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On the Groups @7 of a Sphere.

S. DRAGOTTI - G. MAGRO - L. PARLATO (*)

Sunto. - In questo articolo studiamo i gruppi ©F di una sfera S™ e proviamo che il
gruppo OF (S ", x) e isomorfo all’ennesimo gruppo di omotopia di (S", xy), nell’i-
potest che F sta una classe coconnessa di links ammissibili.

Introduction.

This paper is concerned with the properties of a functor @7 associated to a
manifold class &, and its action on standard spaces.

A manifold class is a graded collection F = {J;,}), >, of compact polyhedra,
defined up to a PL-isomorphism, closed under link and join, and such that S°e
Jp (8™ = standard PL-sphere).

The collection C of the geometric cycles without boundary is so, and for
each F such that 7 = {S°} we have F¢ C.

The collection P.£ of the standard PL-spheres is so, and P.£ ¢ &F for each
manifold class F.

A polyhedron X e &, is called F,-sphere, a polyhedron P of the form X —
st(x, X) is called F-pseudodise. Fj-spheres and Jj-pseudodises are allowable
links for a theory of generalized manifolds: the J~manifolds, and a subsequent
cobordism theory: the F-cobordism.

A manifold class J with some additional property determines geometrical-
ly a covariant functor @7 which assigns to every pointed pair of topological
spaces (X, A, x,) a graded group ®7(X, A, x,), just as PL determines the
classical functor s using Fspheres and J-pseudodiscs instead of PL-spheres
and discs, and just as C determines the classical homology functor H (see [3],
[9D.

Every O©7 satisfies the first six axioms of E.S. (excision is excluded).

If FcF there exists a canonical homomorphism (forgetful) of graded
groups 1/) 7.5 07 (X, A, x,) =07 (X, A, x,) which allows to factorize the

(*) 1991 Mathematics Subject Classification: 55 P 65, 57 Q 20, 55 P 40.
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338 S. DRAGOTTI - G. MAGRO - L. PARLATO

classical Hurewicz homomorphism

Vog e
ﬂ(Xa xO) — H(Xa 900)
(1) 7/) PEL, ;7\ /’w T, C
@5(X’ 900)

About the groups @7 associated to a standard PL-sphere S"(n=2) we
know them of dimension smaller than »: they are the null group. This follows,
by some easy expedient, from the (% — 1)-connectivity of S™. Almost nothing is
known about this groups. It is natural to expect that @7 (S", #) is isomorphic
to Z (as it happens for homotopy and homology). It is rather surprising that

this is not true: in [6] is given a manifold class J such that the forgetful homo-
morphism ¥ 3 e: O7(S", *)—H,S", ) is an epimorphism not injective,
and hence @7(S", %) cannot be isomorphic to Z.

In this paper we prove that @3 (S", # ) =Z in the case which F satisfies the
additional property called coconnection (definition in 2). However this condi-
tion is sufficient but not necessary because the class € of the geometric cycles
is not coconnected (but @5(S™, *)=H,(S", *)=2!).

The metod of doing the result is that to prove that for X = S” and n =1 the
homomorphism y g¢ 5t 7,(S", *)— ©7(S", %) of the commutative diagram
(1) is an isomorphism (theorem 3.2). Being in this case ¢ 4, 5 injective, it suf-
fices to prove only that it is onto. This is achieved by using the surjectivity of
the map s which in the classical homotopy theory is called suspension
homomorphism

OF (8" 1, ) < OI(D", S" 1, 1)) >@I(S", D", wy) < O7(S", wy)

S=j710i0371

where the boundary homomorphism 0 and j also are isomorphisms by stan-
dard properties of the involved spaces and by the homotopy and exacteness
axioms of ©7.

Hence, the probleme is again reduced to state that the homomorphism ¢ is
onto (theorem 3.1).

If we exclude the above discussion and a few others, the tecniques em-
ployed are entirely geometric (lemma 2.1 and theorem 3.1 also).

The original construction of the functor ®7 is developed in [3]. The papers
[4], [5], [6] contain more closely investigations about their basic properties,
and their behaviour in interesting special cases.

In order to make the current paper self-contained enough that the main
results can be understood we include a section that provides the definition of
the functors @7,



ON THE GROUPS @7 OF A SPHERE 339

1. — The functor associated to a manifold class.

A manifold class & is said to be connected if the polyhedron obtained at-
taching two Jj-pseudodiscs, by a PL-homeomorphism between their bound-
aries (if there exists), is an J,-sphere.

