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Some Results on Invariant Measures in Hydrodynamics.

B. FERRARIO (*)

Sunto. – In questa nota, si presentano risultati di esistenza e di unicitá di misure in-
varianti per l’equazione di Navier-Stokes che governa il moto di un fluido viscoso
incomprimibile omogeneo in un dominio bidimensionale soggetto a una forzante
che ha due componenti: una deterministica e una di tipo rumore bianco nella va-
riabile temporale.

The Navier-Stokes equations describe the motion of a viscous incompress-
ible fluid. The treatment of the equations varies according to the dimension of
the space. Let us consider a bounded domain of R2 : in this case a unique sol-
ution is defined for arbitrary large time. Therefore, we can investigate the
long time behaviour of the solution. This corresponds to the practical problem
of determining which permanent regime will be observed after a short tran-
sient initial period. It is known that if the viscosity and the forcing are suitably
related (so that the Reynolds number is small), the set of stationary solutions
reduces to one point and the system converges to this equilibrium configur-
ation. Otherwise, for too high forcing term or too low viscosity, there are many
stationary solutions and asymptotically the system has a more complex be-
haviour. We say that the motion is turbulent. However, analysing statistically
the results of numerical simulations or of experimental measurements, it has
been observed that after an initial transient time the averages of some observ-
ables become constant. This means that an equilibrium in the statistical sense
has been attained.

We keep in mind this summary on the classical 2D Navier-Stokes equa-
tions, to compare them with the matter of our study: the 2D stochastic Navier-
Stokes equations (for the 1D case, i.e. the Burgers’equation, the statistics of
the motion has been computed (cf. [3], [18]). The related mathematical results
have been proven in [4], [6]). By this we mean the Navier-Stokes system,
where the momentum conservation equation is perturbed by a white noise
term. In § 2, we shall show that a well defined generalized solution exists for
arbitrary large time. Even the long time behaviour of the system is well de-
fined: there exists a unique invariant measure and the convergence takes

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.



B. FERRARIO80

place, that is this measure represents the asymptotic equilibrium behaviour of
the system. This is the subject of § 4. Roughly speaking, invariant measures
play a role similar to that of the stationary solutions of the deterministic case.
They are good candidates to represent the asymptotic behavior of the system.
But, stationary solutions are in general not unique. Adding a suitable random
perturbation, we get existence and uniqueness of an invariant measure (exis-
tence is hence obtained by means of the dissipativity property peculiar to the
Navier-Stokes equations, uniqueness is strictly related to the white noise).

Let us point out that both the viscosity and the noise are necessary to ob-
tain that there exists a unique invariant measure. But restriction neither on
the viscosity nor on the forcing term will appear. On the other hand, when the
viscosity vanishes and there are no forcing terms, the equation reduces to the
Euler case without forcing term. This is a conservative system, for which the
existence of an invariant measure has been proven in [1].

Let us summarize the contents of this note.
In § 1, there will be introduced the basic spaces and operators in order to

give the abstract formulation (2) of our problem. § 2 will deal with existence
and uniqueness of solutions of equation (2), while regularity results will be
presented in § 3. Finally, invariant measures will be studied in § 4.

1. – Mathematical setting.

We consider a viscous homogeneous incompressible fluid in a bounded do-
main D of R2 with smooth boundary ¯ D. The motion of the fluid in the time in-
terval [t0 , T] is governed by the Navier-Stokes equations

.
/
´

¯u(t , j)

¯t
2Du(t , j)1 (u(t , j) Q˜) u(t , j)1˜p(t , j) 4 f (t , j)1n(t , j)

div u(t , j) 40

(1)

where u(t , j) 4 ]u1 (t , j), u2 (t , j)( and p(t , j) denote respectively the veloc-
ity and pressure fields of the fluid for j� D and t� [t0 , T]; ˜4grad and D4

Laplacian w.r.t. the space variable j . The viscosity coefficient is considered to
be equal 1, without loss of generality. Actually our (asymptotic) results do not
depend on it whereas they do in the deterministic case. In the right-hand side
there are two forcing terms: a deterministic component f and a stochastic one
n , white noise in time. They can be understood as an average value and a fluc-
tuation rapidly varying in time, respectively.

