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Bollettino U. M. 1.
(8) 3-B (2000), 375-409

On Blow-Up and Asymptotic Behavior
of Solutions for some Semilinear
Parabolic Systems of Second Order.

THEODORE K. BONI

Sunto. — In questo lavoro sotto queste ipotesi si ottiengono alcune condizioni di non
esistenza e di esistenza delle soluzioni per alcuni sistemi parabolict semilineari
del secondo ordine. Inoltre si studia il comportamento asintotico di alcune
soluzioni.

1. - Introduction.

Let Q be a bounded domain in R” with smooth boundary 9€2. Consider the
following boundary value problems:

D
aui .
(1.1 . =L;u; + fi(u; 1) fai(u;)  in 2x(0,7),
(1.2) i (1= ) u =0 50 % (0, T)
. i TR U= on » 1),
“i3N u
(1.3) w;(x, 0) =u?(x) in Q,
ID
3u2~ .
1.4) " =Lou; —ax)u; in 2x(0,T),
3ui
(1.5) +0(x) u;=g;(u;,) on 92 x (0, 7T),
aN,
(1.6) w2, 0) = ud” (x) in Q,

where i =1, ..., m, U, 1 =4, 4; and b(x) are nonnegative functions on 9L
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with u; <1, a(x) is a nonnegative function in Q. For [ {0, 1, ..., m},
S Su; ou; < ou,;

Lyu; = —(aP(x) — |, L = cos (v, a;.) aP (x) — .
: k,;l 89@( g ow; oN, k%l S O,

(1

Here, the coefficients ak]«)(m) e C1(Q) satisfy the following inequalities

n
WIEPE 3 af@ &g=19 8
)=

for any &€ e R"” and x € Q with positive constants 1{, 1¥. v is the exterior nor-
mal unit vector on 992, f,(s), fi(s), g;(s) are nonnegative and increasing func-
tions for positive values of s with £;(0) = ¢;(0) = 0. u{” () are positive and con-
tinuous functions in Q.

In this note, if &, (s) and &, (s) are two positive functions defined in (0, o),
we put h; o he(s) = hy[he(s)].

We want to determine when the nonnegative solutions are global, i.e de-
fined for every te (0, o).

DEFINITION 1.1. — We say that a solution (uy, ..., u,,) of the problem (1.1)-
(1.3) or (1.4)-(1.6) blows up 1 a finite time if there exists a finite time T, such
that

tim { 3 s, )=} = o -
t—>Toli=1
T, is the blow up time of the solution (uy, ..., u,,). A point x € Q is a blow up
point of the solution (uy, ..., u,,) if there exists a sequence (x,, t,) such that
x,—x, t,— T, and Zlim { E |w; (2, tn)|} = . The set

==
Ep={xeQ such that x is a blow up point of the solution (uy, ..., u,)}

18 the blow up set of the solution (uy, ..., U,,).

The global existence and blow-up of solutions for parabolic systems of sec-
ond order have been the subject of investigation of many authors (see, for in-
stance [1], [3], [4], [5], [6], [7], [10], [12]). In [4], Escobedo and Herrero have
considered the following system:

5
M Au+vP in @x(0,T),
at
5
%zAeruq in Qx(0,T),

u=0 on 9Lx (0,7, v=0 on 9Q2x (0,7,
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w(x, 0) =uy(x) in 9, v(x, 0) =vy(x) in Q.

They have shown that if pq > 1, there are global and blow up nonnegative
solutions. In [12], Rossi and Wolanski have studied the following system:

0
e Qx (0,7,
ot
0
3—:=Av+uqe” in Qx(0,7),

u=0 on 92x (0,7, v=0 on 9Q2x (0,7,
w(x, 0) =uy(x) in Q, v(x,0)=v(x) in K.

They have also shown that if pg > 1, there are global and blow up nonnega-
tive solutions. In their analysis, they remark that the phenomenon of global
existence and blow up depends on the nature of the domain. In this paper, we
generalize these results considering the problem of the form (1.1)-(1.3). We
also give some conditions under which the solutions of the problem (1.1)-(1.3)
tend to zero and describe their asymptotic behavior. Finally, we study the
asymptotic behavior of some global solutions. For the problem (1.4)-(1.6), some
authors have studied the blow up of the solutions under some conditions (see,
for instance [6], [10]). An interesting question of the problem (1.4)-(1.6) is the
localization of the blow up set. This problem has been studied by some authors
in the case where m =2, Ly=A4, a(x) =0, b(x) =0, g;(us) =ud, g-(u;) = uf
with p > 1, ¢ > 1 (see, for instance [3]). In this paper, we give another charac-
terization of the blow up of solutions for the problem (1.4)-(1.6) and describe
their blow up set. The paper is written in the following manner. In Section 2,
we give some conditions of global existence of solutions for the problem (1.1)-
(1.3). In Section 3, we obtain some conditions under which the solutions of
(1.1)-(1.3) tend to zero as t— o and describe their asymptotic behavior. In
Sections 4 and 5, we obtain some blow up conditions of solutions for the prob-
lem (1.1)-(1.3). In Section 6, we give the asymptotic behavior of some global
solutions for the problem (1.1)-(1.3) and finally, in Section 7, we study the blow
up set of some blow up solutions for the problem (1.4)-(1.6).

We recall that in this work, we consider the nonnegative solutions.

2. — Global existence.

In this section, we give some conditions under which the solutions of the
problem (1.1)-(1.3) exist globally.

If f;(s) are locally Lipschitz continuous, local existence and uniqueness of
nonnegative solution are well known (see, for instance [9]). Now consider the
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general case. Let (uy,, ..., U,,,) satisfying u,, = 1/n be the maximum solution
of the following system

Ou; .
;;=Liui+ﬁn<um>f*i<ui> n  2x(0,7),
ou; 1
i— 4+ (1—pu)u;=— on 3Rx(0,T),
“iaN, # "

. 1
w; (e, 0) =uf’(x)+ — in 9,
n

where f;,(s) = f;(s) for s = 1/n. f;, are locally Lipschitz in R. Using the maxi-

mum principle, we see that u;, (=1, ..., m) are nonincreasing sequences
such that u;, = 0. Therefore u; = lim u,;, (1=1, ..., m) exist. Using the «vari-
n— ©

ation of constant formula», we obtain the result.
The following lemma which will be useful later.

COMPARISON LemMA 2.1. — Let (uy, ...,u,) satisfying the following
mequalities:

ou;
U L@ @) i @%(0, 1),

ou;
i— +(1—u)w;>0 on 38R x(0,T),
3N, I )
wx, 0)>ui’(@) in Q, i=1,..,m,
where U, .1 = u; and ux, 0) are continuous up to t =0. If (uy, ..., u,) s a
solution of the problem (1.1)-(1.3) with initial data (uiV, ..., ui™), then we

have
wi(xe, t) <u(x,t) in 2x0,7), 1=1,...,m.

We call (uy, ..., u,,) supersolution of the problem (1.1)-(1.3).

