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On the Canonical Ideal of a Set of Points.

MARTIN KREUZER

Sunto. — Dato un insieme X di s punti nello spazio proiettivo, si costruisce un esplicito
ideale canonico 3 nel suo anello di coordinate R. St descrivono le componenti omo-
genee di ¥ e la struttura della mappa di moltiplicazione R, @ 3, 1—> 354 1, dove
o=max {1|Hx (i) <s}. Tra le applicazioni ci sono varie caratterizzazioni di inste-
ma di punti coomologicamente uniforma, disuguaglianze nelle loro funzioni di Hil-
bert, il calcolo del primo modulo delle sizigie di I in cast particolari, una generaliz-
zazione della «trasformata di Gale» a trasformate canoniche di grado superiore e
mfine alcune osservazioni sut codict MDS.

1. - Introduction.

Given a set of points X = {P;, ..., P} in projective space P? over an alge-
braically closed field K, we are interested in studying relations between the
geometry of the configuration of the points and the algebraic structure of cer-
tain ideals and modules over the homogeneous coordinate ring R =
K[Xy, ..., X41/Ix of X. In three previous papers [6], [10], and [11], we saw that
many geometric properties of X are encoded in the R-module structure of the
canonical module

Wp= Hﬂ]{[aco] (R’ K[%o])( _1)

of R, where we assume XN Z(X;) =0 and let =X, + IxeR.

The purpose of this paper is to refine those methods by noting that, for re-
duced 0-dimensional subschemes XcP¢ as above, there exists an ideal
Ir/K1z,) € B2 Which is — up to a shift in degrees — isomorphic to the canonical mod-
ule. Such an ideal is called a canonical ideal of X. In section 1 the ideal gk,
is constructed in an analogous manner to the local case (cf. [9]), but with addi-
tional care taken to keep all maps and modules homogeneous and to make
them completely explicit.

The canonical ideal of X constructed in this way depends on the choice
of the element x,e R, but in a very manageable fashion (cf. Prop. 1.8). It

has the advantage of being contained in R-, ;= D 1Ri’ where ox =
h 1Z20x+

max {7 € Z|dimg (R;) <s}. By [6], 1.13, this part of the ring R can be described
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precisely using the separators fi, ..., fye R, .1 of X: we have a K-basis for
each homogeneous component R; with ¢ = o« + 1, and an explicit description
of the multiplication of R in terms of those bases. This in turn allows us to com-
pletely describe the homogeneous components &, ;1 and d,, +1 Of I = Ig/ky,
by constructing K-bases for them (cf. Cor. 1.10 and Cor. 1.11), and to compute
the matrix of the multiplication map R, ®J,, 1= J,. +1 (cf. Cor. 1.14).

In the remaining part of the paper we show several applications of the
canonical ideal. The main application is the solution of a question about the
Hilbert function of cohomologically uniform sets of points posed in [11]. This
uniformity condition was introduced in[11] as an intermediate condition be-
tween 1l-uniformity and A -uniformity. Here A« = Hx(ox+ 1) — Hx (o) is
the last increase of the Hilbert function H«(?) = dimg (R;) of X, and X is
called n-uniform, if every subset Y ¢cX with s —n < #Y <s satisfies Hy =
min { Hy, #Y}. Cohomological uniformity is defined by the non-existence of a
splitting X =Y U Y’ such that PEY K-Lf;N PEY’ K-Lf;= (0), where Lf; is the

i€ ) €

image of f; in R/(x,). We characterize cohomological uniformity in terms of the
structure of the canonical ideal in the following way.

THEOREM 0.1. — For a set of points XcP?, the following conditions are
equivalent.

a) X 1s cohomologically uniform.

b) The multiplication map R, ®J,, 1>, +1 1S nondegenerate and
surjective.

It is then an immediate consequence of [10], 2.6 and 3.1 that A -uniform
points are cohomologically uniform and cohomologically uniform sets of points
are 1-uniform.

At the end of section 2 we also relate cohomological uniformity in the case

d+2
of d+2<s< ( 5 ) points to the condition that X does not split linearly,

i.e. that there are no two linear subspaces L, Ly ¢ P? such that X ¢ L; U L, and
LiN Ly # @ (cf. Prop. 2.7). We obtain another proof of the result of [2] which
says in our situation that X does not split linearly if and only if the canonical
ideal is generated by its elemets of degree two. An example shows that coho-
mological uniformity generalizes linear splitting in a suitable way to point sets
with o< =2 (cf. Ex. 2.8).

The main result of section 3 is the following affirmative soultion of [11],
Question, p. 248.
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THEOREM 0.2. — If XcP? is a cohomologically uniform set of points,
then

for all ne {0, ..., ox}.

In order to prove this theorem, we characterize cohomological uniformity
of X by the existence of elements re R, and ¢ €J, ., such that &, ., is of
the form

S0 11=Ro 9@ Krp, @ ... O Kre 4,

for any K-basis {¢, @3, ..., ¢ 4.} of §, 11 (cf. Prop. 3.9). The core part of the
proof is to show that one can in fact choose = [°= for a generic element [ e R,
in this characterization (cf. Prop. 3.12). Then the desired inequalities follow
easily (cf. Cor. 3.3). For a discussion of the meaning of Theorem 0.2 and for ex-
amples we refer the reader to[11].

In the fourth section we apply our knowledge of the canonical ideal in the

d+2
case of d+1<s< ( 5 ) cohomologically uniform points in order to give a

description of its first syzygy module. Both for the syzygy module of J, consid-
ered as a P = K[X,, ..., X;]-module, and of J, considered as an R-module, we
provide explicit homogeneous systems of generators (cf. Lemma 4.2.b and
Prop. 4.3), and we show how one can compute those elements effectively (cf.
Rem. 4.7). In the case of s=d + 3 =6 cohomologically uniform points in P¢,
we prove that the R-syzygy module of J is generated by its homogeneous ele-
ments of lowest degree (cf. Prop. 4.4), and we relate this to the analogous re-
sult of [3] for the P-syzygy module of J (cf. Rem. 4.5).

Finally, in section 5, we use the homogeneous components of the canonical
ideal to generalize the Gale transform of a set of s points X (see for in-
stance [5]). We show that the Gale transform can be defined explicitly by rep-
resenting a K-basis of J,, in terms of the separators, and that it consists of s
distinet points, if and only if every subset of s — 2 points of X spans P?¢ (cf.
Prop. 5.2). More generally, we can use the homogeneous components &y, , 1 _;
for i =1, ..., o to define higher «canonical transforms» x;(X) of X. After de-
scribing those components explicitly (cf. Prop. 5.1), we formulate again the
precise uniformity condition on X to ensure that k,;(X) consists of s distinct
points. We end the paper by connecting the uniformity of X to the uniformity
of k;(X) (cf. Prop. 5.10), and by interpreting this result in the language of
Coding Theory (cf. Cor. 5.11).