To equation (1) we associate the homogeneous boundary condition

u(t , j) 40 for t� [t0 , T], j�¯ D
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and the initial condition

u(t0 , j) 4ut0
(j) for j� D .

We now introduce some tools to define the weak formulation correspond-
ing to equation (1) with these conditions (cf. [24], [25]). Let L2 4 [L 2 (D) ]2 ,
Ha4 [H a (D) ]2 . We define

V 4 ]u� [C0
Q (D) ]2 : div u40(

and take the closure of this space in L2 and H1 ; we obtain respectively

H4 ]u�L2 : div u40 in D, u Qn40 on ¯ D(

V4 ]u�H1
0 : div u40 in D D(

where n is the outer normal to ¯ D. The space H is equipped with the scalar
product (Q , Q) induced by L2 and we denote by N QN the norm in H ; the space V is

a Hilbert space with the scalar product ((u , v) ) 4 !
i41

2

(Di u , Di v), since D is
bounded.

Denoting by H 8 and V 8 the dual spaces, if we identify H with H 8 we get the
following continuous embeddings V%H%V 8 , where each space is dense in the
following one.

Let now P be the orthogonal projector from L2 onto H and define the
Stokes operator A as

Au42 P Du , (u�D(A) 4H2 OV .

The operator A is a linear closed positive unbounded self-adjoint operator with
discrete spectrum in H ; ]ei (i41

Q is the sequence of its eigenvectors corre-
sponding to the eigenvalues ]l i (i41

Q (0 El 1 Gl 2 GR). For any a�R , the
Hilbert space D(A a ) can be characterized by

D(A a ) 4mu4 !
i41

Q

ui ei : !
i41

Q

l i
2a ui

2 E1Qn .

The operator A is an isomorphism from D(A a ) onto D(A a21 ). In particular
V4D(A 1/2 ), V 84D(A 21/2 ) and H4D(A 0 ). 2A generates in H a bounded
analytic semigroup e 2tA of class C0 .

Consider, now, the bilinear operator B defined as

aB(u , v), zb 4s
D

[ (u Q˜) v] Qz dj ,

where aQ , Qb denotes duality paining between H2a and Ha.
Often, we shall write for short B(x) instead of B(x , x).
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The main point in the analysis of our problem is to define the spaces on
which B acts as a bilinear continuous operator. An easy case is B : D(A 1/4 )3

D(A 1/4 ) KD(A 21/2 ). Indeed

NaB(u , v), zbNGNuNL4 N˜vNL2 NzNL4 GCNA 1/4 uNNA 1/2 vNNA 1/4 zN

since dim D 42.
Other cases will be presented later on, when needed to estimate the non

linear term.
Moreover,

aB(u , v), zb 42 aB(u , z), vb

whenever both sides make sense.
We project equation (1) onto H , assuming for semplicity Pf4 f . Since L2 4

H5G , where G4 ]u�L2 : )f�L 2 (D) s.t. u4˜f(, we get the abstract
formulation

.
/
´

du(t)1 [Au(t)1B(u(t) )] dt4 f (t) dt1G dw(t)

u(t0 ) 4ut0

(2)

to be understood as

u(t)1s
t0

t

[Au(s)1B(u(s) )] ds4ut0
1s

t0

t

f (s) ds1G[w(t)2w(t0 ) ] .

We assume that w(t) is a cylindrical Wiener process in H defined for all real t
on a complete probability space (V , F, P), with filtration Ft 4s]w(s)2

w(t) : tGsG t( (so that the Wiener process is adapted to the filtration ]Ft (t�R

and, for any tDs , the increments w(t)2w(s) are independent of Fs). G is a lin-
ear continuous operator in H , satisfying further assumptions we shall specify
later.