PrOOF. — We have u(x,0)—ui”(x)>0 in Q and u;(0%;/3N;) +
(1—wu;)u; >0 on 92 x (0, T) for some 6 >0. Let

o
T, = sup{t such that w,(x, t) —u;(x, t) > E for all 7,}

Ty > 0 because the function u;(«, 0) —u,;(x, 0) is continuous up to ¢ =0 and
wi(x, 0) —u;(x, 0) >05. We also have u;(x, Ty) = u;(x,, Ty) + 6/2 for some
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je{l, ..., m} and some xye Q. Therefore we get

8(w; —uy)

3 = L —w;) 2 ;) f 5 @) — fi (w4 1) fai(u;) =0 in QX (0, Tp),

because the functions f;(s) and f;(s) are nonnegative, increasing for positive
values of s. We also have

a(ﬁj_uj) _
T + (I —up))@;—u;) >0 on 92 x(0,T),

J

U

ux, 0) —u;(x,0)>06 in Q.
From the maximum principle, we deduce that w;(x, t) —u;(x, t) =0 in Q X

(0, Ty). This implies that wu;(x,, Ty) — u,;(xy, Ty) > 0/2, which is a contradic-
tion. Then we have the result. =

THEOREM 2.2. — Suppose that

. flO(CZfZ)O"' O(cmfm)(s)
m =

li 0 ’
s—0 S
where ¢; (j=2, ..., m) are positive constants. Then there exists a positive
constant ay such that any solution (uy, ..., u,,) of the problem (1.1)-(1.3) with
initial data (udV, ..., ud™) exists globally for ui?(x) < ay.
REMARK 2.3. - Suppose that the functions f,(s), f._1°fm(s),

very foo...of,(s) are convex for small positive values of s and f,(0) =0,

Fone10fm(0)=0, ..., fyo...0f,,(0)=0. If

tim 722 T
s—0 S

then we have

. flO(CZfZ) Oees O(Cmfm)(s)
lim =

0,
s—0 S

where ¢; (j =2, ..., m) are positive constants.
In fact, since f;(s) are increasing functions, we obtain

L fio(eafy) ooy L)) o Jio(Csafa) o o(Cun f)(s)
lim < lim

s—0 S s—0 S
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where c,; = sup {1, ¢;}. It follows that

. flO(CZfZ)O'”O(cmf;n)(s) . ﬁoféo"°ofm(c*2--'c*ms)
m < lim

1i =0 ’
s—0 S s—=0 S
because the functions f,(s), fn_10fm(8), ..., foo... of;,(s) are convex for

small positive values of s with f,,(0) =0, f,,_1 of,,(0)=0, ..., foo... of;,(0) =
0.

ProOF oF THEOREM 2.2. - For ke {1, ..., m}, let @, (x) be a solution of the
following problem:
2.1) L, (x)=—-1 in Q,
(2.2) My +(1—uy) @(x)=0 on 092,

ON,,

2.3) D, (x)>0 in Q.
Let
2.4) u; = a; (D ;(x) +9),
where ¢ is a positive constant, and a; (¢ =1, ..., m) are positive constants

which will be indicated later. Put K; = sup{®;(x) + 6}. We have
ref

ou; o _
(2.5) s Ly —fi(wi ) fai) 2 ;= fi(a; 1 K 1) fai(a; K5,
ou;
2.6 i ! + 1_ i E:
2.6) u 3N, (I —uy)
9D () )
ai(ﬂiW +(1—uy) d)i(x)) +a;0(1 — ;) = a;0(1 — uy), t=1,..,m,

where U, .1 =i, Qp+1=0, K, +1=K;. Show that there exist a; (1=1,
..., m) such that

@2 a; = fi(a; 1K1 1) fei(a; Ky),  i=1,...,m—1,
(28) (4% Bﬁn,(alI{l) f*m(ame)-

Let a; (I=2, ..., m) satisfy the following relations

a.
2.9 i\ Ki :—l, ’L'=1,...,m—1.
(2.9) filai 1 Ki 1) k)
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(2.9) may be written in the following form
(2.10) a; K;=cy, fi(a; .1 K; 1), i=1,...,m—1,

where for ke {1, ..., m — 1}, ¢, is a positive constant which depends on .
Therefore, we have

2.11) WKy = (ay f3) o v 0 (Ca 1)@ K

Now, show that we can determine a; such that the inequality (2. 8) be satis-
fied. Since fi o (¢q, f2) o ... o (¢,, ,fn—1) is an increasing function, multiplying
inequality (2.8) by K,,, we obtain

(212) fl © (Cazfz) Oeee O(Cam,lfmfl)(ame)
2fl ° (Cang) ... 0 (Camflf;nfl)[Kmfm(al Kl) f*m(ame)] .
From (2.9), (2.11) and (2.12), it follows that

1 - f1(a/2K2) _ fl O(cagf2) O...0 (Ca77171ﬁ,l71)(ame,z) -

(2.13) =
fa1(Kiaq) (021 a

fl © (caz.fZ) ... 0 (cam_lf;nfl)[fm(al Kl) Kmf*m(a'me)]

ay

By hypothesis, the last term of (2.13) tends to zero as a; tends to zero. Then
take a; so small that (2.13) holds. This implies that (2.8) is satisfied. Put K, =
ing{qﬁi(x) +0}. Since (2.7) and (2.8) are valid, taking a,= z {linf }alKl’
from (2.4)-(2.6), we see that (w, ..., u,,) is a supersolution of the problem (1.1)-
(1.3). Therefore (uy, ..., u,,) exists globally, which gives the result. =

COROLLARY 2.4. — Let fi(u; 1) =uli, fei(u;) =e" or fu;(u;) =1 where p;
m

are positive numbers. If 1 p;>1, then there exists a positive constant a,
i=1

such that any solution (uy, ..., u,,) of the problem (1.1)-(1.3) with initial data

(u?, ..., u{™) exists globally for > |u® @), =) < ap.
i=1
THEOREM 2.5. — Suppose that u;=0 (i=1, ..., m) and there exists je

{1, ..., n} such that Qcc Q% (0,1) x Q4 where Q,cR ™' and Q,cR" .
Then if 1 is small enough, there exists a positive constant ay such that any
solution  (Uy, ..., u,) of the problem (1.1)-(1.3) with initial data
(ug®, ..., ui™) exists globally for u’(x) < ay.
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PROOF. — Put #; = a; (®;(x) + 6) where a; are positive numbers. As in the
proof of Theorem 2.2, it is sufficient to show that

(214) aizﬁ(ai+1Ki+l)f*i(aiKi)’ 7:21’ e, M,

where a,, .1 = a;, K,, ;1 = K; with K; = sup{®;(x) + 6}. Since 2, and 2, are
re
two bounded domains, there exist numbers [, (k=1,...,7—-1,7+1, ..., n)
Jj-1 n

such that Qcc [I[0, 4,1x (0, ) x [II [0,4]1=1. Let y,(x;, a;, @) func-
k=1 k=j+1 :

tions defined in 7 by

(2.15) Y (o, 5, X3) = (L — ), 1=1, ..., m,

2ai? K
o . j71

where af? = ingajy)(ac) >0, with x;€(0,0), ae[[[0,4] and wme
re k=1

IT [0, 7.]. We have

k=j+1
(2.16) Liyp(ey, 25, 05) +1<0 in 1, Yi(xy, @, 22) =20  on Ol

Since v (2, ®;, ¥) >0 in Q, from the maximum principle, ;> @; in Q,
where for ie {1, ..., m}, @;(x) is the solution of the following problem

2.17) Li®;+1=0 in @, &;=0 on Q.

Since |y il =) <1%/8as”, we also have w = ||D |, =) < 12/8ai. Tt follows
that K; tends to zero as ¢ and [ tend to zero. Since f;(0) = 0, choose J and [ so
small that the inequalities (2.14) hold. Hence the result. =

3. — Asymptotic behavior of solutions which tend to zero.