Acknowledgements. Mayor parts of this paper were done while the author
was enjoying the hospitality of the Departments of Mathematics of Queen’s
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Geramita (Kingston) and L. Robbiano (Genova). He is also thankful to E. Kunz
(Regensburg) for his continuing interest in the subject and for providing the
author with the repeated opportunity to lecture about it in the Obersemi-
nar.

1. — Construction of the canonical ideal.

After fixing notations, we describe how to construct the canonical ideal of
the projective coordinate ring of a set of points. We follow the procedure out-
lined in [9], 2. Vortrag, with two major differences: we are dealing with a grad-
ed situation, and we want explicit descriptions of the homogeneous compo-
nents of the canonical ideal.

Throughout this paper we work over an algebraically closed field K of ar-
bitrary characteristic. Our central object of interest is a given set of points
X={Py, ..., P,} in P? the d-dimensional projective space over K. The coor-
dinate functions {Xj, ..., X;} of P? are always chosen in such a manner that
XcD, (Xp), i.e. such that no point of X lies on the hyperplane Z(X,). The pro-
jective coordinate ring of X in P? is R = K[X,, ..., X,;1/Ix, where I denotes
the homogeneous saturated ideal of X.

Let us collect a few elementary observations. The ring R = n@ORn is a 1-di-

mensional reduced Cohen-Macaulay K-algebra, and x, := X, + Ix € R, is not a
zerodivisor of R. The Hilbert function Hx:Z—N (n—dimgR,) of X
satisfies

=0=Hg(~1)<1=
H[\*(O)<<H‘ (U};)<S:Hx(0’x+1)=Hx(0’x+2)=

for some number o= —1. Its first difference function AH«(n) := Hx(n) —
Hy(n —1) therefore has a nonzero value 4H«(n) # 0 if and only if 0 <n <
ox+1.Welet 4« := AHx (0 + 1) and write simply 0 = o and 4 = A, if no
confusion can arise.

As in[6] and[10], for 1€ {1, ..., s} we denote by f,eR,., a separator
of P; in X, ie. a function such that f;(P;) =0 for j# ¢ and f;(P;) #0. Here
we let f(P):=f(1,py, ..., pq), if feR is a homogeneous element and
P=(1:p;:...:py) eD,(X,) a closed point. We normalize {fi, ..., f;} by re-
quiring f;(P;) =1fori=1, ..., s. Now[6], 1.13, says that {a¢' fi, ..., 2¢' f; } is a
K-basis of R, ,, for each n =0, and [6], 3.2.a, shows that the multiplication
in R satisfies vf;=r(P;) g f; for 1=1, ..., s and reR,.
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LEMMA 1.1. — A homogeneous element re R, is not a zerodivisor of
R if and only if r(P;) 20 for i=1, ..., s.

ProOF. — If n=0x+1, we have r=vP))ad * fi+...+rPy)xd " 'f.,
and if n < oy, then raf "1 "=r(P;) fi + ... + r(P,) f.. In any case, r(P;) =0
implies 7f;=0, ie. r is a zerodivisor of R. The converse follows from
ifi=rP)wg fi, ™

The image of f; in R := R/(x,) is denoted by Lf; and is called the leading
form of f; (i=1, ..., s). By[6], 2.13, we can renumber {P;, ..., P,} in such a
way that {Lfi, ..., Lfs} is a K-basis of B, ;. Then we write

Lfy j=BpLfi+ ...+ BaLf,

for j=1,...,s— A4, and we form the matrix B := (§;;)"*™.

LEMMA 12. - a) For i=1, ..., 4 we hawe ;+ ... +B,_ = —1.
b) The elements ¢, ..., 9 4 € R, which satisfy

ogi=fari—Bafi——Biaka
form a K-basis of R,.

PRrROOF. — Part a) follows, if we consider the equation f; + ... +f,=xf*!
and pass to R. Part b) follows from the observation that the elements
favi=Bafi—---—Biafs with 1=1, ..., s — A are linearly independent ele-
ments of xyR,. W

Notice that B depends on the numbering of {Pi, ..., P,} in an obvious
way. The dependency of 8 on the choice of x, is governed by the following
rule.

LEMMA 1.3. — Let le R, be a nonzerodivisor, and let ﬂ;’i be constructed as
above, but using [ instead of x,. Then

. l(PAH-)".
ey
fori=1,...,4dand j=1,...,s—A4.

ProoF. — If f1, ..., fl denote the separators w.r.t. [, then f{+ ... +fl=
1ot yields fi=1P)°"'f; for i=1,...,s. Now notice that f}.;—
P4 JUPY ) B Sl — oo = AP ) JUPD ) Biafh = VP4 ) fass—
WP4 ) UP) Bjfi— o —UP4 ) UPY) Bjafa=UP,s1;)lg; is an element
of [R,, =
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At this point we are ready to start with our construction of the canonical
ideal. Recall that the integral closure R of R in its total ring of quotients can
be described as follows (cf.[13] or [6]):

R=R/p, x...x R, =K[T,]1 % ... x K[T,]

where p; is the homogeneous ideal of P; in X, and T} is the image of x, in R/p;.
Using the above notations, the canonical map ¢: Rc>R satisfies «r) =
r@P)TY, ..., r(P) T) for reR,. In particular, «(x)) = (T4, ..., T,) and
«(f)=1(0,...,0,T¢*1, 0, ..., 0). Since R is graded by deg T; = 1, the map ¢ is
homogeneous of degree zero.

From this description we find that the full ring of quotients Q(R) of R can
be identified with Q(R) = K(T;) X ... X K(T,). In the next step we compute
Q"(R), the homogeneous ring of quotients of R, i.e. the localization of R w.r.t.
the set of all homogeneous nonzerodivisors.

PRrROPOSITION 1.4. — a) Using the above identifications, we have
Q"(R)=KI[T,, Ty '1x ... x K[T,, T, '].

Here an element flg € Q" (R) with fe R,, and a nonzerodivisor g € R, is iden-
tified with the tuple

(f(Pl) - S(Py) )

| TWL*’IL
y eeey .

g(Py) gpy) °
b) We have Q"(R) =R,,.

ProOF. — Let flge@Q"(R) be as in a). The image of f in Q(R) is
(fpy T, ..., f(P)T>), and the image of ¢ in Q(R) is
(g(P) TT, ..., g(P,) T). Therefore flg is identified in Q(R) as claimed and is
contained in K[Ty, Ty '] % ... x K[T,, T, ']

Conversely, for any element (gq, ..., g,) € K[T;, Ty '1x ... x K[T,, T, 1]
and any n>>0, we have (T{'¢, ..., Ty'g,) =«(f) for some fe R, because
dimg R, = s = dimy (K[ Ty, Ty 1% ... x K[T,, T, "'1),,  for m>>0. Thus
(g1, .-, g5) is the image of flxge Q"(R), proving a) and b). =

In what follows, we let L, := K[x,, x, '] and L := Q"(R). From 1.4 b) we
conclude that L =L0K[®]R. Since R is a Cohen-Macaulay ring, it is a free
)

K[ xy]-module of rank s. Therefore L is a free Ly-module of rank s, and there is
an Ly-basis {e;, ..., e,} of L which is identified with the standard basis of
K[T,, Ty *1 % ... X K[T,, T, '] under the isomorphism of 1.4 a). Let O L/,
L— L (e;~—1) be the canonical trace map.
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PROPOSITION 1.5. — The homomorphism X: L— Hom,, (L, Ly) (1—0,,)
is an isomorphism of graded L-modules.