Let Fbe a connected manifold class such that & = {S°}. The last hypothe-
sis implies that any J~manifold M is a geometric cycle, so it makes sense to de-
fine M to be orientable if M is orientable as geometric cycle. If M denotes an
oriented Fmanifold, then —M will denote the same manifold with the oppo-
site orientation.

An Fcobordism between two oriented j-spheres ¥ and X, is an oriented
F-manifold W such that:

a) OW is the disjoint union of ¥; and —2,;
b) WUc¢, %X,Uc, *3, is an Jy, ., -sphere.

An Fcobordism between two oriented F,-pseudodiscs P; and P, is an ori-
ented Jmanifold W such that:

a') W= P;UP,UW,, where W, is a cobordism between oP; and 9Ps;
b') WU ¢ % PyUc, % Py is an J;,, -pseudodisc.

Let (X, x,) be a pointed topological space. A singular F-sphere of (X, x,) is
a triple (X, 4, f), where X is an oriented Fsphere, 4 X is a top dimensional
simplex and f:(X, 4)— (X, x,) a continuous map.

Two singular JF-spheres (X, 44, f;) and (X5, 45, f) are said J-cobor-
dant if there exists a triple (W, W', g), called J-cobordism, where W is an
cobordism between X; and 2,, W' cW is a PL-disc such that W' NX,=4;,
i=12 , and g : (W, W') — (X, x,) is a continuous map, such that: g/>; =1,
i=12.

The Fcobordism between J-spheres in an equivalence relation.

Let ©7(X, x,) denote the set of the J-cobordism classes of singular J-
spheres of (X, x).

As in the case of the homotopy theory we can geometrically define an addi-
tion in ®7(X, x,) (h=1) which give a group structure.

Let (X, A) be a pair of topological spaces and let x, be a point of A. By rela-
tive J;-sphere of (X, A, x,) we mean a triple (P, 4, f), where P is an oriented
Fy,-pseudodise, A P is a top-dimensional simplex meeting 9P in a top-dimen-
sional simplex, and f:(P, 4) — (X, x,) is a map which carries oP to A.

Given a relative ;-sphere (P, 4, f) of (X, A, xy), (3P, ANJP, f/) is a
singular &, _;-sphere of (A, x,) which will be denoted by (P, 4, f).

Two relative J-spheres (P;, 4,, ¢g;), i=1,2, of (X, A, x,) are called J-
cobordant if there exists a triple (V, V', G) where V is an J-cobordism
between P; and P,, V'cV a &PL-cobordism between A; and A,, and
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G:(V,V')— (X, xy) is a continuous map such that the following conditions
hold:

(1) V’ N P{ =Ai, i:1,2,

(2) Let W=38V— (P,UP,)® and W’ =WNV'. Then (W, W', G/) is
an J-cobordism between (P;, 4+, g;) and (Ps, A4, g;) With G(W) CA.

The J-cobordism between relative spheres is an equivalence relation.

Let ®7(X, A, x,) denote the set of the F-cobordism classes of relative -
spheres of (X, A, x,). As before, we can introduce in @7 (X, A, x,) (m=2) a
group structure.

Given a continuous map f: (X, A, xy) — (Y, B, y,), we can define, for each
h =2, a homomorphism @7(f): OJ(X, A, xy) > O (Y, B, y,) by setting

O (NP, 4, 1) = [(P, 4, fog].

As proved in [3] the definitions above recalled allow us to build a covariant
functor, from the cathegory of pointed pairs of topological spaces to the cathe-
gory of graded groups, satisfying the first six axioms of Eilenberg and Steen-
rod (excision is excluded).

2. — A geometric lemma.

Our theorem 3.1 depends on a geometric result which allows to engulf (in-
clude into a PL-disc) a finite subset of a compact, connected Fmanifold in the
case when & satisfies an additional axiom.

In order to state and prove the lemma involved (and theorem 3.1 again) a
few preliminary results are necessary. We reporte these briefly. For details
and proofs, see [2].

DEFINITION. — A manifold class Fis said to be coconnected if for every F,-
(¢}

sphere X and J-pseudodisc PcX, the polyhedron X — P is an J-pseu-
dodisc.

PROPOSITION a. — Let F be a connected, coconnected manifold class. All the
F-spheres and F-pseudodiscs of positive dimension are connected. The only
Fo-sphere is S°.

PROPOSITION b. — Let F be a connected, coconnected manifold class, and let
P'cP be F-pseudodiscs such that OP N OP' =P" is an F,_ -pseudodisc,

then the polyhedron P — (P'UP") is an JF,-pseudodisc.