In this section, we suppose that L; = Ly, u; = u,. We give some conditions
under which the solutions of the problem (1.1)-(1.3) tend to zero as t — . We
also describe the asymptotic behavior of these solutions. We suppose that for
positive values of s, f;(s) (i=1, ..., m) are functions of class C'! such that
f;(0) =£/(0) =0. Suppose that for any interval [0, A] with A > 0, there exist a
constant C,. depending on A and p > 1 such that

3.1) fils)<C,s? for sel0,A].

Let @(x) and A, be respectively, the first eigenfunction and the first eigenval-
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ue of the following boundary value problem:

(P1) —Lyp(@) =Ap in Q,
(P2) Ho A +(1—ug) px)=0 on 0992,
ON,
P3) @px)>0 in Q, fq)(oc) de=1.
Q
Define for >0 (=1, ..., m),

U*(r;) =inf{s>0 such that fi(s) =r;s},
and put

a=a(ry, ..., 7,) = sup }rlf*l(U*(rl,l)),
1,...,m

le

where ry=1,,.
REMARK 3.1. — We have U*(r;) >0 for »;> 0.
THEOREM 3.2. — Suppose that there are constants C, r; such that:
0<alry,..,r, <A, u;(x, 0) <Co(x) <U*(r;_y) in Q.

Then any solution (uy, ..., u,) of the problem (1.1)-(1.3) exists globally
and

tlim e (x, t) = C;p(x),
uniformly in Q, where C; (i=1, ..., m) are positive constants.
The proof of Theorem 3.2 is based on the following lemmas

LemMmA 3.3. — Under the hypotheses of Theorem 3.2, any solution
(U1, ..., Uy,) Of the problem (1.1)-(1.3) exists globally and

0 <u,(x, t)<C(p(ac)e(*/1+(1(1'1,.,.,7'm))t n Q% (0, ), i=1,...,m
where C is a positive constant.
Proor. — Put

3.2) vi(x, t) = Cop(x) e AT o1,
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We obtain

814

(3.3) —Lovi=a7)i+1?Vif*i(U*(T‘i,l))?)iJrl in .QX(O, T), i=1,...,m,

where v,, 1 =v;. Since 0 <wu;(x, 0) <U*(r;_4), let t; be the first ¢ >0 such
that

(3.4) 0<wu(e, ) <U*(r;-y) in 2x(0, 1),

but u;(x;, t;) = U*(r;_,) for some je {1, ..., m} and x; in Q. Therefore by
the definition of U *(r;), we have

(3.5) i) <rugp in Q% (0, t).
We deduce that

ou;
3.6) %—Loui<qnif*i(U*(n_l))ui+1 in Qx(0, 1)

We also have
3.7 u;(x, 0) < Co(x) =v;(x,0) in Q.

From the maximum principle for parabolic systems(see for instance [11]), it
follows that

wi(x, t) <v(x,t) in Q2x(0,t),
that is
3.8) 0 <u;(x,t) <Cpx) e """ in Qx(0,¢).
We conclude that ¢; = oo. In fact suppose that ¢; < co. Then we have
wi(wy, 1) < Cop(y) e+ 00,
Therefore, we deduce that
U*(rj—1) = uj(y, t;) < Colay).

This is a contradiction because by hypothesis Co(x;) < U*(7;_1). Then we
conclude that ¢t; =  and

0<ux,t) <Cpx)e*"¥" in Qx(0, o),
which gives the result. =

LEMMA 3.4. — Under the hypotheses of Theorem 3.2, there exists a positive
constant M(r) depending on r such that for any solution (u, ..., u,,) of the
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problem (1.1)-(1.3), the following estimates hold
|ui(e, t) | SM()e ™™ in  Qx(0, o), i=1,..,m.
PROOF. — Assume at first that 1 = p”(1 —») for any n = 1. Let (S, (£));=¢
the semigroup of contractions of L2(R) generated by — L, with (1.2) as bound-

ary data. Let (S(¢)); s, the restriction of (S .. (£));=, to L © (). It is well known
that there is a positive constant M such that

(3.9) 1S(t) | < Me

for any ¢ = 0. Moreover, u; may be written in the following form

t
(8.10)  u,;(., 1) =S8 u;(., 0) — fS(t =8) filui (., 8)) fai (ui (., 8)) ds.
0

Since |f;(s)| S Cy |s|? for se [0, C], by Lemma 3.3, there is a positive con-
stant C; such that

t

GAD s, Dl < Me i (., 0oy + MO, [ o910,
0

Since A # p(4 — 7), there are two positive constants A and B such that
i (., D)l = (@) < Ae ™ + Be P41,

Iterating this process we have the result. If there is » =1 such that 1=
p" (A —r), there exists p; e]l, pl such that

P —7r) <A<p{T'(A-m),
that is to say
pi*(A—r) #4,

for any m = 1. Moreover there exists a positive constant K such that |f;(s) | <
K|s|P for |s| <C. Applying the above method, we obtain the result.

PrROOF OF THEOREM 3.2. — Let w;(x, t) = e*u;(x, t). We have

@wi
ot

— Lyw; = Aw; + e fi(e Mw; 1) faile M w,).
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Put w;(x, t) = C*(t) ¢(x) + wy;(x, t), where for je {1, ..., m}, wy; is the pro-
jection of w; on [Ker (L, + AI)]*. Then there exists a positive constant C, such
that

‘ dCH(t)

[ <cov
dt

for any ¢ > 0. Therefore (dC*(t)/dt) e £} (0, ») and ltlim Cxt) (i=1, ..., m)

exist. Let S,(¢) the restriction of S(¢) to [Ker(L,+ AI)]*. It is well known that
there is a positive constant M, such that

IS < Mye =21,

where A,> 1 is the second eigenvalue of the problem (P1)-(P3). Put u,; =
e Mwy;. It follows that

t
Uy (., 1) =S () uy (., 0) — sz(t—s) Goi (Ui 1.5 8)) gosi (u; (., 8)) ds
0

where for je {1, ..., m}, go;(u;,1) is the projection of fi(u;.,) on [Ker
(Lo + AD1*+. Since |go; (u;y1(., 8))| < Ce ~P% e obtain

t
||7/L1i(., t)||L°°(Q) < Me _Azt‘f' fe—lg(t—s)e—plsds'
0

Therefore
A=1 —(p-1)A
lwy; (., Ol = o) < Me® =421 + M, e =P~ D4,

Then we have

tlim eMu(x,t) =Cipx), i=1,..,m
uniformly in Q, where C; (i=1, ..., m) are positive constants, which yields

the result. =

COROLLARY 3.4. — Suppose that f;(u; 1) =uliy, fae(w;) =e", with p;> 1.
Then there exists a positive constant b such that any solution (uy, ..., u,,) of
the problem (1.1)-(1.3) exists globally and

tlim eMu(x, t) = C;px)

uniformly in Q for u{®(x) <b where C; (i=1, ..., m) are positive con-
stamnts.
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4. — Blow up solutions.

In this section, we give some conditions under which the solutions of the
problem (1.1)-(1.3) blow up in a finite time.
Let z be the solution of the following problem:

QD) % =Lz + Az In 2x(0,7),
(Q2) ﬁ +(1—-—u,)z=0 on 9x(0,T)

1237 aNk U - ) )
(Q3) 2(¢,0) =u®(@)=0 in Q,

where ke {1, ..., m}.