PROOF. — Let @: L—Ly be an Lgylinear map and g;(x, xy 1) := @(e;)
fori=1, ...,s. Then ¢ = (¢;(Ty, Ty "), ..., 9s(Ts, Ty 1)) 011, shows that ¥ is
surjective. The map X is also injective, since from vy =
(i (T, TV, ..., 95(Ts, Ty 1)) 01y, = 0 we obtain 0 = y(e;) = g; (2, x5 ') for
i=1, ..., s, and hence (¢;(Ty, Ty 1), ..., 9(Ts, T, 1)) =0. m

DEFINITION. — Now we consider the following homomorphism of graded
R-modules

-1
&: Homy,,| (R, Klzy]) = Homy, (L, L) —>L,
¢ Hq) ® idL() *
Its image is a homogeneous fractional R-ideal Cp,,; of L which is called the

Dedekind complementary module of R with respect to x.

It is not difficult to see (cf.[6], 3.1) that the Hilbert function of
@: = @R/K[CCO] = HﬂK[xU] (R, K[.%'O]) iS giVen by HQ‘(?’L) =8 — Hx( N — 1) fOI'
all neZ.

PROPOSITION 1.6. — (Explicit description of Cpxpy,)-
Let n=0, and let ¢ € Homg, (R, K[%g])—g—14,. Fori=1, ..., s we write
o(f;) = c;xl with c;e K. Then

D) = (e, Ty 14", .., e, T V) el

PRrROOF. — Since t: R <L satisfies «(f;) = (0, ...,0, Tf*1,0, ..., 0), the
map ¢ ®idg;: L ERK([@]LO—>L0 is given by (pQ®id, )i e;) =
&Xo
(p®id,,) (0, ..., 0, T*1,0,...,0))=¢(f) =c;xy'. Therefore we have
e ®id,, =a; ° " "(ey, ..., ¢) 01y, in Homy (L, Ly). Thus the claim follows
from the description of X! given in the proof of 1.5. m

COROLLARY 1.7. — The set x5° "% Cpyp,C L is an ideal of R.

Proor. — Clearly this set is an R-submodule of L. We shall show that it
is contained in the image of R in L. Let ¢ € Homg, (R, K[xy])_;_14, With
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n=0, and let ¢(f;) =c¢;xg with ¢;e K for i =1, ..., s. Then we have
0202 D(@) = ;22 (e, T 1, L, e, Too~ 1) =

(CIT10+1+?/L’ e CSTSG+1+’VL),
and this element is the image of xy'(¢c; fi+... + ¢, f;)eRin L. =

DEFINITION. — The ideal Sg/xp,) = 23" 2 Criipy, of R is called the canoni-
cal vwdeal of X with respect to x,. Since the choice of x; will remain fixed, we
shall also denote this ideal by J:= Sg/kp,-

Later we shall show that, in general, o« + 2 is the smallest number » such
that xg'-C/kp,, is contained in B, but in special cases also smaller numbers
can suffice for this to be true. It is also clear that g/, depends on the choice
of the linear nonzerodivisor x, of R. The next proposition makes this depen-
dency explicit.

ProprosITION 1.8. — If le Ry is a nonzerodivisor of R, then xyCpkp. =
UGy and 121 S = €3 Spmn C R.

In other words, for an element f=uxg(c;fi+...+¢c.f.) of Ryoiiin,
with ¢;e K and n=0, we have fe Spxy if and only if xf L(P) 27 tey fi +
e UP) TP e ) € SRiKing)-

ProOF. — In view of the definition, it suffices to prove the first claim. Be-
cause of symmetry reasons, we only show ) Cp/r,1Cl-Cpxy. Let ¢: R—
K[xy] be a homogeneous K[x,]-linear map of degree —ox—1+n with n =0,
and let ¢(f;) =c;xq with c;e Kfori=1, ..., s. Since ¢(R,_,) C K[xy]_; = (0),
we have A;¢; +... +1,¢c,=0 whenever 1, ..., A;,eKand 1, fi+ ...+, f, =
xg " 1g for some ge R, _,. By 1.6, we have @(x,¢) = (¢c; Ty °*", ..., ¢, Ty ™)
in L.

Now let U; be the image of [ in R/p;, and consider the representation
L=K[U,, U 1% ...xK[U,, U7 ']. Since U;=1(P;) T; for i=1, ..., s, the
element @(x, @) is given by (¢, 1(Py)°~"U; “*", ..., ¢, I(P,)° " Uy, 7% ") in this
representation.

Next we let y: R— K[l, [ '] be the homogeneous K[!]-linear map of de-
gree —ox—1+n such that yp(fP)=c,l(P;)° "I" for i=1,...,s. Here
0., f are the normalized separators with respect to [. Using 1.6 again,
we see that (c; {(P)° "Uy 7" ", ..., ¢, l(P,)° " U, °"") is also the image of [y
in L.

Therefore it suffices to show mwyc K[l]. For this we need to prove
PYR,_,)=0. Let geR,_,, and let xl'*'g=A1fi+...+A,f, with 4, ...,
1,eK. By the proof of 1.3 we know £V =1(P;)° "' f; for i=1, ..., s. Therefore
we have ["Tlg=A1(P)" " fi+ ...+ AP =A0(P) T AP+
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o+ AP P, Thus we obtain 1" 1y(g) =y(" " g) =4, UP) 7"
YA + o+ AP p(fO) =1"(A1ep + ... + Age,) =0. Altogether we
get ¥(g) =0, as desired. =

The explanation why gk, is important for the study of X and why it is
called the canonical ideal of X is provided by the following proposi-
tion and its corollaries. Recall that the graded R-module wgz=
Homy (HA(R), K) = Homyg, (R, K[x,])(—1) is the canonical module of R
and can be used to characterize many geometric properties of X
(cf. [10]).

PRrROPOSITION 1.9. — There are isomorphisms of graded R-modules
o r = Cpgr (1) = Ipikge (205 + 1)

Here an element ¢e(wg)_,, = Homgy, (B, Klxg])_5_14, with n=0 1is
identified with the element @(f1) fi+ ... + o(fi) fi of 3541 1n-

ProOF. — Since @ is a monomorphism of graded R-modules and &=
252 Criren) = Crigrny (— 20« — 2), the first claim is clear. For the second
claim, let oe(wgp)_,., be given by @(f;) =c;xg’, with n=0 and c;e K
for i=1, ..., s. Then multiplication by xZ°*? provides an isomorphism
Crmiz(—1) = Cruqr (205 + 1) which identifies @(¢) = (¢; Ty 7 11", ...,

¢, Ty o 1"y with wf'(ey fi+ ...+ e ) =@(f) it ...+ @(f) f;. ™

As a first application, we can use the isomorphism of this proposition to
give explicit descriptions of ,, ;= (wg)_, and ;1 = (wp)y. From what we
mentioned earlier, we know the Hilbert funtion of J, namely

H:)(n) =S —HX(ZO’X+ 1-n)

for all n e Z. Thus 4, ,; and 5, , ; are the first and last nontrivial homogeneous
components of J. In section 5 we shall also give a (somewhat less explicit) de-
seription of the remaining nontrivial homogeneous components of J.