O P stands for P — oP.
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PROPOSITION ¢. — Let F be a connected, coconnected manifold class. The
cylinder P x I on an F,_q-pseudodisc P is an F-pseudodisc.

PROPOSITION d. — Let F be a connected, coconnected manifold class and let
M’ c M be two JF-manifolds such that M' N OM is the empty set or an T, ;-
manifold of M, then the polyhedron M —intM' is an F-manifold.

Now we prove the announced result

LEMMA 2.1. — Let M be a compact, connected F-manifold, where Fis a con-
nected, coconnected manifold class. If x, y are regular® points of M, there
exists a regular polygonal path X in M from x to y which meets the boundary
OM of M at most in x, y.

Proor. — We use induction on the dimension m of M. By the Proposition a,
it follows that 7°= {S°}, §' = {S'} and hence an Fmanifold of dimension 1
or 2 is a PL-manifold, then the assertion is true for m=1,2.

Assume the result for m < & — 1 and let M be a compact, connected Fman-
ifold of dimension % and x, y regular points of M. Being M a connected polyhe-
dron, there exists a triangulation L of M and a simplicial path of L, Y, joining
x and y. Let x =v,, ..., v, =y be the vertices of Y. If Y satisfies the required
properties, we take this. If not, we can modify Y as follows. The 1-simplex
v; _1v; certainly lies in the boundary of some top-dimensional simplex o; of L,
then we can replace v;_,v; by the polygonal path v;_;b;v; where b; is the
barycentre of o;.

We repeat that for all the line segments of Y. So, we obtain a polygonal
path

Z = 'Uobl'l)lbz'l)z...'vr
@ A point x e M is said to be regular if link (x, M) is PL-homeomorphic to a stan-

dard PL-sphere or PL-disc. A subset X is said to be regular if all their points are regular
points.
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joining again x and y and such that all the pointos of Z different from the ver-
tices v; are regular points and lies in interior M of M.

If necessary, we modifie Z as follows: let v; be a «bad» vertex of Z and let L;
its link in the first barycentric subdivision L' of L. By Proposition a, L; is a
connected &, _;-manifold (sphere or pseudodise) for which our induction hy-
pothesis holds. So, there exists a regular polygonal path X;c L; joining b; and

by

The points of X; are regular also in M, because L; is bicollared in M. More-
over the points of X; are interior to L; and hence to M, because L; N M =
oL;.

Then we replace the polygonal path b;v;b; ., by the polygonal path X;. We
repeat that for all vertices of Z for which it is necessary, and finally we obtain
a polygonal path X which satisfies our requests. So the inductive step is

established. =

REMARK. — The polygonal path X of the above lemma can be arranged,
merely by cutting loops, so that it is collapsible.

On the other hand, being the points of X all regular, a regular neighbour-
hood N of X in M is a PL-manifold. Hence, if X is collapsible, N is a
PL-disc.

3. — The main theorem.

Let Io)iZ and D" be the nort}gern and the southern hemispheres of S” (n =
2), p1 € D% the north pole, p, e D" the south pole, and let x, be a fixed point of
S"'=D.=D".

Consider the pointed pairs (D7, S" "1, x), (S™—ps, S™ — (p; U py), 2)
and for each i =2 the diagram

o

07Dy, 8", x) — O _1(S" 1, 1)
\l/il \le

F 9 F
05 (S" = p2, S" = (p1Upy), @) — O _1(S", —(p1 Upy), &))
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where the vertical maps are induced by inclusion maps. Because D and S™ —
ps, are contractible, the homotopy and the exactness axioms of the functor @7
assure that the connecting homomorphisms 9;, 9, are isomorphisms. More-
over S" ! is a strong deformation retract of S” — (p; U p,), and hence j; is an
isomorphism. From the trivial commutativity of the above diagram it follows
that 7; is an isomorphsm.

A similar argument for the pointed pairs (S", D", x), (S", S" — py, a)
shows that for each & =2 also the homomorphism

iy: @7(S", D", xy) > O7(S", S" — py, xy)

is an isomorphism.
These two results provide a convenient approach to prove the follow-
ing

THEOREM 3.1. — Let F be a connected, coconnected manifold class. For each
n=2 the homomorphism i: @I(D", S" ' xy)—>OI(S", D", x,) induced
by inclusion is onto.