LEMMA 4.1. — Let w, be the maximum of the solution for the following
boundary value problem

3
Law+1=0 in ©Q, u—2 +1-u)w=0 on 02,
aN,

where u;, <1. Suppose that f..(s) is positive and increasing for positive
values of s with f..(0) >0. If

o

/1>if ds

wo g far(s)

then the solution z of the problem (Q1)-(Q3) blows up in a finite time.

PROOF. — Assume at first that u{" (x) = 0. Let (0, T\.) be the maximum
time interval in which the classical solution z of the problem (Q1)-(Q3) exists.
From the maximum principle, z(x, t) =0 in 2 X (0, Tp.). Put

K4

ds
4.1 D =F&, t)= ] ———.
4.1) v(x, t) = F(x(x, t)) RTE
We have
o 1 no9 9z
42) — —Lyv= - — | aP (@) —
R VI (Z‘ 2o (a“ @ axj))+

S (2)
lfz*k(z) .

M=

[i,.i
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Since f,;(z) is an increasing function, we also have

z

ds - z
o Afsr(s) ~ Marn(2)

From (Q1) and (4.2) we deduce that

4.3) v, ) =

5
4.4) a—:—Lkv—IBO in Qx(0, T,

From (4.3), we also have

0 1 o —(1—u,)z
v z (1 —uyp) > _(1—u)w,

4.5 =
N AR NS L A T on

that is to say

E
4.6) e v (1—u)v=0 on 32 x (0, Tp).
aN,

ds
Since wy, > f
0 lf*k(s)
4.7 sup v(x, t) < wp.
(@, ) € 2% (0, Tax)

and z < o in Q X (0, T,..), we have

Let z be the solution of the following problem:

3

4.8) a_i —Liz+1 in Qx(0, ),

(4.9) % 1—u)e=0 on 82 x(0, %)
. U 8Nk Ui ) )

(4.10) 2(¢,0)=0 in Q.

From the maximum principle, we obtain
(4.11) vx,t) =z, t) In  Q2X (0, Tha)-
We also have
(4.12) tlin}o 2(x, t) =w(x).
Therefore from (4.7) and (4.12), there exist xye 2 and a finite ¢, such
that
(4.13) 2(xy, ty) > sup v(x, t),

(@, 1) € 2 X (0, Ty

which implies that t, = T,,.. In fact, suppose that t, < T.«. From (4.11), we
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have v(xg, ty) = 2(xy, t;) which contradicts (4.13). Consequently, T',.. is finite
and z blows up in a finite time.
Now, suppose that u{®(x) =0. From the maximum principle

(4.14) 2, t) Zu (e, t) in Qx(0,T)

where u, is a solution of the problem (Q1)-(Q2) with u;(x, 0) =0 and (0, T}) is
the maximum time interval in which the solutions z and u, exist. From the
above result, we know that u; blows up in a finite time because

b
ds

4.15 > ——
@1 0

Therefore, from (4.14), z blows up in a finite time, which yields the
result. =

THEOREM 4.2. — Suppose that there exists ke {l,..., m} such that
S (0) >0, f(dS/f*k(S)) <o and lim fi(s) = «. Fix (u?, ..., ud™). There
0

exists y o> 0 such that, if v >y, then the solution (uy,, ..., Uy,) of the prob-
lem (1.1)-(1.3) with initial data (us®, ..., yud*Y, ..., ui™) blows up in a fi-
nite time.

PrOOF. — Since u* P (x) >0 in Q, there exists a ball B such that B cc 2
and u* "V (x) = &> 0 in B (this is possible because u* 1 (x) is continuous in
Q). Let z be the solution of the following problem

3
(4.16) ?j =Lz + Ao fan(z) i Bx(0,T)
4.17) =0 on A8Bx(0,T),

(4.18) 2, 0)=u(@®)=0 in B,

where 4, is such that z blows up in a finite time T (this is possible because of
Lemma 4.1). Let w(x, t) be the solution of the following problem:

ow

4.1 —
(4.19) ot

_Lk+1w=0 in .QX(O, To),

(4.20) w=0 on 9Q2x (0, Ty,

(4.21) wx, 0) =ud V(@) in Q.
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Then we have

(4.22) a= _inf w(x,t)>0

2eBx(0, Ty)

because u(* "V (x) >0 in B. From the maximum principle,
(4.23) sy, @, O =y, ) in Q% (0, Ty).
Therefore we obtain

4.24 inf U x,t)= inf w(x, t) =ya.
4.24) (x, ) B x (0, Tp) i+ 1)y (@, 1) y(x,t)eBx(O,To) (@, 1) =y

Since f}, is increasing and tlim f: (@) = o, from (4.24), take y,> 0 such that

Je(U+1y,) > Ao for y >y,. Therefore if y >y, wu,, satisfies the following
problem

@uky .
(4.25) > Ly, + Ao fa(uy,) in B X (0, T),
(4.26) uy, >0 on 8B x(0,Ty),
(4.27) Uy (2, 0) =ud”(x) =0 in B.

From the maximum principle

up, (2, 1) Z2(x,t) in Q2x(0,7T) for y>y,.

Therefore if y >y, the solution (uy,, ..., %,,) blows up in a finite time
T'<T, =

COROLLARY 4.3. — Suppose that there exists ke {1, ..., m} such that
JieQug 1) = ufy, fan(we) =e™ or fo(w) =uf+¢ with >0, p,>0 and
P> 1 Fix (ud?, ..., ui™). There exists y,> 0 such that, if y >y, then the
solution.  (Uyy, ..., Uy,) of the problem (1.1)-(1.3) with nitial data
sV, oy pyudETY) L ud™) blows up in a finite time.

THEOREM 4.4. — Let L; = d; A where d; (1 =1, ..., m) are positive constants
and suppose that there exists kye{l,...,m} such that f.,(0)>0,

3 ds

< o and lim f; (s) = ». Suppose also that lim inf(f;(s)/f; (s)) >0
0 f*kl(s) §—> t— o

(1=1, ..., m),
f*m(s) fm Ofl O. Ofmfl(s)

lim inf >0
s—0 S
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and

f*m(s) fm Ofl 0. Ofmfl(s)
lim inf >0

—> 0
§ S

Then if Q contains a large ball, any positive solution of the problem (1.1)-
(1.3) blows up m a finite time.

ProoF. — Let ¢p; >0 be a solution of the following problem
428) Ad¢p(x)=a>0 if ¢ <c, ¢1=0 on OB,

where B, is a ball of radius 1. Put ¢, (x) = ¢(a/k). Then ¢, satisfies the follow-
ing relations

(4.29) A¢k(x)>%>0 if ¢.<c, ¢,=0 on 8B,

(4.30) A (x) = ;—ZL >0 (-L= inf 49, @),

where Bj, is a ball of radius k. Let u; = a;(t) ¢ (x), where a;(t) (i=1, ..., m)
are increasing functions which will be determined later. Our aim is to show
that (uy, ..., u,,) is a subsolution of the problem (1.1)-(1.3). Then, it is sufficient
to show that the following inequalities hold

(4.31) o/ @) pr@) <a;(t) d; A (@) + fi(@; 1 (D) P (@) fri (@; (D) pr()),
(432) a/'r;L(t) ¢1c(90) < am(t) dmA(pk(x) +fm (al(t) (pk(x))f*m(am(t) ¢k(x))7

where (1 =1, ..., m — 1). If ¢, < ¢;, the inequalities (4.31) and (4.32) are valid
if

(4.33) al () ¢ < %diai(t), i=1,...,m—1,

(434) a’ﬂ”b (t) G s % dm Ay, ( 0 )

For ¢ = ¢, let c; = sup ¢,. Then the inequalities (4.31) and (4.32) are true
if

(4.35) ai’(t)62<—ai(t)di% +filai 1) ¢r) failai(®) ), i=1,...,m—1,
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, L
(436) am(t) Co s _am(t) dm F +f;n (al(t) 4] )f*m (am(t) Cl) .