COROLLARY 1.10. — The elements mw; :=fi+ L1, fas1+ .- +Bs_ai fs such
that 1 <i< A form a K-basis of J,41.

SINCE {Lfi, ..., Lfs} is a K-basis of R, 1, the projections 7y, ..., 74 de-
fined by m&;(f):=9d; for j=1,...,4 form a K-basis of (wgp)_,=
Homg, (R, Klxg])_y-1 (cf.[10], 1.5). For j=1,...,5s—4 this yields
7i(fas)) =7 Bpfi+ ... +Bjafs) =B;. Now an application of 1.9 finishes the
proof. =
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COROLLARY 1.11. — The elements h; :=xg5(fi,1—f;) with i=1,...,s—1
form a K-basis of 35, 1. An element xg (¢, fi + ... + ¢, f;) of Ray 41 1S contained
M 95401 If and only if ¢c;+ ... +¢,=0.

PROOF. — An element ¢ of (w )y = Homg,, (R, K[x,])_; yields a K-linear
map @|g,,: R,.1—Klx,], with the property (¢|g, )y =x ' ¢(1)e
x¢ "1 K[x,]_, = (0). Conversely, a K-linear map v: R, , ; — K[x,], extends to a
K[xy]-linear homogeneous map y: R— K[x,] of degree —1 if and only if
Yla¢ ™) =0, because dimg(wg)y=s—1 and ¥ is uniquely determined by
Y |g,., (cf.[10], 1.4). Now a¢ "' = f; + ... + f, implies ¢(f;) + ... + @(f,) = 0 for
pe(wg), and the claims of the corollary follow from Proposition
19. =

Using Corollary 1.10, we can now give the promised examples which show
that, in general, one has to multiply Jg/k,,; by 2&°*%in order to get an ideal of
R, but in special cases a lower power of x, may suffice.

ExamMpLE 1.12. - Let char K#2,3, and let X={(1:0:0),
(1:1: 0),(1: 2: 0)} c P2, Then X is a complete intersection of type (3, 1), i.e.
Ii=(X,, X;(X; —X,)(X;—2X,)), its Hilbert function is given by AH«:1110...,
and ox=1. It is easy to compute f;=(1/2)(x;—xp)(w;—2%), fo=
—uy (2, — 2%9), and f3=(1/2)x,(x; — ) (cf.[6], 1.15). Thus Lf;=pLf
with 8, = —2, and Lf; = 85 Lf; with 85 =1. By Corollary 1.10, the element
m=fi —2f,+f; is a K-basis of ,,,. Since X is a complete intersection,
{m,} is even an R-basis of J. Clearly, 7 ¢x,R,, so that in this case
g U+1@R/K[x0],¢R'

ExamMpLE 1.13. - Let K:=C, and let X:={(1:0:0),(1:2:0),(1:
1+1/3i: 0)} cP?. Again X is a complete intersection of type (3, 1), its
Hilbert function is AHx:1110..., and ox=1. This time we find

fi=1/2+2VB)(w; — 220)(@; — 2 — V3ixy),

fo=Q1/(2-2V3i)w (v, — o — VBixg), and fy=—(1/4)x(x; — 2a).

Thus Lf; = 11 Lfi with B = (1/2)(\/§i— 1) and Lf; = Bo Lfi with B4 = —
(1/2)(\/§i + 1). Therefore the R-basis 7, =/f; + 11 fo + Ba f5 of Spika,) satis-
fies L, =Lfi + puLfs + Bar Lfs =0, i.e. we have 7, e xy B,. This means that
we could have taken x5 "' Cry) = ¢ Crixry,) and obtained an ideal of R.

Let us also show that a§ Cp/x,,.1¢R here. This fractional ideal starts in de-
gree zero, so that we want to show ;¢ (). But 7, = Axf = Af; + Afy + Af; for
some A e K implies 8; = =1, which is not the case.

In [10], 2.6 and 3.1, the multiplication map R, ® J, . — Js, 1 has been used
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to characterize geometrical properties of X. By applying 1.10 and 1.11, we
shall now give an explicit matrix for this map.

COROLLARY 1.14. - Let {g1, ..., Gs—a}ts {71y --y WA}, amd { Ry, ..., hy_1} e
as m 1.2.b, 1.10, and 1.11, resp. Then the multiplication map R, ® 3,1 —
o1 1S glven by

ﬁjlhA+j—1 fOT?;Zl CL%del,...,S—A,
% {ﬂﬁhwl—ﬂﬁhil for i=2, .., Aand j=1,..,s—A.

PrOOF. — For ie {1, ..., 4} and je {1, ..., s— A4} we have
9= (fas;j—Bufi— o —Bufa) (it Basvifacrt o+ Bs—aifs—a) =
g (Bjifarj—Bjifi)-
From this the claim follows immediately. =

Finally, we remind the reader that in complete analogy with [9], 6.13, one
can show the following proposition in our situation.

ProposITION 1.15. — The ring R/J is a 0-dimensional Gorenstein ring.

2. — Canonical ideals of cohomologically uniform schemes.

In this section we shall apply our knowledge of the canonical ideal in order
to study the property of cohomological uniformity introduced in[11]. Recall
that a 0-dimensional scheme X = {Py, ..., P,} cP? is called n-uniform for
some n =0, if every subset Y ¢ X consisting of s —# points has the same
Hilbert function, namely H+v=min{Hx, s —n}. In[6], l-uniform schemes
were also called Cayley-Bacharach schemes.

Our main goals are to characterize cohomological uniformity in terms of
the structure of the canonical ideal of X and to show that this property is in-
termediate between 1-uniformity and A ¢-uniformity. Towards the end of the
section we shall also give a concrete geometrical interpretation of cohomologi-

cal uniformity in the case of d+2 <s < (d N 2) points with generic Hilbert
function. 2

Let us start with the definition. We continue to use all notations and con-
ventions of section 1.

DEFINITION. — We say that X splits cohomologically, if we can decompose
X=YUY" such that Y=0, Y'#6, YNY' =0 and >, K-Lf,N X K-Lf;=(0)
PieX’

. Y P “JI'
in R,,;. i
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If X does not split cohomologically, we say that X is cohomologically
uniform.

The choice of this name is explained in [11], sec. 3. From our next proposi-
tion and Lemma 1.3 it follows that the definition is in fact independent of the
choice of the linear nonzerodivisor x,e R; (for another proof see[11]).

