A. CIAMPELLA

Modular invariant theory and the iterated total power operation

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_2_325_0>
Modular invariant theory
and the iterated total power operation.

A. CIAMPPELLA (*)

1. – Introduction.

Fix an odd prime \(p \) and let \(H^* \) be the reduced ordinary cohomology theory over \(F_p \) the Galois field of order \(p \). The Steenrod algebra \(\mathcal{A}_p \) is the algebra of all stable operations in \(H^* \). Its generators \(\beta, P^i, i \geq 0 \), can be defined through the ring homomorphism

\[
T : H^*(X) \to H^*(\mathbb{Z}/p) \otimes H^*(X),
\]

where \(X \) is a CW complex. As it is well known, the cohomology ring of an elementary abelian \(p \)-group of rank \(m \) is

\[
H^*((\mathbb{Z}/p)^m) = E[x_1, \ldots, x_m] \otimes F_p[y_1, \ldots, y_m],
\]

where \(E[x_1, \ldots, x_m] \) is the exterior algebra on \(m \) generators \(x_1, \ldots, x_m \), each having degree 1, and \(F_p[y_1, \ldots, y_m] \) is a polynomial ring with generators \(y_1, \ldots, y_m \) in grading 2.

\(T \) is known as the total power operation and it has been extensively studied by Steenrod in [10]:

\[
T(z) = \mu(q) \sum_{\epsilon = 0, 1} (-1)^{\epsilon + i} x_1^\epsilon y_1^{(q - 2i)h - \epsilon} \otimes \beta^\epsilon P^i(z),
\]

where \(z \in H^q(X), \ h = (p - 1)/2, \ \mu(q) = (h!)^q(-1)^{hq(q - 1)/2} \). Other operations

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.
are obtained by iterating T. For each $m \geq 1$, we have
\[T_m : H^*(X) \to H^* ((\mathbb{Z}/p)^m) \otimes H^*(X), \]
which multiplies the degrees by p^m. There is a natural action of $GL_m = GL(m, \mathbb{F}_p)$ upon $H^* ((\mathbb{Z}/p)^m)$ and the invariant elements rings are closely related to \mathcal{C}_p; in fact, from the geometric construction of T_m, it follows that
\[\text{Im}(T_m) \subset (H^* ((\mathbb{Z}/p)^m))^{\bar{SL}_m}, \]
\bar{SL}_m being the subgroup consisting of those matrices $\omega \in GL_m$ such that $(\det \omega)^h = 1$. Fixed any linear basis \mathcal{B} in \mathcal{C}_p, we get an expression of the form
\[T_m(z) = \sum_{b \in \mathcal{B}} f(b) \otimes b(z), \]
with $f(b) \in H^* ((\mathbb{Z}/p)^m)^{\bar{SL}_m}$. The coefficients $f(b)$ have been computed when $\mathcal{B} = \mathcal{B}_{\text{Mil}}$, the Milnor basis of \mathcal{C}_p (see [8]). After recalling some basic facts about the geometric setting of \mathcal{C}_p and the modular invariant theory in Section 1, in Section 2 we consider the basis \mathcal{B}_{Adm} of admissible monomials and show how the coefficients $f(b)$ appear when $m = 2$. (The case $p = 2$ has been treated in [4]). The last Section is devoted to providing another proof of the normalized version of Mùi’s Theorem [3, Th. 2.9]. We proceed in a way analogous to [6], where the case $p = 2$ has been dealt with. In our case, the corresponding sequence of maps is $\delta_m : \mathcal{C}_p^* \to \Delta_m$, where $\Delta_m = \Phi_m^{H_m}$. Here Φ_m is the localization of $H^* ((\mathbb{Z}/p)^m)$ out of its Euler class e_m and B_m is the Borel subgroup of GL_m.

Part of the content of this paper has been exposed in a communication during the XVI Congresso dell’Unione Matematica Italiana. I would like to thank the UMI Scientific Committee for inviting me and Prof. L. Lomonaco who has helped me with criticism and useful suggestions.

This work has been supported by the «Progetto Giovani Ricercatori».

2. – Preliminaries.