Thus our new aim is to show that we may determine the functions a;(t)
(=1, ..., m) for that the inequalities (4.33), (4.34), (4.35) and (4.36) be true.
Take a,,(t) = et + a,,(0), a;(t) ¢;=f;(cra;-:(@)) (1=1,...,m—1) and put
0;= inf )( fi(s)/f! (s)). Then the inequalities (4.33) and (4.34) hold if

s=Zc1a;+1(0

(4.37) CleS di6i7 i=1,...,m—1,

C1 k2
a
(4.38) ECq < ﬁdm am(())
and the inequalities (4.35) and (4.36) are true if
) 1 L
(4.39)  ef/ (cra;1(1) < _C_ﬁ;(clawrl(t))diﬁ +
1
ﬁ(ai+l(t)Cl)f*i(ai(t)cl), i=1,...,m—1,

L
(440) ECp S — a/m(t) dm F +.f;n Ofl OfZ Oeee Ofm -1 (Cl am(t))f*m (am(t) G )

Let k be so large that (Ld;/c;k?) < (1/2) f4i(c10;(0)) (i=1, ..., m —1). The
inequalities (4.39) hold if

Ld,
(4.41) Sséi[_ 12 +f*i(clai(0)):|, i=1,...,m—1.
Clk
Let k., be such that fy,,(s) =k, 5 for s> a,,(0) ¢,. Then

’ m OJ1 0 er O — (8)
the inequality (4.40) is true if Juohh Jn-s

L
(4.42) gczsam(o>[—dmP +k*].

Let k again be such that d,, (L/k?) <k /2. Thus we may choose & small enough
that the inequalities (4.41) and (4.42) be valid. Take a;(0) be sufficiently small
that %;(x, 0) <u(”(x) in Bj. Therefore, there exists a ball B, such that

ou;
ot

- dZAE sf;(u/1+1)f*1(E) in Bk X (0) T)’

u; =0 on IB,x(0,T),

Wix, 0) <u@) in By, i=1,..,m,



ON BLOW-UP AND ASYMPTOTIC BEHAVIOR ETC. 393

where u,, | = %;. Since (44, ..., u,,) is a positive solution of the problem (1.1)-
(1.3), by Comparison lemma 2.1, we deduce that u;(x, t) = u;(x, t). Therefore
we have

tlim u;(x, t) = .

By Theorem 4.2, we obtain the result. =

COROLLARY 4.5. — Let L;=d; A where d; (i=1, ..., m) are positive con-
stants and suppose that there exists ke {1, ..., m} such that f.(uw,) = e or
far(uy) =upf++e  Suppose also that fi(u;y1)=uli; G=1,...,m)

f%m(um) = gUm O’i"f*m(u’m) = u’rﬁ*m + & with & > O! p; > 0 a’ndp*m >1- H Di =0.
i=1

Then if Q contains a large ball, any positive solution (u,, ..., u,,) of the prob-
lem (1.1)-(1.3) blows up in a finite time.

5. — Other blow up solutions.

In this section, we give other conditions under which the solutions of the
problem (1.1)-(1.3) blow up in a finite time in the case where m =2, u;=1,

Li=Lo, fi=f, fu=fe fi=g and fu=g.. U J@sp,en<e o

f (ds/g «(s)) < o, we easily show that any solution (u, v) of the problem (1.1)-
(1.0.3) with initial data (u,, vy) blows up in a finite time. In fact, suppose that

f(ds/f*(s)) < o, From the maximum principle, we have v(x, t) = ¢ > 0. Then
% is a solution of the following problem

‘Z_@t‘ =Lou+f(c) fo(w) in  Qx(0,7),

5
%Y 0 on 9Qx(0,T),
N,

u(x, 0) =uy(x) >0 in Q.

It is well known that any solution of the above problem blows up in a finite
time (see, for instance [9]). Hence the result. Thus, in this section, we assume

that f (ds/f4(s)) = o and f(ds/g*(s)) = o, Consider the following sys-
tem:

(R1) a1(t) =fx(a1@®)) Rax(?)),
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(R2) ay(t) =gla;(t) g« (as(®)).
We have

da, falai (@) flay(t))
day  glar®)g(as(®)’

that is to say

g(ay) doy _ flay) da,
f*(al) g*(az) ’

Let G(s) be a primitive of g(s)/f..(s) and F(s) that of f(s)/g.(s) with F(0) =
G(0)=0. Then we have G(a;) =F(a,), that is to say a,=F [G(a;)] =
k(a;), where F~! is the inverse function of F. We suppose that k(z) =
F 15G(2) is an increasing function for positive values of z.

THEOREM 5.1. — Suppose that k(0) =f(0) =g(0) =0 and

+ + oo

[ & o [

< <
fx(2) f(k(z)) gk 1) g+ (2)

Then any solution (u, v) of the problem (1.1)-(1.3) initial data (uy, vy) blows
up n a finite time.

Proor. — Put ¢, = ’inguo(x) >0, dy= jngvo(ac) >0. Let
u = a(7), V= ay(r)

with 7=¢t —ew(x) +ec, a;(0)=c,/2%, where 2* is big enough that
k(2(cy/2%)) < dy/2 and w(x) satisfies the following problem:

5
G.1) Low@) =d in €, ~2 -1 on 90,
aN,

with d = |92|/| 2], cis such that ¢ — w(x) > 0. Since a;(¢) =0 and a,(0) >0,
there is ¢; such that a;(t;) =2(cy/2*). Take ¢ >0 so small that

—ew(x) + ec<t, eted<l.

Therefore, we obtain

(5.2) wx,0)<a(t) <u(x,0) in Q.
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Similarly since k(z) is an increasing function, we get
(5.3) e, O)SaZ(tl):k(Z;—:) <v(@,0) in Q.

We also have

on ow ow
5.4 — Lot = a1 (7)(e + eLyw) — T Z al® (x
(5.4) -5 o ay(t)(e rso)e?oc()wij()a ax
ov ow o
65 2 Lob=ay(t)e +eLow) — e2al(t) S @) == W
ot i,j=1 w; Ow;

Since f(s), f«(8), 9(s), g «(s) are nonnegative and increasing for positive values
of s, we have a(r) =0, a5(r) =0. From (5.4) and (5.5) it follows that

.
(5.6) ?7; —Loi<f® f,@ in  Qx(0,D),
v
B 8_15 -Lv<gwm)g.® in KLx(0,7).
We also have
u 3
(5.8) ou __ —wal(r) <0 on 8Q2x(0,T),
N, N,
% 5
(5.9) Y e <0 on 8@ x (0, T).
3N, aN,

Applying Comparison lemma 2.1, we deduce that
(5.10) w(x, t) =ulx,t) in Qx(0,T),
(5.11) v(x,t) =v(x,t) in  LQx(0,7T).