Because of the white noise term, we get a weak solution less regular than
in the deterministic case, as we shall see in the next section. For this reason,
the following definition of solution for (2) is given

DEFINITION 1.1. – A stochastic process u(t , v) is a generalized solution in
[t0 , T] of equation (2) if

u(Q , v) �C( [t0 , T]; H)OL 2 (t0 , T ; D(A 1/4 ) )

for P-a.e. v�V , u is progressively measurable in these topologies and equa-
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tion (2) is satisfied P-a.s. in the integral sense

au(t), fb1s
t0

t

au(s), Afb ds2s
t0

t

aB(u(s), f), u(s)b ds4

aut0
, fb1s

t0

t

a f (s), fb ds1 aw(t)2w(t0 ), G * fb

for all t� [t0 , T] and all f�D(A).

REMARK. – The above relation corresponds to (2) and all the terms in it
make sense. In fact

NaB(u(s), u(s) ) , fbN4NaB(u(s), f) , u(s)bNGCNA 1/2 fNNA 1/4 u(s)N2 .

Moreover, given G�L(H), the last term aw(t)2w(t0 ), G * fb is a well defined
family of random variables for t� [t0 , T] (we refer to [8], [7] for any results on
stochastic processes).

2. – Existence and uniqueness of solutions.

We are interested in defining a stochastic dynamics such that the probabil-
ity transition functions or, equivalently, the associated Markovian semigroup
are well defined. In this way, the evolution of the process solution’s law is rep-
resented by the adjoint semigroup. Later on, properties of the Markovian
semigroup will be asked for, in order to face the problem of existence and
uniqueness of the invariant measure.

Following [2], instead of considering the non linear stochastic equation (2),
we divide our problem into two parts: a linear Itô equation

dza (t)1Aza (t) dt1aza (t) dt4Gdw(t) (aF0 real(3)

and for va »4u2za

dva (t)

dt
1Ava (t)1B(va (t)1za (t) )4aza (t)1 f (t)(4)

which is a random, non linear equation but is studied pathwise by means of de-
terministic methods.

In the following Proposition, we collect the main properties of the

Ornstein-Uhlenbeck process za (t) 4 s
2Q

t

e 2(t2s)(A1a) Gdw(s), which is a sta-
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tionary ergodic solution of equation (3) (for the proof, cf. [14], [13]. The
first part is a standard result on stochastic convolution)

PROPOSITION 2.1. – Assume that G is a linear bounded operator in H such
that

R (G) ’D(A b1e )

for some eD0 and b ; hence for every aF0, za is a continuous stationary
Gaussian process on D(A b ). Moreover, there exist P-a.s. finite random vari-
ables C 8 and C 9 such that P-a.s.

Nza (t)ND(A b ) GC 81C 9 NtN

for all tG0.
Finally

lim
aK1Q

ENza (t)N4
D(A b ) 40 .

For the second auxiliary equation, methods based on Galerkin procedure
can be used, in a way similar to the study of the deterministic Navier-Stokes
equation. We have

PROPOSITION 2.2. – Let [t0 , T] be a given finite time interval and fix any
real aF0.

Assume that the continuous operator G in H has range R (G) ’D(A 1/41e )
for some eD0. Then, for arbitrary ut0

�H , f�L 2 (t0 , T ; D(A 21/2 ) ) , there
exists a unique solution va of equation (4) with initial condition va (t0 ) 4

ut0
2za (t0 ) and such that

va (Q , v) �C( [t0 , T ]; H)OL 2 (t0 , T ; D(A 1/2 ) ) P-a.e. v�V

PROOF. – From now on, v�V is fixed; all the results for va are obtained
pathwise. We multiply equation (4) by v (avoiding the subscript a) and inte-
grate in D