Let A_p be the alternating group on \mathbb{F}_p^m, G an even permutation group containing an elementary abelian p – group of rank m, and X a based CW complex. So we have the Steenrod power map
\[P_G : H^q(X) \to H^{p^m q} (EG^+ \wedge_G X^{(p^m)}), \]
which sends \(z \) to \(1 \otimes z^m \) at the cochain level, the diagonal homomorphism:

\[
d^G_\delta : H^*(EG^+ \wedge_G X^{(p^m)}) \to H^*(BG) \otimes H^*(X),
\]

induced by the \(G \)-homomorphism

\[
EG^+ \wedge_G X \to EG^+ \wedge_G X^{(p^m)}
\]

via the diagonal \(X \to X^{(p^m)} \) \((H^*(EG^+ \wedge_G X) = H^*(BG) \otimes H^*(X) \) by the Künneth formula,) and the restriction homomorphism

\[
\text{Res}((\mathbb{Z}/p)^m, G) : H^*(G) \to H^*(\mathbb{Z}/p)^m)
\]

induced by the inclusion \((\mathbb{Z}/p)^m \subset G\). The resulting composition of these three homomorphisms does not depend on the group \(G \) containing \((\mathbb{Z}/p)^m\) and contained in \(A_{p^m} \); it gives rise to the iterated total power operation \(T_{p^m} \). The fact that \(\text{Im}(T_{p^m}) \subset H^*((\mathbb{Z}/p)^m)^{SL_{p^m}} \otimes H^*(X) \) comes from the construction above.

We need to recall some facts about modular invariant theory. Let

\[
V_k = \prod_{i=1}^k (\lambda_1 y_1 + \cdots + \lambda_{k-1} y_{k-1} + y_k),
\]

\[
L_m = V_1 \cdots V_m, \quad \tilde{L}_m = L_m^k, \quad Q_{m,s} = Q_{m-1,s} V_m^{p^{-k}} + Q_{m-1,s-1};
\]

conventionally, \(Q_{s,s} = 1 \) for each \(s \geq 0 \) and \(Q_{m,s} = 0 \) if either \(s < 0 \) or \(s > m \). The \(Q_{m,s} \), called Dickson’s invariants, arise when we consider the polynomial part of \(H^*((\mathbb{Z}/p)^m) \). Concerning with the exterior part, we set

\[
[k; e_{k+1}, \ldots, e_m] = \frac{1}{k!} \det \begin{pmatrix}
x_1 & \cdots & x_m \\
\vdots & \ddots & \vdots \\
x_1 & \cdots & x_m \\
y_1^{p_{e_k+1}} & \cdots & y_m^{p_{e_k+1}} \\
\vdots & \ddots & \vdots \\
y_1^{p_{e_m}} & \cdots & y_m^{p_{e_m}}
\end{pmatrix},
\]

where \(e_{k+1}, \ldots, e_m \) are non negative integers, \(0 \leq k \leq m \), and \(M_m; s_1, \ldots, s_k = [k; 0, 1, \ldots, \bar{s}_1, \ldots, \bar{s}_k, \ldots, m-1]. \) As usual, \(\bar{s}_j \) means that \(s_j \) is omitted. We have

\[
M_m^2; s_1 = 0; \quad M_m; s_1 \cdots M_m; s_k = (-1)^{k(k-1)/2} M_m; s_1, \ldots, s_k L_m^{k-1},
\]
where $0 \leq s_1 < \ldots < s_k \leq m - 1$. We set

$$M_m; s_1, \ldots, s_k = M_m; s_1, \ldots, s_k L_m^{k-1}, \quad R_m; s_1, \ldots, s_k = M_m; s_1, \ldots, s_k L_m^{p-2}$$

and

$$e_m = \prod (\lambda_1 y_1 + \ldots + \lambda_m y_m) \quad \text{(the Euler class)},$$

where the product runs over all nontrivial m-tuples of elements of \mathbb{F}_p. We observe that