PROPOSITION 2.1. — The following conditions are equivalent.

a) X splits cohomologically.
b) We can renumber the points of {Pi, ..., P,} and of {P4,1, ..., Py}

0
such that the matric B is of the form B = ( z ), where each block may
sk

have zero rows or columns and is strictly smaller than B .

PrOOF. — Suppose condition a) holds. If Lf; = 0 for some e {1, ..., s}, then
one of the columns of ¥ is zero, i.e. after renumbering {P, 1, ..., P;} the ma-
trix B is of the form B = (0 = ). Therefore we shall assume now that all ele-
ments Lfi, ..., Lf, are different from zero. Let X =Y U Y’ be the decomposi-
tion according to the above definition. Renumber {Pi, ..., P,} and
{Ps+1, .-, Py} such that we have Y = {Py, ..., Ps, P41, ..., P4, .} for some
0sdsdand 0sess— 4.

Here we cannot have 0 = 0, since in that case R, ; agrees with >, K-Lf;,
PieY

and for all points P;e Y we have Lf;=0. In an analogous way we see that
0 <4 holds. In case ¢ = 0 we have Lf;e Z, K-Lf;for A +1, ..., s, so that B

e X

0

is of the form B = ( ) Similarly, if ¢ = s — 4, the matrix ¥ is of the form
5k

B = (Z) Hence we can assume that 1 <e<s—A4.

Now we observe that for j=1, ..., it follows from f;s. Lfs. 1+
+ﬁ]ALfA:LfA+]_ﬁ]1Lﬁ__ﬂjéLfaepEYKLﬁmp%ﬂ KLf; that ﬁj(ﬂ—lz
...=Bjs=0. Also, for j=e+1,...,s—4 it follows from

Bulfi+ ...+ B Lfs=Lfsj—Bjs1Lfss1— - —BjuLfs EPZYK.LﬁmPZ;i” K-Lf;
that f;;=...=p,,=0. Thus the matrix ¥ has the required shape.
Conversely, suppose that f;;=...=p,,=0 for some je{1,...,5s—4}.
Then we can choose ¥ = {P;} and ¥' = X\{P;}, and we get the desired de-
composition of B, , ;. On the other hand, if the matrix ¥ is of the form B =
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0 %
rows of the upper blocks and ee {1, ..., s —4 — 1} the number of columns of
the left-hand blocks. Then we can choose Y = {Py, ..., Ps, Py 1, ..y Pay o}
and ' ={Psy1, ..oy P4y Psyior1, ..., Ps}, and we get the desired decomposi-
tion of R,,, again. =

*= 0 * 0
( )or%z(o)or%z( ),Weletée{l,...,A—l}bethenumberof
k

This proposition implies that cohomologically uniform schemes have Lf; = 0
for 1=1, ..., s, i.e. that they are l-uniform (cf.[6], 2.6). Let us illustrate the
phenomenon of cohomological splitting with an example. We note that condi-
tion 2.1.b) yields a computational way to check for this property.

EXAMPLE 2.2. — Consider two skew lines Ly, L, ¢ P3, e.g. L; = 2(X,, X;) and
Ly=2(X;— X, X;). Let X={P,, ..., P;} cP? with {P,, Py, P,}cL, and
{Py, P5, Pg} CLy, eg. Py=(1:0:0:0), P,=(1:0:0:1), Pg=(1:1:0:0),
P,=(1: =1:0:0),P;=(1:0:1:1),and P;=(1: 0: —1: 1). Here we assume
char K # 2. Then X has Hilbert function AH«:1320... and ox=1. We com-
pute the separators of X and find f;=af— xow; — 2, fo=xox5— 27,
fi=(1/2)woay + (1/2) wf, fi= —(1/2) wowy + (1/2) xf, fs=(1/2)xpas+
(1/2) a3, and fy= —(1/2) woaz + (1/2) w5

Thus {Lf;, Lf;} is a K-basis of R, . 1, and we see that the matrix 8 of X is

i -1/2 -1/2 0
given by(
0 0 -1/2 -1/2
cohomologically in the form X = {P,, P3, P,} U {Py, P5, Ps}.

). Using 2.1 we conclude that X splits

The following lemma gives us a different coherence property of the matrix
B of a cohomologically uniform scheme.

LEMMA 2.3. — Suppose X = {P;, ..., P,} cP? is a cohomologically uniform
set of points, and ~ is an equivalence relation on the set {1, ..., s} with the
property that © ~ j whenever ie {1, ..., 4}, je{d+1, ..., s}, and B;_ 4, #0.
Then 1 ~2~...~s.

Proor. - W.lo.g. let {4+1, ..., 4+t } with ¢, =1 be the set of those
numbers j among {4 +1, ..., s} for which 8;_,;#0. Here we have ¢, =1
because of 1.2.a. By assumption we then get 1 ~4+1~... ~4 +1¢;, and for
je{d+t;+1, ..., s} we have ;_,,=0. Since X is cohomologically uniform,
Proposition 2.1 yields a number ie {2, ..., 4} such that not all elements of
{B1ir .-, Bri} are zero. Wlo.g. let i=2 and f, =0 with v;e {1, ..., }.
Then we have 2 ~A4 +v; ~1.

Wlo.g. let {4+t +1, ..., 441t} with t, = ¢; be the set of those numbers
jamong {4+t +1, ..., s} for which §,_,,# 0. (Notice that we allow t, =1t,
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and an empty set.) Thus we have 2~A+t +1~...~A+ 1t and B;_,4,=0
for j=A+1t +2,...,s. Since X is cohomologically uniform, Proposition 2.1
yields a number ie {3, ..., 4} such that not all elements of the set
{B1i, ---» B1i} are zero. Wlo.g. let i=3 and f,,3#=0 with vye {1, ..., &}
Then we have 3 ~A4 +v,~2~1.

Continuing in this manner we finally obtain ¢, = s — 4, since not all ele-

ments of {f,_41, ..., Bs_ 44} are zero,and we get A ~4 -1~ ... ~1. By 2.1,
each column of ¥ has a nonzero entry, so 1~...~A~A+
l~...~s. =

Now we are ready to prove the main theorem of this section.

THEOREM 2.4. — Let X = {Py, ..., P,} cP? be a set of points. The following
conditions are equivalent.

a) X s cohomologically uniform.

b) The multiplication map u: R, Q@ 8,11~ 95 +1 18 nondegenerate and
surjective.

c) The multiplication map i: R, (wg)_,— (wg)y is nondegenerate
and surjective.

PRrROOF. — «a)=>b)». From Proposition 2.1 it follows that X is a Cayley-
Bacharach scheme. In[10], 2.6 it was shown that the multiplication map i is
nondegenerate for Cayley-Bacharach schemes. By 1.9, also u is nondegener-
ate.

Because of 1.11, we still need to show that the elements &; = x5 (f; .1 —f;)
such that 1 <4 <s—1 are in the image of u. Define a relation ~ on the set
{1, ..., s} by i ~je=uag(fi — f;) eimu. Obviously ~ is an equivalence relation.
Ifie{l,...,4} and je {4 +1, ..., s}, then g;_, ;= B;_ 427 (f; —f;) eimu
by 1.14. Hence if §;_ 4, # 0, then ¢ ~j. Thus we can apply the lemma and ob-
tain 1 ~...~s, ie. af(f;—f;) eimu for i, je {1, ..., s}.