1

2

d

dt
NvN2 1NA 1/2 vN2 4 o dv

dt
, vp1 aAv , vb 4

2 aB(v1z , v1z), vb1aaz , vb1 aA 21/2 f , A 1/2 vb 4

1aB(v1z , v), zb1aaz , vb1 aA 21/2 f , A 1/2 vb G

CNA 1/4 (v1z)NNA 1/2 vNNA 1/4 zN1aNzNNvN1NA 21/2 fNNA 1/2 vN

GC1NvN1/2 NA 1/2 vN3/2 NA 1/4 zN1C2 NA 1/4 zN2 NA 1/2 vN1aNzNNvN1NA 21/2 fNNA 1/2 vN
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By means of Young’s inequality and Gronwall’s lemma, we obtain

sup
t� [t0 , T]

Nv(t)NE1Q s
t0

T

NA 1/2 v(s)N2 dsE1Q .

We conclude first that if the solution v exists, then it belongs to
L Q (t0 , T ; H)OL 2 (t0 , T ; D(A 1/2 ) ) .

To prove existence of such a solution, the Galerkin method is used (cf., e.g.,
[24]). We consider the n-finite dimensional equation associated to (4), obtained
projecting equation (2) onto span ]e1 , R , en (; the solution vn exists globally in
time and the same a priori estimates as above are valid. Hence, the sequence
]vn ( remains in a bounded set of L Q (t0 , T ; H) and L 2 (t0 , T ; D(A 1/2 ) ) and we
pass to the limit as nKQ considering the weak convergence (of a subse-
quence) in L Q (t0 , T ; H) and L 2 (t0 , T ; D(A 1/2 ) ) ; moreover a strong conver-
gence is necessary to consider the limit of the non linear term. But vn842

Avn 2P n B(vn 1zn )2P n f . Thus, if vn �L Q (t0 , T ; H)OL 2 (t0 , T ; D(A 1/2 ) ) ,
then v 8n �L 2 (t0 , T ; D(A 21/2 ) ) . Hence, there is strong convergence in
L 2 (t0 , T ; H), because H 1 (t0 , T ; D(A 21/2 ) )OL 2 (t0 , T ; D(A 1/2 ) ) is compactly
embedded in L 2 (t0 , T ; H).

Concerning the continuity, a general theorem of interpolation says that if
v�L 2 (t0 , T ; D(A 1/2 ) ) and v 8�L 2 (t0 , T ; D(A 21/2 ) ) , then v is almost every-
where equal to a function continuous from [t0 , T] into H and (d/dt)Nv(t)N2

H 4

2av 8 (t), v(t)b in the distributional sense on [t0 , T]. Therefore the initial condi-
tion makes sense.

Concerning the uniqueness, we proceed in a classical way; if v (1) and v (2)

are two solutions, consider the difference V4v (1) 2v (2) . It satisfies

d

dt
V1AV1B(v (1) 1z)2B(v (2) 1z) 40

with V(t0 ) 40.
If we multiply this equation by V and integrate

1

2

d

dt
NVN2 1NA 1/2 VN2 42aB(v (1) 1z), Vb1 aB(v (2) 1z), Vb G

1

2
NA 1/2 VN2 1CNVN2 NA 1/4 (v (1) 1z)N4 .

Then, by the usual method of Gronwall’s inequality

NV(t)N40 (t� [t0 , T] .

We conclude that the solution va of system (4) is unique for any given
aF0.

The proof of this Proposition is achieved. r
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Therefore, merging the regularity of va and za , we have proved

THEOREM 2.3. – Assume that the continuous operator G in H has range
R (G) ’D(A 1/41e ) for some eD0. Then, for each time interval [t0 , T] and for
arbitrary ut0

�H , f�L 2 (t0 , T ; D(A 21/2 ) ) , there exists a generalized solution
u over [t0 , T] of equation (2) such that

u(Q , v) �C( [t0 , T]; H)OL 2 (t0 , T ; D(A min ]1/41e 8 , 1 /2( ) ) P-a.e. v�V

for any 0 Ee 8Ee ; only one of such solutions u satisfies the further
property

u(t)2 s
2Q

t

e 2(t2s) A Gdw(s) �L 2 (t0 , T ; D(A 1/2 ) ) P-a.s.