$$Q_m, 0 = \tilde{L}_m^{p-1} = \tilde{L}_m^2 = (-1)^m e_m.$$

We invert the Euler class in $H^*((\mathbb{Z}/p)^m)$ and get the ring

$$\Phi_m = H^*((\mathbb{Z}/p)^m)[e_m^{-1}]$$

upon which the action of GL_m on $H^*((\mathbb{Z}/p)^m)$ extends. As it is well known:

$$\Gamma_m = \Phi_m^{GL_m} = E[R_m; 0, \ldots, R_m; m-1] \otimes F_p[Q_m, 0, Q_m, 1, \ldots, Q_m, m-1],$$

$$\tilde{\Gamma}_m = \Phi_m^{SL_m} = E[\tilde{M}_m; 0, \ldots, \tilde{M}_m; m-1] \otimes F_p[\tilde{L}_m^2, Q_m, 1, \ldots, Q_m, m-1].$$

In Φ_m, we have defined particular elements which can be assumed as generators of $\Phi_m^{B_m}$. We set:

$$v_1 = V_1, \quad v_{k+1} = V_{k+1}/Q_k, 0, \quad k \geq 0$$

$$u_k = M_{k, k-1}/(v_1^{p-1} v_2^{p-2} \ldots v_k v_k), \quad k \geq 1;$$

the gradings of v_k and u_k are 2 and -1 respectively.

The following relations hold:

$$V_k = v_1^{(p-1)p^{k-2}} v_2^{(p-1)p^{k-3}} \ldots v_k^{(p-1)} v_k$$

$$L_k = v_1^{p-1} v_2^{p-2} \ldots v_k^{p-1} v_k.$$

Further, let w_k be v_k^{p-1}.

Proposition 1. — $\Phi_m^{B_m} \cong E[u_1, \ldots, u_m] \otimes F_p[w_1^{\pm 1}, \ldots, w_m^{\pm 1}].$

Proof. — From [5, Prop. 7.5], we know that $\Phi_m^{B_m} \cong E[N_1, \ldots, N_m] \otimes F_p[W_1^{\pm 1}, \ldots, W_m^{\pm 1}],$
where $N_k = L_k^{p-1} M_{k; k-1}$ and $W_k = V_k^{p-1}$. Easy calculations lead to
\[W_1 = w_1 \]
\[W_k = (W_1 \ldots W_{k-1})^{p-1} w_k \]
\[N_k = u_k W_k. \]

From [9, Lemma 5.4], we know that
\[M_{m; s} = \sum_{r = s+1}^{m} M_{r; r-1} V_{r+1} \ldots V_m Q_{r-1}, s. \]
Combining this relation with the second of (1) and the (2), we get:
\[R_{m; s} = M_{m; s} L_m^{p-1} = Q_{m, 0} \sum_{r = s+1}^{m} \frac{M_{r; r-1}}{v_1^{p-1} v_2^{p-2} \ldots v_{r-1}^{p-1} v_r} Q_{r-1}, s \]
\[= Q_{m, 0} \sum_{r = s+1}^{m} u_r \frac{V_r}{v_r} Q_{r-1}, s = Q_{m, 0} \sum_{r = s+1}^{m} u_r Q_{r-1}^{-1} Q_{r-1}, s. \]

3. – On the double power operation.

From [8], we know the coefficients $f(b)$ when $B = B_{Mil}$. Mûi’s Theorem reads as follows:

Theorem 2. – ([8, 1.3]) Let $z \in H^q(X), s = (s_0, \ldots, s_k), 1 \leq s_0 < \ldots < s_k \leq m, R = (r_1, \ldots, r_m)$. Then
\[T_m(z) = \mu(q)^m \sum_{S, R} (-1)^{r(S, R)} R_{m, s_0} \ldots R_{m, s_k} Q_{m, 0}^{r_0} \ldots Q_{m, m-1}^{r_m} \otimes St^S, R(z), \]
where $r_0 = -k - (r_1 + \ldots + r_m)$, $r(S, R) = k + s_1 + \ldots + s_k + r_1 + 2r_2 + \ldots + mr_m$ and $St^S, R \in B_{Mil}$ (see below).

