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Non-local Approximation of Functionals:
Variational and Evolution Problems.

MASSIMO GOBBINO (*)

Sunto. – Questa nota tratta dell’approssimazione di funzionali, usati in problemi con
discontinuità libere, mediante famiglie di funzionali non locali in cui il gradiente
è sostituito dal rapporto incrementale. Vengono inoltre presentate alcune applica-
zioni di questa teoria a problemi variazionali e di evoluzione.

1. – Introduction.

In last years many non-local functionals have been introduced in order to
approximate local ones. The simplest example is the approximation of a classi-
cal integral functional

I(u) 4s
R

W(˜u(x) ) dx

by non-local functionals where the gradient is replaced by a finite difference,
like

Ie (u) 4s
R

Wg u(x1e)2u(x)

e
h dx .

A less trivial case is the approximation of free discontinuity problems in
any dimension, which was indeed the main motivation of this theory.

1.1. – Free discontinuity problems.

The canonical examples of free discontinuity problems are the minimum
problems related to the so called Mumford-Shah functional, defined by

MS(u) 4s
V

N˜u(x)N2 dx1 H n21 (Su ) ,(1.1)

where V is an open subset of Rn, u belongs to the space GSBV(V) of
generalized special functions with bounded variation, ˜u is the approximate

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.
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gradient of u, Su is the set of essential discontinuity points of u, and
H n21 is the (n21)-dimensional Hausdorff measure.

This functional is the weak formulation of the functional introduced by D.
MUMFORD and J. SHAH in [8] to approach image segmentation problems.

A natural generalization of (1.1) are the functionals

FW , c (u) 4s
V

W(N˜u(x)N) dx1s
Su

c(Nu 1 (x)2u 2 (x)N) d H n21 (x) ,(1.2)

where W , c : [0 , 1Q[K [0 , 1Q] are given functions, and u 1 (x) and u 2 (x)
are the approximate (in the measure theoretic sense) lim sup and lim inf of u
at the point x.

1.2. – Existence and regularity.

Variational problems involving FW , c can be solved using the direct
methods of the calculus of variations. The fundamental tool is the following
lower semicontinuity and compactness theorem, proved by L. AMBROSIO in [1].

THEOREM 1.1. – Let V’Rn be an open set. Let W : [0 , 1Q[K [0 , 1Q] be a
non-decreasing convex function such that

lim
rK1Q

W(r)

r
41Q ,(1.3)

and let c : ]0 , 1Q] K [0 , 1Q] be a non-decreasing concave function such
that

lim
rK01

c(r)

r
41Q .(1.4)

Then the functional FW , c (u) defined in (1.2) is lower semicontinuous in
L 1

loc (V).
If moreover ]un ( ’L Q (V) is a sequence such that

sup
n�N

]FW , c (un )1Vun VQ( E1Q ,

then ]un ( is relatively compact in L 1
loc (V).

The regularity of minimizers has been deeply studied in the case of the
Mumford-Shah functional: the interested reader can find appropriated refer-
ences in the survey [2].
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1.3. – Approximation.

The research on free discontinuity problems has developed along several
directions, among them

— giving non-trivial examples of minimizers;

— providing numerical algorithms to approximate such minimizers;

— finding a reasonable definition of gradient flow associated with
FW , c .

A natural approach to these problems is to approximate FW , c by functionals
Fe defined in better spaces, e.g. Sobolev spaces or finite dimensional vector
spaces. These functionals ]Fe( should converge to FW , c in the sense of G-con-
vergence, since this notion is stable under continuous perturbations, and guar-
antees that any limit point of minimizers of Fe is a minimizer for FW , c. More-
over, one can hope to define the gradient flow associated to FW , c as the limit of
the gradient flows associated to Fe (if this limit exists, of course!).

It is easy to see (cf. [3]) that FW , c can not be approximated in the sense of
G-convergence by local integral functionals like

s
V

fe (˜u(x) ) dx ,(1.5)

defined in the Sobolev space W 1, 2 (V).
This difficulty has been overcome in different ways (see [3] for a complete

list of statements, proofs and references):

— by introducing an auxiliary variable;

— by considering non-local functionals depending on the average of the
gradient in small balls;

— by adding to (1.5) a singular perturbation depending on higher order
derivatives of u;

— by using finite elements approximations, i.e. local functionals like
(1.5) defined in suitable spaces of piecewise affine functions;

— by considering non-local functionals where the gradient is replaced
by finite differences.