From now on, we shall refer to this solution u as to the canonical solution.
Moreover, the process u is a Markovian process satisfying the Feller proper-
ty in H .

Now, it is clear why we asked the generalized solution u to be in L 2 (t0 , T ;
D(A 1/4 ) ) instead of the classical L 2 (t0 , T ; D(A 1/2 ) ) . R (G)’D(A 1/41e ) ()eD0)
is the minimal assumption on the noise providing the existence of such a gen-
eralized solution, that is of a dynamics for the stochastic Navier-Stokes equa-
tion in the space H . This assumption can be even weakened to be R (G) ’
D(A e ) ()eD0) in the case of periodic boundary condition (cf. [13]).

But, this solution is not regular enough to be unique (the technique used to
prove uniqueness of v fails for u). This is why a (unique) canonical solution has
to be introduced.

We refer to [13] for the remaining properties of the solution u , which are
based on classical techniques for stochastic processes.

3. – Regular solutions.

As in the deterministic case, we can study the regularity of the solution u
depending on the regularity of the data ut0

, f and G .
As far as the Ornstein-Uhlenbeck equation is concerned, regularity results

are provided by well-known methods (cf. statement of Proposition 2.1).
For the non linear equation (4), as a first attemp, a similar procedure to

that of Proof 2.2 might be used. This means to multiply equation (4) by A 2a v .
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The delicate point is in dealing with the non linear part, which would
read

aA 21/21a B(v1z), A 1/21a vb .(5)

From [17] we know that, for 0 EaE1/2

NaA 21/21a B(v1z), A 1/21a vbNGCNA 1/41a/2 (v1z)N2 NA 1/21a vN

and therefore it can be proved, as in the previous section, the following Theo-
rem (cf. [13] for the proof)

THEOREM 3.1. – Given a� (0 , (1 /2) ) , assume that R (G) ’D(A 1/41a/21e ) for
some eD0. Then, for each time interval [t0 , T] and ut0

�D(A a ), f�
L 2 (t0 , T ; D(A 21/21a ) ) , there exists a unique generalized solution u over
[t0 , T] of equation (2) such that P-a.s.

u�C([t0 , T]; D(A a ) )OL 4/(122a) (t0 , T ; D(A 1/41a/2 ) )

and

u(t)2 s
2Q

t

e 2(t2s)A Gdw(s) �L 2 (t0 , T ; D(A 1/21a ) ) .

It is a Markovian process satisfying the Feller property in D(A a ).

For higher values of a , care has to be taken because of the boundary condi-
tion. Indeed, (5) makes sense only if aE3/4 . In fact, recall that B(u , v) 4

P[ (u Q˜) v]; then B(u , v) doesn’t satisfy the Dirichlet boundary condition. And
we can apply A 21/21a in front of B as long as 21/21aE1/4 , i.e. whenever the
space D(A 21/21a ) includes condition only on the normal component on the
boundary.

For such values of the index a , but not included in the above Theorem, the
bilinear part can be estimated by Sobolev embedding techniques.

On the other hand, for aF3/4 , the space regularity of the process v (and
thus of u) can be obtained seeking time-space regularity of the paths of v . In
[23] Temam proceeds in this way for the deterministic equation. In our case,
the presence of randomness leads to state new necessary conditions (cf. for
the linear case [15]).

Summing up, we have stated only the assumptions providing the (path-
wise) dynamics of equation (2) to be well defined in the space D(A a ) for any
a� [0 , (1 /2) ) . This will be needed in the next section to prove uniqueness of
invariant measure. Indeed, the basic case a40 will not be enough for this.

But similar results can be obtained for aF1/2 . More precisely, a limitation
arises in the case of Dirichlet boundary condition (cf. [12]). But dealing with
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the periodic case, the same procedure as in the previous section is successful
as showed in [11] (let us remark that, the higher a is the easier and plainer is
the estimate of the non linear part. Indeed, B : Hm 3Hm11 KHm for m inte-
ger F2, because H m (D) is a multiplicative algebra for mF2 if dim D 42).