In [2] the coefficients $f(b)$ in the double iterated total power operation are computed when we choose in \mathfrak{cl}_p the classical basis B_{Adm}. We adopt the abbreviated notation $P^I = \beta_{\varepsilon_1} P^I_{t_1} \beta_{\varepsilon_2} P^I_{t_2}$ for a typical monomial in \mathfrak{cl}_p, where $I = (\varepsilon_1, t_1, \ldots, \varepsilon_k, t_k)$ is a multi-index whose entries ε_i are 0 or 1 and t_i are positive integers (possibly $t_k = 0$ if $\varepsilon_k = 1$). The length of P^I is k if $t_k \neq 0$; it is $k - 1$ if $t_k = 0$ and $\varepsilon_k = 1$. A monomial P^I belongs to B_{Adm} if $t_j \geq pt_{j+1} + \varepsilon_{j+1}$ for each $1 \leq j \leq k - 1$. Then an admissible monomial of length 2 is of the form $\beta_{\varepsilon_1} P^{pt+\varepsilon_2+\alpha} \beta_{\varepsilon_2} P^I$, where $\alpha, t \geq 0$ and $\varepsilon_1, \varepsilon_2 = 0, 1$. Leading to the admissible basis, the Adem relations play an important role in determining the $f(b)$, together with comparisons of coefficients in suitable power series.
THEOREM 3. – ([2]) For each \(z \in H^q(X) \), \(X \) a CW complex, \(q \geq 0 \), we have:

\[
T_2(z) = \mu(q)^2 T_2^q \sum_{i, a, i} (-1)^{a+i} Q_{2,0}^{\alpha-p_i-t-a-1} Q_{2,1}^{a-p_i-t-i-1}.
\]

As we can see, the combinatorics involved is complicated since the double iteration. Consider \(\mathbf{c}_p \) as graded by the length of monomials. In grading 2, it suffices to apply once the Adem relations in order to get the admissible expression of any monomial. A similar procedure does not apply to upper length monomials, since there are not explicit non-recursive formulas, neither to obtain an admissible expression of any monomial of length \(k > 2 \), nor to convert a Milnor basis element to the basis \(B_{\text{Adm}} \) (see [7]).

4. – An alternative proof of the normalized total power operation.

We start from the ring homomorphism

\[
S_m : H^*(X) \to \Phi_m^B \otimes H^*(X).
\]

For each \(z \in H^*(X) \), \(S_m(z) \) is:

\[
S_m(z) = \sum_{i, J} u^{(i, J)} \Theta^{\varepsilon, J}(z),
\]

where \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \), \(\varepsilon_i = 0, 1 \), \(u^\varepsilon = u_1^{\varepsilon_1} \ldots u_m^{\varepsilon_m} \), \(J = (j_1, \ldots, j_m) \), \(i = 1, \ldots, m \), \(w^{-j} = w_1^{-j_1} \ldots w_m^{-j_m} \), \(\Theta^{(i, J)} = \beta^{\varepsilon_1} P_j^{j_1} \ldots \beta^{\varepsilon_m} P_j^{j_m} \). Up to a sign, \(S_m(z) \) has the same dimension as \(z \). Following the idea in [6] for \(p = 2 \), we construct a sequence of maps:

\[
\delta_m : \mathbf{c}_p^* \to \Lambda_m = \Phi_m^B,
\]

where \(\mathbf{c}_p^* \) denotes the \(F_p \)-dual of \(\mathbf{c}_p \), and we will use them to give an alternative proof of a normalized version of a result of Mùi (it is quoted here for the \(\mathbf{c}_p \)-module \(H^*(X) \)).
THEOREM 4. – ([3, Th. 2.9])

$$S_m(z) = \sum_{S,R} (-1)^{r(S,R)} R_m; s_1 \cdots R_m; s_k Q_{m,0}^{r_0} \cdots Q_{m,m-1}^{r_m} \otimes St^{S,R}(z),$$

where $r_0 = -k - r_1 - \cdots - r_m$, $r(S,R) = k + s_1 + \cdots + s_k + r_1 + 2r_2 + \cdots + mr_m$.