On the other hand, a () and a,(t) satisfy the following relations:

aq(t) as(t)
dz dz
———— =t and —— =
o [x(2) fk(z)) izt 9k 71 (2)) g4 (2)
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This implies that (%, ¥) blows up in a finite time because
+ oo + oo

J’ dz % or f dz

< - <>
fa(2) f(k(z)) gk 1(2)) g+ (2)
which leads to the result. =

REMARK 5.2. — Let f(s) =s", fi(s) =s™, g(s) =s", g.(s) =s%= We
have

— Up1 =gz +1)
K(s)= | Pt §@ =Pt D/ =g D),
G—p2t+1

p—qe+1 }Pl/(P1—42+1)
¢ —p2t1

S(Pl‘]l_PZ‘IZ+P1+P2)/(Z’1_‘12+1),

f(s) flk(s)) = {

_ ¢1/(p1—gz+1)
g+(s) g(kil(s)) — { G —pptl } e sP1ai—P2ge+ i+ @) a—p2+ 1)
Pr— g +1

If p, > 1 or g, > 1, then any solution of the problem (1.1)-(1.3) with initial
data (ug, vy) blows up in a finite time.

If p,<1, ¢gs<1 and p;q; — P>g> + p> + ¢ > 1, then any solution (u, v) of
the problem (1.1)-(1.3) with initial data (u,, v,) blows up in a finite time.

6. — Asymptotic behavior of global solutions.

In this section, we suppose that the functions «;(¢) and a5 (t) of the system
(R1)-(R2) are replaced by a(t) and S(t) respectively. We also suppose that
f+(8) =¢g.(s) =1. Under the conditions in below, we obtain the asymptotic be-
havior of any solution for the problem (1.1)-(1.3). Thus we have the following
theorem:

THEOREM 6.1. — Suppose that for positive values of s, the functions f(s) and
9(s) are concave with f{0) =9(0) =0,

© ©

ds :f ds Cw

JTk(s)] glk =1 (s)]
TR g O fTR®]
lm —=1lim —— =0
= flk(t)) t= g(t)

Then if (u, v) is a solution of the problem (1.1)-(1.3) with initial data (g, vg)
we have:
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i) (u, v) exists globally and
tlim w(x, t) = tlim v(x, t) =
uniformly i xe Q.

(ii) Moreover if

. sflk(H(s))] _ sglk M (K(s))]
lim —— <¢, or lim — <g,,
§—> ®© H(S) §—> ®© K(S)
where ¢, and cg are two positive constants, we also have
wx, ) =a®)(1+o0(l)) as t— o,
or
v(x,t) =pt) 1 +o(l)) as t—>x,

where H(s) and K(s) are the inverse functions of

S S

do do
d M( ): -
Y ko " ; lf ok ()]

respectively, a'(t) =f(B()), B' () = g(a?)) with a(0) =1, B(0) =k(1).

G(s) =

Proor. - (i) Put
w(x, t) = alt) + p@) f(Bt), 2@, t) =pE) + ypx) glat)),
with
a'(t) =A(B1)), a0)=1,
B'(@t) =Ag(a(t)),  p0) =k(1),

where 3 and A will be determined later. Since

© ©

ds f ds
® b

Ak Y gk )]
we have
(6.1) tlgrgc a(t) = tILn}o Bt) = .

We also have

0
8_7;0 — Lyw —f(z) =

JBO)A = Low) + ' (@) [ (B®) yp(x) — fBE)) — ylx) gla®)) £ (y),
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oz

— — Loz —g(w) =

3t 0 9

9(@@®)A — Loyp) + a' () g' (a®)) y(@) — gla®)) — p(@) f(BE) g’ (2),

with y € [B(t) + y(x) g(a(®))] and z e [a(?), at) + p(x) f(B(1))]. Let  be a po-
sitive solution of the following problem

3
A—Lyy=1-9, o = —9J.
ON,
Take A<1/2 and 6 = |Q]/(|2]| +|92|) — |L2]/(|2] +|382]|) A. Therefore the
function vy exists. Then, we obtain

ow

) — Lyw — f(z) = — of (B®)) + B @) [ (B@®)) () — y(@) gla®)) f' (),

)
=~ Loz g(w) = ~0g(a(t) +a’ (0 g (@(®) y(@) ~ y(@) fED)g’ @),
ow oz
G_NO = —of(p(1)), —0 = — dg(a(t)).
’ ’ -1
Since lim JM = lim M =0, there exists ;=0 such
that t=e flk(t)) t= e g(t)
ow

a_t _L()/M) _f(Z) <0 in Q x (tl, OO),

3
é—Loz—g(w)<0 i Qx(t, ©.

Since f and g are concave, there exists [ so small that

d
%_Lolw—f(lz)<0 in Qx(tly ©),

al
a—:—LOZz—g(lw)<O in Qx4 o),

w, 0) > lw(x, t), oz, 0) >lz(x, ty).
From the maximum principle we deduce that
tlim ulxe, t) = tlim v(x,t) = ©

uniformly in xe Q.
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(ii) Put
w (e, t) =a, () +y (@) f(B.1(D), z1(x, ) =B1(t) +y(®) gla,(t))

with

ai(t) = (1 - g) fB1@®), a(0)=1

and
Bit) = (1— g)gml(t)), B1(0) = k(1).
‘We have
o
S Lyw, - fea) =f(ﬁ1(t))(1 - —Lowl) "

(1 - %) Y1) f1(B1(1) gla () —f(B1() — v 1 (@) £ (y1) glai(t)),

o
% — Loz, — g(wy) :g(al(t))(l - % _Lo’/)l) +

(1 - g) 1@ g7 (@ (D) F B D) — glar(®) — 1 @) g7 @) B D),

j;’;: — 16, (1) zz”;; , jfvlo — gy () ‘Z]’/\’]; ,
with
e [Ba(), Br (1) + 1 (@) glas (1)]
and

zrela (), a; () + vy (x) f(B,1(D))].

Let v be a positive solution of the following problem:

0
S L= -o, Sr=-s

oN,

Y, exists if and only if 6 = |Q|/(|2| + |9L2]|)(&/2). If e=0 then 6 =0. Put
o(r)=|L21/(|2] +|92|)r. We have 6'(0) >0. Then for any £>0 small



400 THEODORE K. BONI

enough, it follows that 6(e/2) > 0. Therefore, we obtain

0
S Lowy —f() = = 8f(B1(0) +
(1 - g) Y@ fFB1®))gla @) =y (@) f(y1) glai(t)),
azl
5 — Loz, — g(wy) = — 0g(a (1)) +

(1 - 2) Y1) g (a1 (®) FBLD) — 1@ g @) fB1D)),

au)l _ E*)zl _
N, of(B1(1)), 3N, 0g(a, (1)) .

Then there exists 77 > 0 such that

0

S Ly @) <0 i @x(Ty, ),
9z, .
E—Lozl—g(w1)<0 in Qx (T, »),

ow,

<0 on 092X (T, ©),
0

9z

0

<0 on 9QXx (T, »).
Since lim u(x, t) = lim v(x, t) = o« uniformly in x e Q, there exists 7 > 0 such
that '~ o
wx, 7) >w (e, Ty), v(x, 1) >2 (2, T1).
From the maximum principle, we get
62) wex,t+)zw (e, t+T)=a,C+T)+y(x) [B,E+T))),
63)  vx,t+1)=2 (0, t+T) =B+ T))+ vy (x)gla(t+Ty)).