«b)<=a)» Suppose that X splits cohomologically in the form X=Y U Y".
Then Ax=2, and we can renumber {P;,...,P,} such that Y=
{P1, ..., Ps,Pyi1, ..., Py .} withl<d<A-1and 0 <e<s— 4. Since the
image of u is generated by the elements g, ,m;=p8;_ x5 (f;—f;) with ie
{1,...,4} and je {4 +1, ..., s}, it is already generated by the subset of
those elements for which ;_ 4; # 0. As X splits cohomologically, that subset is
contained in the set

M:={xg(fi—f)|i=1,...,0and j=A4+1, ..., 4+¢e} U

{ad(fi—-f)|i=0+1,...,dand j=A+e+1,...,8}.
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Now let & = x5 (¢, fi + ... + ¢, f,) with ¢4, ..., ¢;€ K be an arbitrary element
of imu. We express x with the generators from M and get
o A+e A s
x=2 2 Cyag(fi-fo+ 2 2 Cyad(fi—f)
i=1j=4+1 i1=0+1 j=A+e+1

with ;€ K. By comparing the two representations of x, we find

—Cing1—-—Cing, fori=1,...,0,
= Ciuses1— =Gy fori=o+1,...,4,
R P for i=A+1,...,A+¢,
Coppit -+ C for i=A+e+1,...,s.

Thus we conclude >, ¢;=0 and >, ¢;=0. In particular, the element
PieY PieY’

x5 (f4 — f1) is not in the image of u. This contradicts the hypothesis.

«b)<>c)» is a consequence of 1.9. =

Using [10], 3.2, this theorem implies that A -uniform schemes are cohomo-
logically uniform. In view of [6], example 3.11, it was asked in [11] whether co-
homological uniformity is the right condition to show the inequalities H« (%) +
Hi(ox—m)<s—Ax+1forn=1, ..., ox for the Hilbert function of X. This
is the topic of our next section.

But before we want to specialize the situation for a moment and consider
schemes X consisting of «few» points in P? More precisely, let X =

d+2
{Py, ..., P,} cP? consist of d+2<s< ( 5 ) points, and suppose that X

is nondegenerate, i.e. it is not contained in a hyperplane, and that o =1.
Then X has generic Hilbert function, i.e. the Hilbert function of X is Hx:
1d+1ss..., and we have A< =s—d — 1. In this situation [10], 3.2 and 4.2
yield that some conditions of uniformity coincide.

REMARK 2.5. — The following conditions are equivalent.

a) X is in linearly general position, i.e. any subscheme Y ¢ X consisting
of d +1 points has Hilbert function Hv: 1 d+1d+1....

b) X is Ax-uniform.

¢) The multiplication map u: RB; ® 3, — J; is biinjective, i.e. u(rQ¢) =0
implies =0 or ¢ =0.

Fort=1, ..., s, let us write P; = (1: p;i: ...: p;g) with p;; € K. Because of
1.14 we know how the matrix of the above multiplication map u depends on the
coefficients of the matrix B = (8 ;). In our situation, this matrix B has a par-
ticularly simple description.
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LEMMA 2.6. — If X s in linearly general position, and if we choose the co-
ordinate system suitably, the matrixz B = (B ;) is given by

—1+pu+...+ P —Pu -+ TP

—14+pytitPaa —Par -+ —Pad

PrOOF. — Recall that we have numbered P, ..., P, such that {Lf;, ..., Lf,}

is a K-basis of B, ;. Since X is in linearly general position, P+, ..., P, span P?.
Thus we may change the coordinate system such that P, , =P, _;=(1:0: ...: 0),
P, g,1=(1:1:0:...:0), ..., Py=(1:0:...:0:1). Both {ag—a;—... —xy,
&1, ..., &g} and {gy, ..., ga+1} are K-bases of R, (cf. 1.2.b). They attain the same
values (xp—a;— ... —®)(Ps_g+i) =0p=01(Ps_q+¢) and a;(Py_g4;) =04=
9i+1(Ps_q4;) for 1=0,...,d and j=1, ..., d at the points P,_g, ..., P,. Since
those points span P?, we have ¢y =2y — @1 — ... — &g, o =1, ..., Ja+1 = %4, and

the claimfollows from 3 ;; = —g;(P;)fori=1, ..., d+1landj=1,...,4. =

The following notion will be used to explain the geometrical meaning of cohomo-
logical splitting in the present situation.

DEFINITION. — We say that a reduced 0-dimensional subscheme X ¢ P? splits lin-
early, if there exist linear subspaces L;, L,cP? such that XcL; ULy and L; N Ly=0.

For example, the scheme of 2.2 splits linearly. Like 2.5, the next proposition
shows that several notions which are distinct in general, coincide in the case of
«few» points. The equivalence of conditions a) and d) follows also from [2], 1.2
and 1.5.

PROPOSITION 2.7. — Let X ¢ P? be a nondegenerate, reduced, 0-dimensional
d+2
subscheme consisting of d+2 <s < ( 5 ) points with generic Hilbert func-
tion. Then the following conditions are equivalent.

a) Xdoesnot split linearly.
b) Xiscohomologically uniform.

¢) The multiplication map u: B, ® J,— J5 is nondegenerate and surjec-
tive.

d) Xispure, i.e. its canonical ideal 3is generated by the elements of 3 (cf. [11],
section 4).
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PROOF. — «a) <> b)». The scheme X has the Cayley-Bacharach property w.r.t
hypersurfaces of degree o « = 1, because a hyperplane L, containing exactly s — 1
points of X and the 0-dimensional linear space L, consisting of the remaining point
would constitute a linear splitting. Thus Xis 1-uniform.

Suppose X splits cohomologically, and we have renumbered { Py, ..., P,} such
that the second part of 2.1.b holds. Then we have g;(P;)=0 for
je{l, ..., e} and ie{0+1, ..., 4A}U{Ad+e+1, ..., s}. Hence the linear sub-
space Ly := Z(gy, ..., g.) of P? contains {Py,q, ..., Px}U{Py, i1, ..., P}
Analogously it follows that the linear subspace Ly = Z(g, + 1, ..., gs— 1) of P con-
tains {Py, ..., Ps} U{Ps41, ..., P4, }. Altogether, L; U L, contains X and
LiNLy=%(gy, ..., §s—4) = Z(n@an) = ¢, contradicting a).

The equivalence «b) <>c¢)» is a special case of 2.4. For «c) < d)» we note that J;
does not contain a minimal generator of J, that we have dimyg 33 = s — 1, and that
dimg 3, = s. In view of this and 1.11, it suffices to find one element » = x{(c,f; +
... +¢,f,) in 4, such that re Ry 3, and ¢; + ... + ¢, # 0. For this we can take any
nonzeroelementr’ = ¢/ fi + ... + ¢, f; € ysuchthate; = O0forsomeie {1, ..., s}
and multiply it by f; € R,.