We recall that \mathfrak{c}_p^* is isomorphic to:

$$E[\tau_0, \tau_1, \ldots, \tau_k, \ldots] \otimes F_p[\xi_1, \ldots, \xi_k, \ldots].$$

Here ξ_k and τ_k are dual to $P^{p^k-1} P^{p^{k-2}} \cdots P^1$ and $P^{p^k-1} P^{p^{k-2}} \cdots P^1 \beta$ respectively, with respect to the basis of admissible monomials. For sequences $S = (s_1, \ldots, s_k)$, $0 \leq s_1 < s_2 < \cdots < s_k$, $k \geq 0$ and $R = (r_1, \ldots, r_l)$, $r_i \geq 0$, let

$$St^{S,R} = (\tau_S \xi^R)^* = (\tau_{s_1} \cdots \tau_{s_k} \xi_{s_1}^r \cdots \xi_{s_k}^r)^*$$

with respect to the basis $\{\tau_S \xi^R\}_{S,R}$ of \mathfrak{c}_p^*. These elements form the so called Milnor basis of \mathfrak{c}_p^*. We are going to show that

$$S_m(z) = \sum_{R,S} \delta_m(\tau_S \xi^R) \otimes St^{S,R}(z).$$

Then we prove that $\delta_m(\tau_S \xi^R)$ is just equal to

$$(-1)^{r(S,R)} R_m; s_1 \cdots R_m; s_k Q_m^{r_0 - k - (r_1 + \cdots + r_m)} Q_{m,1}^{r_1} \cdots Q_{m,m-1}^{r_m - 1},$$

hence S_m is the normalized iterated total power operation. We first introduce a map which is formally identical to S_m:

$$S_m : \mathfrak{c}_p \to \Delta_m \otimes \mathfrak{c}_p$$

$$\Theta \mapsto \sum_{\xi, J} u^\delta w^{-J} \otimes \Theta^{(\xi, J)} \circ \Theta.$$

DEFINITION 5. – $\delta_m : \mathfrak{c}_p^* \to \Delta_m$ has the following definition: for $\tau_S \xi^R \in \mathfrak{c}_p^*$, we set

$$\delta_m(\tau_S \xi^R) := (-1)^{r(S,R)} ((id \otimes \tau_S \xi^R) \circ S_m)(1),$$

that is $\delta_m(\tau_S \xi^R)$ is the image of $1 \in \mathfrak{c}_p$ under the following composition:

$$\mathfrak{c}_p \xrightarrow{id} \Delta_m \otimes \mathfrak{c}_p \xrightarrow{id \otimes \tau_S \xi^R} \Delta_m \otimes F_p \equiv \Delta_m.$$
As \(S_m(1) = \sum u^j w^{-j} \otimes \Theta^{(i, J)} \) (an infinite sum!), we have that:

\[
\delta_m(\tau_S \xi^R) = (-1)^{r(S, R)} (\text{id} \otimes \tau_S \xi^R) \left(\sum u^j w^{-j} \otimes \Theta^{(i, J)} \right)
\]

\[
= \sum (-1)^{r(S, R)} u^j w^{-j} \langle \tau_S \xi^R, \Theta^{(i, J)} \rangle,
\]

where \(\langle \tau_S \xi^R, \Theta^{(i, J)} \rangle \) is the value of \(\tau_S \xi^R \) on \(\Theta^{(i, J)} \). It is easy to check that \(\delta_m \) is a ring homomorphism.

Lemma 6. – Let \(a < pb \) and \(a + b = p^n + p^{n-1} \). Then

(i) the coefficient of \(P^a P^{p^n-1} \) in

\[
P^a P^b = \sum_{t=0}^{[a/p]} (-1)^{a+t} \left(\frac{(p-1)(b-t) - 1}{a-pt} \right) P^{a+b-t} P^t
\]

is zero;

(ii) the coefficient of \(P^{p^n} = P^p P^0 \) in (5) is zero.

Corollary 7. – Let \(a_1 + \ldots + a_m = p^n-1 + p^{n-2} + \ldots + 1 = p^n - 1 \) (\(m \geq n \)). Then the coefficient of \(P^{p^{n-1}} P^{p^{n-2}} \ldots P^1 \) in the admissible expression of \(P^{a_1} P^{a_2} \ldots P^{a_m} \) is zero.