Put ws(x, 1) = ax(t) + pa(x) f(B2(t)), 22(x, 1) = F2(t) + y2(x) glax(t)) with
ajy(t) = (1+¢/2) f(B1(1)), az(0) =1 and S3(t) = (1 + &/2) gla,(t)), f2(0) =
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k(1). We have

3
O Ly~ fzy) = (B () (1 v £ —Low2) ¥
ot 2
(1 + g) Yo() 1 (B2(1) glas(t)) — f(B2(t)) — o) [ (ys) glas(t)),
%2 Loz — gwy) = glag®) (14 5 = Loy, +
" 022 — g(wy) = gla, ( 5 01/’2)
(1 ¥ 5) a9’ (@1 (0) fBaD) — glas(®) — p@) g’ @) fBaD),
9w2 . 31/)2 (92'2 _ 91/)2
aNO _f(al(t)) aN(), aNO _g(al(t)) aNO )
with
Yo € [2(1), B2(t) + a(x) glax(t))]
and

zoe [ay(t), as(t) +yq(x) f(B2(0))].

Let 5 be a positive solution of the following problem:

& 31/)2

J— —L = — y = —

5 02 u aN, U
Y, exists if and only if u = — (¢/2) | Q|/(| 2| + |0L2]). If € =0 then 6 =0. Put
u(ry = —r(|Q|/(|2| +|02])). Since u(¢/2) =3(—¢/2) and 6'(0) >0, it fol-
lows that u(e/2) < 0. Therefore, we obtain

E — Lowy — f(z5) = — uf(B(1)) +

(1 + g) Yo(@) [ (B2(8) glas () — o) f'(y2) glas(t)),

oz
8_152 — Lyzy — g(wy) = — uglo,(t)) +

(1 " %) () g’ (@s(®) FBo(D) — p(@) g (2) FB(1)),

awZ _ 822 _
aNO - ;uf(ﬁZ(t))a aNO = ﬂg(az(t)).

Since tlim wy(x, t) = tlim 25(x, t) = oo uniformly in x € Q, there exists 7, >0
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such that

wx, 7) <wy(x, Tp), v(x, 1) <z5(x, Ty).
From the maximum principle, we get
(6.4) (e, t+1) Swy(w, t +Ty) = ar(t+ To) + po(x) f(B2(t+Ty)),
6.5) v, t+71) <2, t+Ty) =Bt +Ty) + o) glas(t+ Ts)).
Therefore (u, v) exists globally. For any y >0, we have

a(t —y) _1

6.6) tgrolc a(t)

In fact, since a(t) is increasing and convex, we obtain
a(t) = yf(k(a(t))) < alt - y) < a(b).

Moreover since by hypothesis we have 0 < lim f[k(a(t))]/a(t) <c, lim 1/t=0,
we deduce that tlim aly —t)/a(t) =1. Ontﬁloé other hand, show é}Tacf for all

€ >0 small enough, we have

t
(6.7) l—C;—SSliminfa <li supal_() <1.

t— o a(t) t— a(t)

In fact

_ ) HE—(e2)1) _ HE®) ~ (@02) YIH®D)]
Tl H(t) ~ H(t) :

Since lim sf(k(H(s)))/H(s) < ¢y, we have the result. We also have

t t 3
©6.8) 1 < tim inf 29 < jim sup 229 <14 328
t=o  q(t) t—>o a(t) 2
In fact
t t 1
1 < lim inf o2(®) < lim su o2 (®) < < 3¢;¢ .

~ ~ +
t—=o<  a(t) t—oo alt) 1—(cp/2(1 — £/2)) 2
From (6.2)-(6.8), we deduce that for any & >0 small enough, we get
w(zx, t) u(zx, t)

(6.9) 1— ke <lim inf < lim sup
t—> o a(t t— o a(t

<1+ kye,

where k; and k, are two positive constants. Then we deduce that

wx,t) =a)(1+o0(l)) as t— .
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Making the same reasoning for v, we obtain
v(e, t) =) 1 +o0(1)) as t— oo,

which yields the result. =

REMARK 6.2. — Let f(s) =s", g(s) =s® with p; <1, ¢;<1. pyg; <1. We
have

1/(py+1)
k(s) = { p1+i } " s @+ DA+ 1)
q t
p1/(p1+1)
f(k(S)) = { zl :::i } o S(P1<11+191)/(p1+1),
1
@ /(py +1)
g(k’l(s)) = { qu—i } o gt ela+1)
P1

Moreover any solution (u, v) of the problem (1.1)-(1.3) initial data (u,, v,)
exists globally and

u(ac, t) B [( Py + 1 )pl/(p1+1>( 1 -mq )](le)/(lmql)

m —-———- S —
t— o t(l)1+1)/(1*plql) q1+1 1—|—p1

1)(90, t) [( q + 1 )ql/(p1+1>( 1 -maq )](1+q1)/(1p1q1)

m
tow ¢+ DAL= prg) p+1 1+q

7. — Blow up set.

In this section, we suppose that for positive values of s, the functions g;(s)
are positive, increasing and convex with ¢;(0) = 0. Under our hypotheses, lo-
cal existence and uniqueness of a classical solution for the problem (1.4)-(1.6)
up to some time T, can be found in [1]. Here, we are interested in the blow up
and blow up set of the solutions for the problem (1.4)-(1.6). We give some con-
ditions under which the solutions of the problem (1.4)-(1.6) blow up in a finite
time and describe their blow up set.

DEFINITION 7.1. — A function g(s) is called the convex minimal function of
the functions g;(s) if g(s) is positive, continuous, and piecewise convex with
9:(s) =g(s) n (0, ©) and g'(s) is positive and continuous in (0, «). We
write g(s) = em(g.(8), ..., gn($)).



404 THEODORE K. BONI

In an interval (a, 8) with a <pf, ae[0, «[ and S€]0, ], g(s) may
be constructed in the following manner:

If g;(s) =g;,(s) in (a, ), i=1, ..., m for a certain iye {1, ..., m} then
9(s) = 9;,(s).

If m =2 and g,(s) <g5(s) in ]a, sol, g1(s0) = g2(0), 91(s) > g2(s) in 15y, L,
then a line z = as — b with positive a, b may be taken to be tangent to g;(s) at
sie(a, sy)) and to g.(s) at s,e(sy, f) for some s;, s;. Then g(s) is given
by:

g(s)=g:1(s) in (a, sp),
g(s)=as—b in (sy, s2),
9(s) =g2(s) in  (sp, B).

If g;(s) = g»(s) has more than one solution in (a, 3), then cm(g;, g») may be
constructed by repeated use of the above construction. If m = 2, we construct
at first g5 = cm(gy, g-). After, we construct g3 = cmu(gi2, g3) by the method
described above and by iteration, we obtain g5, = cm(g12. 1 —1, 9n)- There-
fore we take g =¢12 -

Let m =2, g,(s) =sP?, go(s) =s9. If p>gq, then

cm(s?, s?) =s? for 0<s<s,
cm(s?, s?) =bs—c for s <s<s,,

cm(s?, s?) =s? for sy<s

where
. ( q )q/(p—q)(p_l )(q—l)/(p—q)
1= — —_— ,
P q-1
. (g)q/(p—q)( p—1 )(p—1>/(p—q>
p q-1
§1<1 <sy,

)

- D/p— (g=Dp—-D/p—¢q)
q(q(p )(p q))(p_l) q P P—q

- p(p(qfl)/(p*(n) qg-1

q ap/(p — @) (}0 _ 1)((1(1)71)/(10*(1))
N (5) (q_l)(p(qfl)/(p*q)) ’

c<b<c+1.