The last approach was suggested in 1996 by E. DE GIORGI, who conjectured
the convergence of the family

D Ge (u) 4
1

e
s

Rn3Rn

arctang (u(x1ej)2u(x) )2

e
h e 2NjN2

dj dx ,(1.6)

to the Mumford-Shah functional in Rn (up to some constants), both in the
sense of pointwise convergence, and in the sense of G-convergence. This con-
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jecture has been proved in [5] by reducing, via an integral-geometric ap-
proach, to the simpler family of one-dimensional functionals

DGe (u) 4
1

e
s

R

arctang (u(x1e)2u(x) )2

e
h dx .(1.7)

This result has been extended in [7], where (1.7) and (1.6) are generalized,
respectively, by

Fe (u) 4s
R

W eg Nu(x1e)2u(x)N

e
h dx .(1.8)

and

Fe (u) 4 s
Rn3Rn

W eNjNg Nu(x1ej)2u(x)N

eNjN
h h(j) dj dx ,(1.9)

where ]W e(eD0 is a family of Borel functions, and h�L 1 (Rn ) is a non-negative
function.

This note is organized as follows: in § 2 we summarize the results obtained
in [5, 7] concerning the finite difference approximation of (1.1) and (1.2), with
applications to variational problems; in § 3 we describe the strategy followed
in [6] in order to introduce a notion of gradient flow for the Mumford-Shah
functional, and we discuss which parts of this machinery can be easily extend-
ed in higher dimension or to the general functional FW , c ; in § 4 we present a
possible future development of this approach to evolution problems, with ap-
plications to the Perona-Malik equation.

We refer to the quoted literature for a review of the standard theory of
bounded variation functions and G-convergence.

2. – Variational approximation.

We state here two results concerning the approximation of (1.2). We recall
that, in the context of G-convergence, it is convenient to have all the func-
tionals defined in the same space: this is usually obtained by extending them
to 1Q outside their «natural domain». All the functional introduced in this
note are thought as defined in L 1

loc (Rn ).
The following result deals with the one dimensional case.

THEOREM 2.1. – Let W and c be as in the lower semicontinuity Theo-
rem 1.1.

Then there exists a family ]W e( such that, defining ]Fe( as in (1.8), we
have that:
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(c1) Pointwise estimate: Fe (u) G FW , c (u) for every u�L 1
loc (R), and

every eD0;

(c2) Pointwise convergence: lim
eK01

Fe (u) 4 FW , c (u) for every u�
L 1

loc (R);

(c3) G-convergence: FW , c (u) is the G2-limit of ]Fe (u)( in L 1
loc (R).

The proof of Theorem 2.1 easily follows from the theory developed in [7],
and a possible choice of ]W e( turns out to be

W e (r) »4 minmW(l)1
1

e
c(e(r2 l) ) : l� [0 , r]n , (rF0 .

In dimension nD1 the situation is more delicate. In [7] it is proved that
FW , c can be approximated by functionals of the form (1.9), provided that W sat-
isfies a technical condition, called «sectionability», which depends on the di-
mension. We don’t recall here the precise definition (the interested reader is
referred to [7, Definition 6.1]). We just recall that this condition is satisfied in
dimension one by any convex function W : [0 , 1Q[K [0 , 1Q], and in any di-
mension e.g. by the function W(r) 4NrNp (with pF1).

THEOREM 2.2 (cf. [7, Theorem 6.3]). – Let W and c be as in the lower semi-
continuity Theorem 1.1, and let h�L 1 (Rn ) be a non-negative radial function
such that ]j�Rn : h(j) Dc( has non-empty interior for some cD0. Let us as-
sume that W is sectionable in dimension n.

Then there exists a family ]W e( such that, defining ]Fe( as in (1.9), we
have that

(C1) Pointwise estimate: Fe (u) G FW , c (u) for every u�L 1
loc (Rn ), and

every eD0;

(C2) Pointwise convergence: lim
eK01

Fe (u) 4 FW , c (u) for every u�
L 1

loc (Rn );

(C3) G-convergence: FW , c (u) is the G2-limit of ]Fe (u)( in L 1
loc (Rn );

(C4) Compactness: if ]ue( ’L Q (Rn ) and

sup
eD0

]Fe (ue )1Vue VQ( E1Q ,

then ]ue( is relatively compact in L 1
loc (Rn ).

REMARK 2.3. – The advantage of ]Fe( with respect to the family ]Fe( is
twofold:

— it can be defined in every space dimension;

— it fulfills the compactness property (C4) (the family ]Fe(, on the con-
trary, satisfies no compactness properties: just remark that Fe (u) 40 for
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every e-periodic function u!). For this reason it may be useful to use ]Fe( to
approximate free discontinuity problems also in dimension one (see Theorem
2.5 below).

