5 we have

1
v— Qv — 3 Tr (F(xy) D§v) =fi + fo + f,
where

1
fi®) = o) fx), folw)= > Tr[(F(x) — F(xy)) D v(x)]

1
(@) = = (I + F(x)) Dou(x), Dyo(x)) — ETP[(IJrF(x))DSQ(x)].

By Theorem 3.3 and Lemma 4.4 we deduce, setting S:=QY2(I +
F())Q'7,

4.8) Wllo, ¢ + 1D llgz, a5, &, < Clllfillo,  + 1 £ollo, @ + 551, @) -

Notice that

(4.9) 1fills, @ < K N1£1ls, -

() @7 (H) denotes the subspace of @,(H) of all functions having uniformly conti-
nuous and bounded Fréchet derivatives of any order.
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Let us estimate ||f]s. o First we have
.£2llo < CilIDE Vo, ey

Then, denoting by wr the modulus of continuity of F, there results

TAREL sup[P) ~ P o[l .0, + Mgl )
x e B(xg, 27

< C3(wp(21)[D§vl, g, ¢, + MIIDG o, ,) -
By Lemma 4.3 and by (3.20) it follows that

”fz”o oSGy (wF(ZT)[DC%v]O, Q&1 ”Dé v”o, &)

<sCy (wF(ZT)[Dé ”]0, Q&1 ”7)”8/(2+ o HDé ?)Hgfféso,)fz)

1
<Co{@r(20) + 1Dl .+ o).
Using the Maximum Principle we obtain
1
10 1o = o @020+ rIDFoll, aret ).

As for ||fsly, ¢, We easily obtain the following estimate:

(4.11) 1 £:llo, @ < C2(llfllo, @ + Erllulli 6, @) -
Collecting (4.8)—(4.11) we deduce

lllo, ¢ + DG llgz, a5, ¢, < Clllfillo, @ + 1 ello,  + 1 sllo, @) <

1
Go(@r 20+ 1Dl o+ (14 ) Wl o+ Bulil o, 0).

Now we choose 7> 0 such that Cg(w »(27) + r%?) < 1/2. This way, by using
also (3.20), we infer

lle,  + IDG Vo, o e, < I0llz, g + 21IDG Vlo2, 5, c,

S C9(||f||9, QT ||u||1+9, Q)-

Since v = pu, we obtain

||u||05<3(x0, M T ||D<,%u||9, Q, L (Blag, 1) = ||W||2 Qt ||D5W||0, Q, £5(H)

< Cy(|Ifllo, @ + Iletlly + 6, @) -
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Since Cy is independent of x;, it follows that

lulle, @ + DS ullo, g, e, < Co(llfllg, @ + el + 6, ) -
Now notice that, in a standard way, one proves that

ully + 0. < Cuy [l (lallo, @ + DG uilly, g, o))t P29
< Gl Ol ¢ + IDFul, g ey,
from which it results
el + D8l . < Coz Ul o + K. il + el g + IDFdl, g, ) -

Choosing ¢ small enough and using again the Maximum Principle, we finally
get

lulle, @ + DG 2llo, q. e, < CislI£llo,

and the thesis is proved. =
From Theorem 4.2 we can deduce our final result:

THEOREM 4.6. — Assume that F fulfills Hypothesis 1 and let fe C§(H).
Then there exists a unique solution of equation (4.1).

PrOOF. — One can adapt, without difficulties, the classical Continuity
Method, used in Theorem 6.2 of [2]. m
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