As «d) < c)» is trivially true, we are left with «b) < a)». Suppose there are lin-
ear subspaces L;, Ly, € P? such that X ¢ L; U Ly, and L; N Ly = 0. W.L.o.g. we may
assume that dimZL;+dimZl,=d—-1. We let ¢:=d—dimL,=dimL,+1e
{1, ..., d}. By a linear change of coordinates, we may also assume L, =
Z(Xy, ..., X,_1)and L, = Z(X,, ..., X;). Notice that here we may loose the prop-
erty that x,e R, is not a zerodivisor. If we denote the number of points
of XNL; by re{l,...,s—1}, we can renumber {Py, ..., P;} such that
XNLy={Py,...,P.}and XN Ly={P,, 1, ..., P,}. Furthermore, we choose a

nonzerodivisor /€ R, of R, we construct the normalized separators f, ..., f!
wr.t [, and for t1=1, ..., d we let x; be the image of X; in R;.
Because of XcL;UL,, we have x;x;,=0 for ie{0,...,e—1} and

je{e,...,d}. Thus f/ has a decomposition f/=f/+f{ such that
fieKlxg, ..., 2, _1]cR and f/eKlx,, ..., x;]cR. For every ie {1, ..., s},
the definitions of L; and L, imply f/' (P;) =0 for je {1, ..., r} and f/(P;) =0
for je{r+1,...,s}. Since also f/(P;)=fl(P;)=0 for i=1,...,r and
j=r+1,...,s, we obtain f =0 for ¢ =1, ..., ». Analogously, we have ;=0
for i=7+1, ...,s. Altogether we have shown that f!eKlx,, ..., 2;] for
i=1,...,rand fleK[x, ..., x._1] for i=r+1, ..., s.

Now we can conclude that I-(Kwx, + ...+ Kx,) cKfi®...®Kf! and I
(Kag+ ...+ K, 1) CKfl,1®...®Kf!. Hence ¢; fi + ... + ¢, flel-R; for some
1, ..., ;e K implies ¢; fi+...+c . flelR, and ¢, i fli1+... +c, flelR,.

Thus we find the splitting (R/(1)).= 2 K-Lf/® > K-Lfl, ie. X splits
cohomologically. = i=1 P
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We end this section with an example which shows that not every cohomo-
logically split scheme splits linearly. The second part of this example also
demonstrates that cohomological splitting or uniformity may depend on quite
subtle geometrical properties of the configuration of the points of X. This
example suggests us to ask if for every cohomologically split scheme X =
YUY’ there exist disjoint varieties Vi, VocP? of «small» degree such that
YcV, and Y'cVs.

ExAMPLE 2.8. — a) Let C;, C,c P? be two skew twisted cubics, and let X
consist of 20 points on C; and 20 points on C,. For instance, we can take C; =
{®: w?v: ww®: v?) |(u: v)ePt} and Cy={(2uv?: u®: v3: u?v) |(u: v)ePL},
and then choose the points corresponding to (u:wv)=(1:17) for ¢=
1,...,20 on both C; and C,. The Hilbert function of X is
Hy: 14102026 32384040 ..., so that 0x =6 and 4 = 2. The matrix B is

#=...% 0...0 o
), and therefore X splits in the form X =
0...0 =..=

(XNC)) U XNCGC,y). Clearly X does not split linearly.
We note the inequality H«(3) + Hx(ox—3)=40>39=s—-4x+1, a
phenomenon which will be explored more deeply in the next section.

b) If we replace Cy by Cs= {(u?®: uv®: v3: 2u®v) [(u: v) e PL}, then
CiNCy={(1:0:0:0)}, and the analogously defined scheme X has
Hy:141019 2531 37 40 .... Since its matrix ®¥ does not split and has nonze-
ro columns, X is cohomologically uniform. We note that the inequalities
Hi«n)+ Hx(ox—n) <s—Ax+1 hold in this case for n =0, ..., ox.

P,

of the form (

The calculations for this example were done using the program COP for
computations with zerodimensional schemes (cf. [1]).

3. — Hilbert functions of cohomologically uniform schemes.

As in the previous sections, we let X = {Py, ..., P,} cP? be a set of points
with canonical ideal §c B. We have seen that cohomological uniformity of X is
an intermediate property between 1-unformity and A -uniformity. In[11] it
was shown that A-uniformity implies certain inequalities for the Hilbert
function of X which do not hold in general for 1-uniform schemes (cf. [6], 3.10
and 3.11). Our goal in this section is to confirm the view expressed in [11], sec-
tion 3, that cohomological uniformity is the correct condition which implies
those inequalities.

THEOREM 3.1. — Let X = {Py, ..., P,} cP? be a cohomologically uniform
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set of points, and suppose that char(K) ¢ {2, ..., ox}. Then we have

for all ne {0, ..., ox}.

Notice that if X consists of only one point, then o= —1 and the theorem
does not claim anything. Similarly, the theorem is trivial in case ox=0.
Therefore we shall assume s =3 and ox =1 for the rest of this section. For
proof of Theorem 3.1 we can assume that XcP? is nondegenerate, since the
Hilbert function of X does not change, if we replace P? by the linear span of X.
This proof relies on a detailed understanding of how those inequalities result
from structural properties of the canonical ideal of X. The next proposition
and its corollary provide us with the basic link.

PROPOSITION 3.2. — Let re R, and ¢ € 3,,1. The following conditions are
equivalent.

@) There exist elements @q, ..., ¢ 1€ 3,41 Such that
326+1=Ra¢@K7'§02@...@K7"(;0A .

b) If ¢o, ..., 9 a€ 3,41 are such that {@, @s, ..., 94} is a K-basis of
Jo 15 then

;520+1 :Ro¢®KT¢2®H~®KT¢A .

c) We have ¢ 0, and if r' e R, ¢'€ 3,1 are such that r' ¢ =re’, then
r'=Ar and @' =Agp for some LeK.

ProoF. — First we show that a) implies ¢). From s —1 = dimg 5,1 > 4 —
1 =dimg (Krp,®... d Krep 4) we conclude that ¢ #0. Now suppose that
re'=r"¢ for some r'eR,, ¢'€J;,1. From the hypothesis it is clear that
{¢, @2, ..., ¢4} are K-linearly independent, and hence form a K-basis of
Jy4+1- Thus we can write ¢ =4, ¢+ A0+ ... +1 ¢, with 44, ..., 1 ,€K,
and we obtain  r(A,@et+ ... +A,0)=0r"—A1r)peR,p N (Kre,®
...®Krp,)=1(0). Therefore Ai,=...=1,=0 and ¢'=1,¢. Since
the hypothesis also implies dimg(R,¢p)=s—4, we get r'—A,;r=0, ie.
r'=Ar.