REMARK 2.4. – Pointwise estimates like (c1) and (C1) are one of the main
advantages of this approach, for at least two reasons.

— Thanks to such estimates, the passage from the one-dimensional to
the n-dimensional case is a simple application of Fatou’s lemma and standard
integral geometric equalities.

For this reason the finite difference approach is, at the present, the only
approach which has been proved to work also in the case where W(r) 4r 2 and
c(r) 4kr (note that in this case FW , c(u) can be finite even if H n21 (Su)41Q).

— Pointwise convergence and G-convergence together imply stability
under lower semicontinuous perturbations, in the following sense: if ]Fe( con-
verges to F (in both senses) and G is lower semicontinuous, then ]Fe1 G( G-
converges to F 1 G (G-convergence alone is stable only under continuous
perturbations).

This is particularly useful when considering minimum problems with lower
order terms and/or convex constraints.

Thanks to the general properties of G-convergence, Theorem 2.2 leads to
the following approximation result.

THEOREM 2.5 (cf. [5, Theorem 6.1]). – Let W and c be as in the lower semi-
continuity Theorem 1.1, and let ]Fe( be the family given by Theorem 2.2.

Let 1 GpE1Q, and let g�L p (Rn )OL Q (Rn ). Then for every eD0 there
exists a solution ue to the minimum problem

me4 minmFe (u)1s
Rn

Nu2gNp dx : u�BV(Rn ), NDuN(Rn ) G1/en .(2.1)

Moreover every sequence ]ue j
( with ]e j ( K01 has a subsequence con-

verging in L 1
loc (Rn ) to a solution of the minimum problem

m0 4 minmFW , c (u)1s
Rn

Nu2gNp dx : u�GSBV(Rn )n .

Furthermore

lim
eK0

me4m0 .

The a-priori restrictions u�BV(Rn ), NDuN(Rn ) G1/e guarantee the existence
of the minimum (2.1).

Without such restrictions, the existence of minimizers for (2.1) with
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a non-convex W e is still an open problem, also in the case of the Mumford-Shah
functional.

OPEN PROBLEM. – Does the problem

minmD Ge (u)1s
Rn

Nu2gNp dx : u�L 1
loc (Rn )n(2.2)

have a solution for every eD0, and every g�L p (Rn )OL Q (Rn )?
Looking at the Euler equation for (2.2), one can prove that if (2.2) has a

minimizer which is continuous (resp. differentiable, BV), then g is necessarily
continuous (resp. differentiable, BV). This shows that if g�BV(Rn ), then the
minimizers of (2.1) are not minimizers of (2.2).

REMARK 2.6. – For the sake of simplicity we stated here all the results for
functionals defined in Rn, but with some minor changes all the theory works in
any open set V’Rn : the interested reader is referred to [7].

2.1. – Examples.

Let us show some examples of families of functionals defined as in (1.9),
corresponding to different choices of ]W e( (h�L 1 (Rn ) is a non-negative radi-
al function).

In the examples below we don’t give the explicit expressions for the con-
stants l and m which may appear in the limit functionals: for a precise compu-
tation see section 7 of [7].

EXAMPLE 1. – Let W e (r) 4NrNp with pD1. Then the limit functional is

E1 (u) 4ls
Rn

N˜u(x)Np dx .

This corresponds to FW , c with W(r) 4lNrNp and c(r) 41Q.

EXAMPLE 2. – Let W e (r) 4e21 NerN1/p with pD1. Then the limit functional
is

E2 (u) 4ls
Su

Nu 12u 2N1/p d H n21

if u�GSBV(Rn )OL 1
loc (Rn ) and ˜u(x) 40 for a.e. x�Rn ; and 1Q other-

wise.
This corresponds to FW , c with W(r) 41Q and c(r) 4lNrN1/p.

EXAMPLE 3. – Let W e (r) 4NrN. In this case the limit functional is a multiple
of the total variation of u. This is the limit case p41 both of Example 1 and of
Example 2.
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EXAMPLE 4. – Let W e (r) 4e21 arctan (er 2 ). In this case the family ]Fe( is
similar to the family ]D Ge( of (1.6). The limit functional is FW , c with W(r) 4

lNrN2 and c(r) 4m, i.e. the Mumford-Shah functional, up to some con-
stants.

EXAMPLE 5. – Let W e (r) 4r 2 (keNrN3/2 11)21. Then the limit functional is
FW , c with W(r) 4lNrN2 and c(r) 4m kr (cf. Remark 2.4).

3. – Evolution problems.

Evolution problems with free discontinuities seem to be a still unexplored
research field, despite of the possible applications to fracture dynamic. The
prototype of these evolution problems is the gradient flow for the Mumford-
Shah functional, or more generally for the functional FW , c .