4. – Invariant measures.

We have proved that the stochastic Navier-Stokes equation is a well posed
problem: for each initial data ut0

there exists a unique canonical solution
u(t ; ut0

) for t� [t0 , T]. This allow us to introduce the probability transition
functions P(t2 t0 , x , G) 4P]u(t ; ut0

4x) �G( or equivalently the Markov

semigroup (Ps f)(x) 4sf(y) P(s , x , dy). The dual semigroup ]P x
s (sD0 gov-

ernes the evolution in time of the law of u(t). Hence, a probability measure m is
said to be invariant if P x

s m4m for all sD0.
From now on, f is assumed to be independent of time; therefore, both the

forcing terms are stationary in time, since n(t) 4¯w(t) /¯t is a generalized sta-
tionary process.

We shall show that, under quite general assumptions, there exists an in-
variant measure and moreover this is unique, under more restrictive assump-
tions.

For the existence result we exploit the dissipativity property in order to
get the existence of an invariant measure for the Navier-Stokes equation with
a random perturbation. Our existence result is based on Prohorov’s Theorem
and Krylov-Bogoliubov’s method. Actually, we have to check the tightness
property in order to obtain that there exists a (sub-)sequence ]m n ( of mea-
sures converging to a limit measure m ; then this m is invariant.

The uniqueness of the invariant measure is obtained by providing that the
Markovian semigroup Pt is irreducible and strongly Feller. In fact by Doob’s
Theorem (cf. [9]), there exists at most one invariant measure if all the mea-
sures P(t , x , Q) and P(s , y , Q) are equivalent, that is mutually absolutely con-
tinuous, for arbitrary time s , tD0 and initial data x , y . And a sufficient condi-
tion for this assumption is that the Markovian semigroup Pt is irreducible and
strongly Feller (cf. [20], [22]). So, we shall first investigate separately these
two properties, and later on choose a proper setting in which both hold.

Finally, putting together the results independently obtained, we get that
there exists a unique invariant measure, which is the limit of the distribution
law as TKQ .

4.1. Existence.

The Navier-Stokes equation is dissipative in the sense that starting
from a point in H , the system will live not in the whole space H but
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in a smaller subspace (depending on the regularity of the forcing terms).
For the family of random variables ]u(t0 ) (0 , v): v�V(t0G0 , an estimate

uniform in t0 is required. This is stronger than the result of Theorem 2.3. We
have (cf. the very technical proof in [14], [13])

LEMMA 4.1. – Denote by u(t0 ) (Q) the solution of the equation (2) over [t0 , Q)
with the initial condition ut0

40. Assume that R (G) ’D(A 1/412e ) for some
eD0 and f�D(A 21/21d ) for some dD0. Then there exists a real random
variable r(v) (P-a.s. finite) such that

sup
2QE t0G0

NA g u(t0 ) (0 , v)NGr(v)

for some gD0, for P2 a.e. v�V .

Therefore, we get the tightness property in H for the family of laws of the
random variables ]u(t0 ) (0 , Q)(t0G0 . Indeed, if we put V N »4 ]v : r(v) GN( and
notice that

V N %mv : sup
2QE t0G0

NA g u(t0 ) (0 , v)NGNn
then, choosing any eD0 there exists Ne such that

12eEP(V Ne
) EPm sup

2QE t0G0
NA g u(t0 ) (0 , v)NGNen .

Since the embedding D(A g ) %H is compact for gD0, it follows that the family
of laws of the random variables u(t0 ) (0 , Q) is tight, i.e.

(eD0 )Ke compact in H such that

P]u(t0 ) (0 , v) �Ke( D12e for all t0 G0 .

Noticing that u(t0 ) (0 , Q) and u(0) (2t0 , Q) have the same law, we get tight-

ness also for { 1

t
s
0

t

u(0) (s , Q) ds}
tD0

. Since Pt is Feller, we have proved the

following

THEOREM 4.2. – The stochastic problem (2) has an invariant measure.