If p=gq, then cm(s?, s?) =s?.
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THEOREM 7.2. — Suppose that Loud” (%) — a(x)ui”(x) >0 and

[

f ds
< o,

Cm(gl(s)y ceey gm(s))

Then, any solution (uy, ..., u,,) of the problem (1.4)-(1.6) blows up i a finite
time T and there exists a positive constant O such that

ﬁ isupu(oc t) <G, (6(T—t))

i=1M zeQ

do
Cm(gl(a)a ceey gvn(a)) '

where G, is the inverse function of G .(s) = f

ProOF. — Let w;=wuy. Since Lou{’(x)—a(x)ui’(x) >0, we have
w;(x, 0) > 0. Therefore w; (1 =1, ..., m) satisfy the following relations
(7.1) wy — Low; = —ax) w; in 2x(0,T),
awi
(1.2) ~ +0(@) w;=gi (uj ) wiyy  on  92x(0,T),
0
(7.3) w;(x,0)>0 in Q.

From the maximum principle, there exists a number ¢ such that
(7.4) uy(e,t)=c>0 in QX (g, T)

for £, > 0. Put

(7.5) Ji(x, t) =uy — 0g; (w4 1) .

We have

(1.6)  Jip— Lods = (uyy — Lowuy); — 69 (wi y 1) (Ui 1y — Loti 1) +

8u- ou;
o) 3 ) S S

—a(x) J; +
au? +1 au1 +1

a(x) OoLg; (w; 1) ;1 — gi(u; 4 1)1+ Og/ (um) E a“’)( ) ——
owy O

)

(7.7

0
9i iy 1) i1+ 0b(@Ngi (Wi v 1) w1 — gi(ui 1)1 on 92 x (0, T).

Since for positive values of s, the functions g;(s) are convex with g;(0) =0
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from (7.6) and (7.7), we obtain
(7.8) Jit_LgJi‘f‘a(ﬁC)JiBO in Q X (0, T),

oJ;
(7.9) — +b@)J; =g/ (U 1)J;.1  on Q2 x (0, 7).
N,

From (7.4) and (7.5), take 6 small enough that

(7.10) Ji(x,e0)>0 in Q.
From the maximum principle, we have

(7.11) Uy = 09;(u; 1) In Q22X (g, D).

N

1
Put w(x, t) = — 2, u; and g(s) = em(g,(s), ..., gn(s)). From (7.11) and by
1

the m =
definition of g(s), we get

m

1
(7.12) wy, =0 Z —g(u; 1) = 0g(w).
1=1Mm
The inequality (7.12) implies that

(7.13) —(G () = —— 2.
g(w)
Integrating (7.13) over (&, T), it follows that

(T.14) © > G, (wx, £9)) 2G4 (w(x, €9) — Gy (W, T)) = (T — ).

This implies that T is finite and w blows up in a finite time 7. On the other
hand, integrating (7.13) over (¢, T'), we see that

(7.15) Gy, 1) 26w, ) -Gy (wx, T)) =0T - t).

Since G, is decreasing, then its inverse function G, is also decreasing and
from (7.15), we obtain

w(x, 1) < G,[(T —1)],

which gives the result. =

THEOREM 7.3. — Under the hypotheses of Theorem 7.2, suppose that
there exists a positive constant C, such that

s9'(G,(s))<Cy for s>0

where g(s) = cm(g1(8), ..., gn(8)). Then any solution (u,, ..., u,) of the
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problem (1.4)-(1.6) blows up in a finite time T and Epc o2, where Epy
is the blow up set of the solution (uy, ..., Uy).

ProOF. — By Theorem 7.2, we know that (u,, ..., u,,) blows up in a finite
time 7. Thus our aim in this proof is to show that EzcdQ. Let d(x) =
dist (x, 0R2) and v(x) = d?(x) for x e N,(82) where

N.(02) = {x e 2 such that d(x) <e}.
Since 99 is of class CZ, then the function v(x) € C%(N,(9Q)) if ¢ is sufficiently

small. On 9092, we have

Lov— — Co E a“’)(ac)v

vV oi,j=1

n n 3 (0)
Zaz‘ﬂ)(mmﬁE(E % (x))v G Za“’)v

i=1\Jj axj Vi, j=1

(L 800 () N
ZELL(O)(%)-I-ZOZZ(EU— d, —4C, E ai(jO)(x) dxidsz
Ghj=1 "~ '

1171890]-

n (0)(90)
—2 2 100 (@) | —2d Z Z ‘|Vd| 4C, A0 |Vd|?

o
where d' = sup |lx — y||. Therefore, there exists a positive constant C; such
that re,yeQ
CO n
(7.16) Lov—— 2 af’v,v,=-C;  on 99.
vV oi,j=1

Since ve C%(N,(8Q)) for e sufficiently small, let &, be so small that

C -
(7.17) Lyv— =2 Z afv,v,= -2C, in N, (5.

vV oi,j=1

We extend v to a function of class C%(Q) such that v = Cj > 0in Q — N, ,(09).
Therefore, we deduce that

C _
(7.18) Lyv— =2 Z oV @) v,0, =~ C* in O
vV oi,j=1

for some C* > 0. Multiplying (7.18) by € small enough, we may assume without
loss of generality that C* <1. Put w,(x, t) = C,G,(r) where 7= o(v(x) +
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C*(T—t)) and C;>1 is a constant which will be indicated later. We get

!I( )
(719) Wy — Low, = — 6C, Gp’(r)[C* + Lov + & Z al" () fu%%]
T) i,j=1
Since G,(s) is the inverse function of G(s), we have G, (s) = — g(G,(s)) and

G,(s)=—G,(s)g'(G,(s)). Consequently
(720) Wy — Loyw, = 6Clg(Gp(s))[C* + Lov—0g' (G, (1) 2, ai” (@) vxivxf] :
ig=1 :

Since sg' (G,(s)) < C, for s >0, using the fact that g’ (G,(s)) is a decreasing
function (g9’ is increasing and G, is decreasing), we have

(721) Wy — Lyw 4 = 0C, g(G, (7)) [C* + Lov — 0 2 a1§°>(oc) v, v%]
vV oi,j=1

Therefore from (7.18), we deduce that

(7.22) Wyt —Lowye +a(x) w, =0 in QX (g, ).

On 392, we have w,(x, t) = C,G,(6C*(T —t)) > G, (6(T — t)) because C; > 1
and C* <1. Then by Theorem 7.2, we obtain

moq
(7.23) wy(e,t)> 2 —u;(x,t) on 32X (g, T).
=1 m

Choose C; large enough that

m

1
(124)  wy(x, e9) =C,G,(6(w(x) + C*(T —¢y))) > ; %ui(x, €9)

Consequently, from the maximum principle we deduce that

1
> —u(x,t) <wy(x,t) in QX (g4, D).

i=1

Then if Q'cc 2 we have

m

21 iui(ac, t) < C,G,(6(w(w) + C*(T - 1)) < C, G, (dv(x)).
i=1m

It follows that

m 1
> sup (2, ) < sup C, G, (0v(x)) < =,
i=1M 2eQ',teleg, T) reQ’

which yields the result. m
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COROLLARY 7.4. — Let g;(s) = sP, where p; > 1. Suppose that Lyui?(x) —
a(x)us’(x) >0. Then any solution (uy, ..., u,) of the problem (1.4)-(1.6)
blows up 1 a finite time and we have Egc 022 where Ey is the blow up set of
the solution (uy, ..., Uy,).
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