The same argument works to show that \(P^{p^{k-1}} P^{p^{k-2}} \ldots P^1 \beta \) does not appear in the admissible expression of any nonadmissible monomial \(P^{a_1} P^{a_2} \ldots P^{a_m} \beta \).

Corollary 8.

(i) \(\langle \xi_k, P^{i_1} \ldots P^{i_n} \rangle = 1 \) if and only if \(n = k \) and \((i_1, \ldots, i_n) = (p^{k-1}, p^{k-2}, \ldots, 1) \);

(ii) \(\langle \tau_k, P^{i_1} \ldots P^{i_n} \beta \rangle = 1 \) if and only if \(n = k \) and \((i_1, \ldots, i_n) = (p^{k-1}, p^{k-2}, \ldots, 1) \).

Proposition 9. – \(\delta_n(\xi_k) = (-1)^k \sum w^{-J} \), where \(J \) is a multi-index of the form \((0, \ldots, 0, p^{k-1}, \ldots, 0, \ldots, p, 0, \ldots, 1, 0, \ldots) \) with \(n - k \) zeros inserted.

Proof. – \(\xi_k = (P^{p^{k-1}} \ldots P^p P^1)^\delta \). From Cor. 3(i), \(\langle \xi_k, \Theta^{(i, J)} \rangle = 1 \) if and only if \(\Theta^{(i, J)} = P^{p^{k-1}} \ldots P^p P^1 \). The corresponding coefficient is \(\sum w^{-J} \), where \(J \) is as above. ■
PROPOSITION 10. \(- \delta_n(\tau_k) = (-1)^{k+1} \sum_{t=k+1}^n u_tw^{-j_t}\) for all \(k = 0, \ldots, n-1\), where the sequence \(J_t\) is of the following type:

\[J_t = (j_1, j_2, \ldots, j_{t-1}) = (0, \ldots, P^{p_{k-1}}, 0, \ldots, P^p, 0, \ldots P^1, 0, \ldots, 0) \]

with \(t-1-k\) zeros inserted.

PROOF. \(- \tau_k = (P^{p_{k-1}}P^{p_{k-2}} \ldots P^p P^1)^{\beta}_{\ast}. \) Applying Cor. 3 (ii), we have \(\langle \tau_k, \Theta^{(\xi, J)}\rangle = 1\) if and only if \(\Theta^{(\xi, J)} = P^{p_{k-1}}P^{p_{k-2}} \ldots P^p P^1\) and the corresponding summands are those indicated in the statement. \(\Box\)

PROPOSITION 11. \(- \delta_n(\xi_k) = (-1)^k Q_{n,0}^{-1}Q_{n,k} \in \Gamma_n \subset \Delta_n\) for each \(k \geq 1\).

PROOF. \(- The relation above holds for \(n = k\) since \(Q_n, n = 1\) and \(Q_{n,0}^{-1}Q_{n,n} = Q_{n,0}^{-1}Q_{n,k} = w_1^{-p_{n-1}}w_2^{-p_{n-2}} \ldots w_n^{-1}.\) If \(k > n\), then \(\delta_n(\xi_k) = 0 = Q_{n,0}^{-1}Q_{n,k}\) as, by convention, \(Q_{n,k} = 0\) in this case. So let \(n > k\) and suppose that \(\delta_n(\xi_k) = Q_{n-1,0}^{-1}Q_{n-1,k}.\) The following relations hold:

\[
Q_{n,s} = Q_{n-1,0}Q_{n-1,s}w_n + Q_{n-1,s-1}w_n^0 \\
Q_{n,0} = Q_{n-1,0}w_n = w_1^{-p_{n-1}}w_2^{-p_{n-2}} \ldots w_n^{-1} \\
V_n^{p-1} = Q_{n-1,0}w_n
\]