4.2. Uniqueness.

As already explained, we shall look for irreducibility and strong Feller
property. We refer to [13], [16] for any details of the proof.

We begin with studying irreducibility.
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We say that Pt is irreducible in E if P(t , x , G) D0 for any tD0, x�E , G
open non empty subset of E .

Let us define the mapping

F : Xz KXu , zOu4v1z

where z is the Ornstein-Uhlenbeck process solution of

.
/
´

dz(t)1Az(t) dt4Gdw(t)

z(0) 40
(6)

Here we consider the system on a time interval [0 , T] for any TD0; then z is a
centered Gaussian process.

We give now a general outline of the proof of the irreducibility in order to
point out what is important to know about the map F . Keeping in mind that by
definition P(t , x , G) 4P]u(t ; x) �G(, it is enough to show that

P]u(Q , v) � Ur( FP]z(Q , v) � Zd r
( D0

where Ur , Zd r
are open sets in suitable spaces that we shall specify later on

(d r means that, given r , Zd r
has to be chosen as a function of Ur).

Therefore, the law L (z) has to be a full measure on a suitable space in or-
der to get the latter inequality. Sufficient conditions for this (linear) case are
presented, e.g., in [19]. The first one is true if (proceeding pathwise), given u,
there exists a suitable z such that if z is in a ball Zd r

(z) of center z and radius
d r , then u belongs to a ball Ur (u) of center u and radius r in suitable
topologies.

Therefore the spaces Xz and Xu have to be properly defined. In order to
prove the validity of the first inequality the following three steps are checked
(for any given a� [0 , (1 /2) ))

1) F : C0 ([0, T]; D(A a))OL 4/(122a) (0, T ; D(A 1/41a/2))KC([0,T]; D(A a))
is well defined

2) given u �C([0 , T]; D(A a ) ) , there exists z �C0 ([0 , T]; D(A a ) ) O
L 4/(122a) (0 , T ; D(A 1/41a/2 ) ) such that u 4F(z)

3) F is continuous in the assigned topologies.

Concerning the other property: Pt is strong Feller in E if Pt : Bb (E) K

Cb (E), (tD0.
We have to consider intermediate auxiliary equations. We are seeking the

property in the space D(A a ), i.e.

if Vx2yVD(A a ) K0,
then N(Pt c)(x)2 (Pt c)(y)NK0 for arbitrary tD0, c�Bb (D(A a ) ) .

By the mean value Theorem, we get that the Markovian semigroup ]Pt ( is
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Lipschitz Feller if we are able to estimate the derivative of Pt c . Regularizing
effect of Pt is due to the fact that Pt c is the solution of a parabolic equation, i.e.
the Kolmogorov equation associated to the SDE (2). The proof is pretty tech-
nical and starts from a representation for this quantity given by the Elwor-
thy’s formula (cf. [10], [5]), which holds for the n-finite dimensional Galerkin
system associated to (2). The necessary estimate is obtainable only by modify-
ing this equation by a cut-off function U R in front of the non linear term B ,
i.e.

(7)
.
/
´

du (R)(t)1Au (R)(t) dt1U R(Vu (R)(t)V2
D(A a)) B(u (R)(t)) dt4f dt1Gdw(t)

u (R)(0)4x

where for R� (0 , Q) the cut-off function U R is a C Q function equal to 1 in
[2R , R] and 0 outside [2R21, R11]; if R4Q , then Uf1 and (7) reduces
to (2).

Passing to the limit as nKQ and RKQ , we shall obtain the strong Feller
property for the principal system (2) in the space E4D(A a ) for arbitrary a�
[(1 /4), (1 /2) ) , exploiting Theorem 3.1 (of course, easy generalizations hold for
aF1/2 in the periodic boundary condition case). For technical reasons, the re-
striction aF1/4 has to be introduced.