PrROOF. — For each & =2 we can consider the commutative diagram

OTDL, 8" 1, 1)) —> OF(S" — gy 8" — (py U p), i)
i\L ' l]
O7(S", D", x)) —  O(S",8"—py, =

where j is induced by inclusion. Being 7; and %, isomorphisms, to prove that ¢ is
onto it is equivalent to prove that j is onto.
Then, we now show that if & =n the homomorphism

J: @;T(S”—pz, S" = (p1 Upy), xo)*@g(sﬂ, S" = p1, )

is onto.

Let a be any element of ©@3(S™, S™ — p, x,) and let (P, 4, f) be a repre-
sentative triple of «, that is f: P—S", f(oP)cS" — p;, f(4) = x,. Up to a ho-
motopy we can suppose that fis a simplicial map, p; is the barycentre of an n-
simplex 7 of S, and also p, is the barycentre of an n-simplex o.

We need a representative element (P', A', f') of a such that f"(P')cC
S" = pg, fT(OP")CS" = (py Ups), f'(4") = .

If f1(p,) =0, we take P'=P, A" =4, f =f.

If not, being f a simplicial map, f~!(p,) consists of a finite number of regu-
lar points by, ..., b,: the barycentres of the top dimensional simplexes
gy, ..., 0, of the triangulation of P such that f(o,) =... =f(0,) =0.

Similary f~!(p;) consists at most of a finite number of regular points: the
barycentres of the n-simplexes 7, ..., T, such that f(r,) =... =f(7,) = 1.
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Let M =P — . 1U %l’ (ZI U N aP)), where t) ¢ %z- Since P is a connected

polyhedron (see Prop. a), and also 7; is connected (because n = 2), the polyhe-
dron M is a connected Fmanifold (Prop. d).

Let b a regular point of 0P —A4. Since f(b) #p;, then be M NoPcC
oM.

By lemma 2.1 and relative remark, there exists a regular and collapsible
polygonal path X joining the points by, ..., b,, b such that X —bcM — oM ,
and hence f(X)cS" —p;.

Standard arguments of PL-topology assure that an e-neighbourhood of X
is a PL-disc D, and there exists ¢ > 0 sufficiently small so that such a disc
satisfies

fD)cS" = pr.

Obviously f(aD)cS™ — (p; U ps).
DNoM=DnNAoPis a PL-disc D', the star of b in dP, then (Prop. b) the
polyhedron P — (D U D’) is an J-pseudodise P,

and we have f(P')cS" — p, (because D2X2f 1(ps)).

F(3P") = f(3PUBD — D) cS" — (p; U py).

Finally, being AcP’, the triple (P', 4, fp:) determines an element S of
O7(S" —pg, 8" = (p1 U ps), ).

In order to prove that j(8) = a it remains to construct an J-cobordism
(V, V', G) between (P, 4, f) and (P', 4, fip').

Let V=PxI, V'=4Xx1I and G=fx1id. Being g(0V—-(PUP")cS" -
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P, by Prop. c it is straightforward to verify that the triple (P X I, 4 x I, fx
id) satisfies the required conditions. ™

Now we are able to prove the following

THEOREM 3.2. — Let F be a connected, coconnected manifold class. The for-
getful homomorphism o g 52 7, (S™, xg) = OT(S", x,) is an isomorphism
for each m=1. Hence ©(S", xy) is isomorphic to Z.

ProoF. — Consider the commutative diagram (see introduction)

Voe e

nn(S”’, 900) e Hn(sn7 .%'0)
Yoe 7N 7Yge
@g(sny 96'0)

In this case the Hurewicz homomorphism v ¢¢ ¢ is an isomorphism for each
n =1, and hence 9 4, 7 is injective.

Then, in order to state the assert, we only need to show that ¢ »¢ 5is onto.
That is: for any element a e @J(S", x,) there exists a representative triple of
the form (S”, 4, f).

This is trivial if % =1, because by Prop. a it follows F'= {S'}.

Now we suppose n =2. The theorem 3.1 assures that the suspension
homomorphism

s=j loiod ™! O _1(S" 1, 1) > O5(S", x,)

is onto (j, @ are isomorphisms).
On the other hand we can observe that s may be geometrically regarded as
follows

s([2, 4, fD) =[sz, 4", f']

(s stands for suspension of X), where f’ is the map (homotopic to sf) which
coincides with f X id on a bicollar C of ¥ in s> and with sf elsewhere, and 4" is a
top dimensional simplex of C' contained in A4 x I.

Then the assert follows by induction. =

Our approach to problem has the incidental avantage of proving the
following

COROLLARY 3.3. — The suspension homomorphism s: @3 _(S" "1, xy) —
O7(S", x,) is an isomorphism.
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ProorF. — A homomorphism of Z onto itself is necessary an isomor-
phism. =
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