Hence,

\[
Q_{n-1,0}Q_{n,k} = (Q_{n-1,0}w_n^{-1})(Q_{n-1,k}w_n + Q_{n-1,k-1}w_0^0) \\
= Q_{n-1,0}Q_{n-1,k} + (Q_{n-1,0}Q_{n-1,k-1})^p w_n^{-1}.
\]

By the induction hypothesis, we know that

\[
Q_{n-1,0}Q_{n-1,k} = \sum w_1^{-p_{k-1}}w_2^{-p_{k-2}} \ldots w_{j_k}^{-1},
\]

where the sum runs over all integers \(j_i\) such that \(1 \leq j_1 < \ldots < j_k \leq n-1.\)

Thus:

\[
Q_{n-1,0}Q_{n-1,k} + (Q_{n-1,0}Q_{n-1,k-1})^p w_n^{-1} = \\
(\sum w_1^{-p_{k-1}}w_2^{-p_{k-2}} \ldots w_{j_k}^{-1}) + (\sum w_1^{-p_{k-1}}w_2^{-p_{k-2}} \ldots w_{j_k}^{-1}) w_n^{-1} = \\
\sum_J w^{-J} + \sum w_1^{-p_{k-1}}w_2^{-p_{k-2}} \ldots w_{j_k}^{-1} = \sum_J w^{-J} + \sum_J w^{-J'},
\]

where the symbol \(J\) denote sequences of length \(n\) with the last element zero and others \(n-1-k\) zeros are inserted among places from 1 to \(n-1\), and the symbols \(J'\) denote sequences of length \(n\) with the last element equal to 1 and
others $n-k$ zeros are inserted among places from 1 to $n-1$. Then we get

$$(-1)^k Q_{n,0} - Q_{n,k} = (-1)^k \sum_{j_1} w_{j_1}^{-p^{k-1}} w_{j_2}^{-p^{k-2}} \cdots w_{j_k}^{-1} = \delta_n(\xi_k),$$

the sum being over (j_1, \ldots, j_k), where $1 \leq j_1 < \ldots < j_k \leq n$.

Proposition 12. \(- \delta_n(\tau_k) = (-1)^{k+1} R_{n,k}^{-1} Q_{n,0}^{-1} \) for each $0 \leq k \leq n-1$.

Proof. From (3), $R_{n,k}^{-1} Q_{n,0}^{-1} = \sum_{r=k+1}^{n} u_r Q_{r-1,0}^{-1}, Q_{r-1,k}$.

We want to prove that:

$$R_{n,k}^{-1} Q_{n,0}^{-1} = \sum_{r=k+1}^{n} u_r w_{j_1}^{-p^{k-1}} w_{j_2}^{-p^{k-2}} \cdots w_{j_k}^{-1},$$

with $1 \leq j_1 < \ldots < j_k \leq r-1$. But this directly follows from the previous Proposition, since we have shown that

$$Q_{r-1,0} Q_{r-1,k} = \sum_{1 \leq j_1 < \ldots < j_k \leq r-1} w_{j_1}^{-p^{k-1}} w_{j_2}^{-p^{k-2}} \cdots w_{j_k}^{-1}.$$

Corollary 13. \(- For S = (s_1, \ldots, s_k), 1 \leq s_1 < \ldots < s_k and R = (r_1, \ldots, r_l), r_i \geq 0, l \geq 1,$

$$\delta_n(\tau_{S,R}^{\xi}) = (-1)^{r(S,R)} R_{n,s_1} \cdots R_{n,s_k} Q_{n,0}^{r_1} Q_{n,1}^{r_1} \cdots Q_{n,l}^{r_l},$$

where $r_0 = -k - (r_1 + \ldots + r_l)$.

We have proved the following

Theorem 14. \(- S_n(z) = \sum_{S,R} (-1)^{r(S,R)} R_{n;s_1} \cdots R_{n;s_k} Q_{n,0}^{r_1} \cdots Q_{n,l}^{r_l} \otimes St^{S,R}(z).$$

REFERENCES

Dipartimento di Matematica ed Applicazioni «R. Caccioppoli»
Università di Napoli «Federico II», Complesso Monte S. Angelo
Via Cintia, 80126 Napoli, Italy

Pervenuta in Redazione
il 20 marzo 2000