A first difficulty is to establish what «gradient flow» means in this case,
since FW , c is neither regular nor convex, and therefore it is not possible to ap-
ply standard theories, such as maximal monotone operators.

A possible approach to this problem has been proposed in [6], according to
the following strategy.

(S1) We approximate FW , c with families of non-local functionals such as
(1.9) (or (1.8)), with W e regular.

(S2) Given an initial datum u0 �L Q (Rn ), with FW , c (u0 ) E1Q, we con-
sider a family ]u0e( ’L 2 (Rn ) such that ]u0e( Ku0 in L 2

loc (Rn ), and

]Fe (u0e )1Vu0e VQ( K FW , c (u)1Vu0 VQ .

(S3) We solve for every eD0 the evolution problem in L 2 (Rn )

ue8 (t) 42[˜ Fe ] (ue (t) ) , ue (0) 4u0e .(3.1)

Since Fe is regular, the standard theory of ODEs in Hilbert spaces provides a
unique solution ue (t) of (3.1), defined for all tF0.

(S4) We show that, up to subsequences, ]ue (t)( converges to a continu-
ous function u(t) such that u(0) 4u0 . The possible limits of ]ue (t)( are our
candidates to be the gradient flow for FW , c .

This strategy has been applied in [6] in the case of the one-dimensional
Mumford-Shah functional, using non-local approximations based on the family
DGe defined in (1.7). In this particular case the possible limits in (S4) have
been characterized as follows (see section 5 of [6]).

— For large classes of initial data, the whole family ]ue (t)( converges
to a limit u(t), which does not depend on ]u0e(.

Roughly speaking, u(t) can be obtained by evolving u0 , outside its singular
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set, according to the (rescaled) heat equation with homogeneous Neumann
boundary conditions, and restarting the evolution (with the new initial datum)
whenever a singularity «disappears».

Finally, the Mumford-Shah functional is decreasing along the trajectory.

— For some «pathological» choice of u0 there is a continuum of possible
limit points in (S4), depending on the sequence ]e n ( and on the family ]u0e(.
However, only one of these limit points has the property that the Mumford-
Shah functional is decreasing along the trajectory, and this limit can be char-
acterized as above.

The compactness of the family ]ue (t)( relies on the standard Ascoli theo-
rem, due to the compactness property (C4) and the following estimates for the
solutions of (3.1) (for a proof see section 4 of [6]).

(E1) Energy estimate: Fe (ue (t) )G Fe (u0e ).

(E2) L Q-estimate: Vue (t)VQGVu0e VQ .

(E3) Hölder estimate: Vue (t)2ue (s)VL 2 (Rn ) GNt2sN1/2 ]Fe (u0e )(1/2.

For these reasons, the construction described in (S1)-(S4) works also in the
general case (functional FW , c in any dimension), and with equations perturbed
by lower order terms; however a precise characterization of the possible limits
seems to be a challenging problem.

We hope to approach in a similar way evolution problems (with free discon-
tinuities) involving second order time derivatives.

4. – The Perona-Malik equation.

The strategy described in section 3 can provide non trivial results also if
the G-limit of the family considered in (S1) is trivial.

The example suggested by E. DE GIORGI in [4] is the family ]PMe( defined
as in (1.8) with

W e (r) 4
1

2
log (11r 2 ) 4: W(r) .

The formal limit of ]PMe( is the functional

PM(u) 4
1

2
s

R

log (11N˜u(x)N2 ) dx ,

which is not lower semicontinuous, since W(r) is not convex. Moreover, the con-
vex hull of W(r) is the constant zero, and therefore the G-limit of ]PMe( is triv-
ially zero.
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The gradient flow for PM is the so called Perona-Malik equation

ut 4
12ux

2

(11ux
2 )2

uxx .(4.1)

The Cauchy problem for this partial differential equation is a standard
parabolic problem in the region where Nux NE1, and a backward parabolic
problem where Nux ND1.

Only few rigorous results are known for equation (4.1); on the other hand,
numerical experiments suggest the existence of solutions, at least in some
weak sense.

A standard way to approximate (4.1) is to discretize in the space variable:
this corresponds to apply the strategy of section 3 to the family ]PMe(. As in
the case of free discontinuity problems, it is possible to prove the compactness
of the approximated gradient flows ]ue (t)(, and the possible limits in (S4) are
the candidates to be the weak solutions of (4.1).

Once again, the main problem is to characterize such limits, especially
when the Cauchy datum has an interval in the «forward region», and an inter-
val in the «backward region».
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