Keeping in mind the procedure sketched at the beginning of this section,
we get uniqueness of the invariant measure. For this, strong assumptions on
the noise are required. Indeed, for any fixed a� [(1 /4), (1 /2) ) , it has to be
assumed

[H] G : HKH is a linear bounded operator, injective, with range R (G)
dense in D(A 1/41a/2 ) and such that D(A 2a ) ’ R (G) ’D(A 1/41a/21e ) for
some eD0.

Let us point out that these two crucial properties could be proved only in
the space D(A 1/4 ); indeed, if the Markov process lives in the space D(A a ) %
D(A 1/4 ), it inherites these two properties from D(A 1/4 ). This is true in our case,
according to Theorem 3.1. But a stronger upper bound for the range of G is as-
sumed in Theorem 3.1. In this way we would make smaller the domain in which
R (G) has to be bounded. On the other hand, by means of our procedure we
check directly irreducibility and strong Feller property in D(A a ) for every a�
[(1 /4), (1 /2)). In this way we make less restrictive the lower bound for
R (G).

4.3. Final theorem.

We conclude relating the existence result of the invariant measure of § 4.1
to the uniqueness of § 4.2. We have proved



B. FERRARIO92

THEOREM 4.3. – Fix a� [(1 /4), (1 /2)). Assume [H] and that the data have
the regularity specified in Theorem 3.1. Then, there exists a unique invari-
ant measure m for the system (2), concentrated on D(A a ), which is equivalent
to each transition probability P(t , x , Q) for arbitrary x�D(A a ) and tD0.
Moreover m is strongly mixing, that is

lim
tK1Q

P(t , x , G) 4m(G)

for arbitrary x�D(A a ), G� B (D(A a ) ) .

Such a unique invariant measure is ergodic, in the sense that

lim
TKQ

1

T
s
0

T

C(u(t ; x) ) dt4 s
D(A a )

C dm P-a.s.

for all x�D(A a ) and Borel measurable functions C : D(A a ) KR such that
s

D(A a )

NCNdmEQ .

This has a physical relevance (e.g., cf. [21]). In fact, the solutions of the
Navier-Stokes equations under realistic conditions are so highly oscillatory
that usually one computes mean values of the solutions with some kind of time
average. And the unique equilibrium measure (the ergodic measure) provides
the way to make statistical averages. This is nothing but the ergodic principle,
which lies at the basis of the statistical fluid dynamics; here a rigorous proof of
its validity for the stochastic equation has been given.

5. – Conclusion.

The presence of a (suitable, not too degenerate) white noise provides the
existence of a unique invariant measure. This result depends heavily on the
noise. This procedure can not be applied to the deterministic equation. For in-
stance, the irreducibility property is not fulfilled by the deterministic equa-
tion; in fact, if Gf0 then P(t , x , Q) 4d u(t ; x) .

But, in general, without constraints on the Reynolds number, the deter-
ministic Navier-Stokes equation has many stationary solutions. When a suffi-
ciently distributed random perturbation is added, only one invariant measure
exists. The effect of the noise is to mix up the dynamics of the system, allowing
a unique asymptotic behaviour. No one of the deterministic stationary sol-
utions is an invariant measure for the stochastic equation whose noise satisfies
[H].

An easy example of noise satisfying our assumptions is G4A 2g L for any
3/8 EgG1 given a linear bounded injective operator L .
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Or even, let us represent the cylindrical Wiener process as a series (not
converging in H but in bigger space) with respect to the Stokes eigenvectors

]ej (j41
Q , i.e. w(t) 4 !

j41

Q

b j (t) ej (given a family ]b j (j41
Q of independent real

valued standard Wiener processes), so that Gw(t) 4 !
j41

Q

s j b j (t) ej ; the condi-

tion is s j c0 (j (no degenerate noise) and c/j 2aGs j EC/j 1/41a/2 , for j’s large
enough, since l j A j as jK1Q .

Eventually, given any noise satisfying the assumption of Theorem 4.3, suf-
ficient conditions on the data ut0

and f are given so that there exists a unique
invariant measure.
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