As «b)<a)» is trivially true, we are left with proving «c)<b)». We claim
that dimg (R, @) = s — 4, i.e. that no element '€ R,\{0} annihilates ¢. Oth-
erwise we could choose ¢'=0, and r' ¢ =0 = r¢’ would imply ¢ ' = A, r' = Ar
for A =0, contradicting ' = 0. We also claim that we may assume r# 0. Oth-
erwise ' ¢ = 0=7'=0 and [10], 2.6, imply that X is 1-uniform with 4 =1, so
that the claim is obviously true.

Suppose now that ¢'=A,@,+ ...+ 4,0, with 1,, ..., 1 ,e K satisfies
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re'=0.Then r¢'=7r'¢ for »'=0, and thus »' = Ar, ¢' = Ap with 1 = 0, i.e. we
have ¢'=0. This shows dimg (Krg,®...®Krep,) =4« —1. Finally, it is
clear from the hypothesis that (R,¢) N (Krp,®...® Krep ,) = (0), and the
claim follows by adding up dimensions. ®

Note that if X is 1-uniform and A4 =1, then condition ¢) holds for »=0
and every ¢ € J, 1 \{0}. The existance of re R, and ¢ €, such that 3.2. a)-c)
hold has strong consequences.

COROLLARY 3.3. — a) If there exists an element l e R, such that the equiva-
lent conditions of 3.2 are satisfied for r=1° and some @ € J,, 1, then

for all ne {0, ..., ox}.

b) If there exist re R, and @ € 3,1 such that the equivalent conditions
of 3.2 are satisfied, then X is cohomologically uniform.

ProoF. — To see a), we choose @, ..., ¢ 4€3,,; as in 3.2b). Like in the
proof of 3.2, we find Anng(p) N R,= (0). Then we observe that ["(1,¢,+
.t A 9)eR, @ for ne{0, ..., 0} and A,, ..., 1,e€ K implies [7(A, @5+
.t A, 904)eR,p, and therefore Apy=...=1,=0. Thus s — Hx(ox—n) =
dimg 35411, = dimg (B, @) + Ax—1=Hg(n)+4x—1.

Now we show claim b). From Anng () N R, = (0) and [10], 2.6, it follows
that X is 1-uniform. A look at Theorem 2.4 finishes the proof. =

This corollary reduces the proof of Theorem 3.1 to showing that for every
cohomologically uniform scheme X there exist [e B; and ¢ € ,,; such that
3.2 a)-c) hold for » =1° and ¢. This question will now be reduced to a linear al-
gebra problem.

Recall that we have explicit bases {g;, ..., gs_4} of R, (cf. 1.2b)) and
{7y, ... w4} of 35,1 (cf. 1.10).

PROPOSITION 3.4. — Let re Ry and ¢ € 3, 1. Write r=a,91 + ... + 0g_ 4G 4
with ay, ..., a_,eK and ¢ =cimy+ ... +cymw 4 with ¢, ..., c,e K. Let b; =
Pt ta_ B for i=1,...,4 and di=c,f;+ ... +c B4 for j=
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1, ..., s — A. Define the matrix

( —b; 0 1B v B a1

M(r, @) = 0 —by, CaBia - CaPBs_4aa
a1 B a1 1 4 —d; 0

Las—Aﬁs—Al ceo O aPBs— a4 0 —ds_4

Then conditions 3.2 a)-c) are equivalent with rk M(r, ¢) =s—1.
Proor. — Using 1.14, we calculate
P =0 QT+ oo+ Qg Qs 47T =
a g Brifas1—=Brifd)+ ot as 400 By nifs—Bs-aifi) =

w3 (=bifitafrifasit ...t as_4Bs_aifs)

for i=1, ..., 4 and
gip=019; 1+ ... e g;ma=C105 Bj fari—Bp i)+ Fesx5 (Bjafarj—Bjafs) =

vy (—cifufi—- —caBjafatdifaij)

for j=1, ..., s —A. Therefore the columns of the matrix

T120+1 0
“M(r, @)
0 T2a+1
S
represent the images of r7, ..., "7 4, =019, ..., —9s_ 4@ under the canoni-

cal injection ¢: R R =K[T;] X ... Xx K[T,] of section 1. Thus rk M(r, ¢) =
s —1 means that »3,,; + R,¢ is (s —1)-dimensional. This is equivalent to
dimg ((r3,41) N (Ry)) =1 and hence to conditions 3.2 a)-c). ™

ProrosiTION 3.5, — Let r=a,9,+...+a,_49, 4R, with a4, ..., a,_,eK.
The following conditions are equivalent.

a) There exists an element @ed,,, such that conditions 3.2 a)-c)
hold.
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b) The matrix

—b 0 afu o U 4B 4 W

M) = 0 —by @mPra - U aBs a4
BuY: Bra¥4 —-D, 0

Bs-a1Y1 o Bsaa¥u 0 D 4 )

has rank s —1.

Here bj=a,B1;+ ... +as_,Bs_ i fori=1, ..., A, the symbols Yy, ..., Y,
denote independent variables over K, and D;=B;Y,+...+B4Y, for
j=1,...,s—4.

ProOF. — This follows from the preceding proposition, since Pi(r) has
rank s—1 if and only if one of its specializations M(r, @)™ has rank
s—1. =m

Now we can prove Theorem 3.1 in some special cases.

COROLLARY 3.6. — a) If in the matrix B of X there is a row
(Biis -5 Bs—4i), all of whose entries are nonzero, and if l € R, is a nonzerodi-
visor, then rkWU1°) =s —1 and the Hilbert function of X satisfies the in-
equalities of 3.1.

b) If X is Ax-uniform, then rkD(%) =s—1 for all nonzerodivisors
le Rl .

PrOOF. — To show @), we may assume that 5, #0, ...6,_,1 % 0. Then we
cancel the first row and the first column of M(1°). The coefficient of Y4 in
the determinant of the resulting matrix is

(=UPs+1)°B11). - (—UP Bs-a1)Z0.

For the proof of claim b) we recall that g;m;=8,(hy.j_1—0;h;—1) by 1.14.
Thus [10], 3.2 implies that all entries of ¥ are nonzero and we can ap-
ply ). =

In view of 3.6 @) it is natural to ask if rk J¢(1?) = s — 1 holds for all nonzero-
divisors [ e R;. Our next example demonstrates that this is not the case and
that we can only hope to show rk¥i(l?) =s — 1 for generic leR,;.

ExampLE 3.7. — Let XcP? consist of the following six points: P;=
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(1:1:1:0), Py=(1:2:0:1), P3=(1:0:0:0), P,=(1:1:0:0), Ps=
(1:0:1:0), and Pg=(1:0:0:1). We calculate Hx: 146 6...,s0that ox=1
and 4« =2. We also calculate that the matrix B of X is given by

1 -1 -1 0
%:
2 -2 0 -1

Since the first two columns have nonzero entries, and since no column is zero,
we know from 2.1 that X is cohomologically uniform. But we may check
that

r1 0 1 -1 -1 0)
0 1 2 -2 0 -1
rk D(xf) =rk % 2% BRI 0 0 0 =4=5-2.
Y, -2V, 0 Y,+2Y, 0 0
-y, 0 0 0 Y,
Lo -1, 0 0 0 Y,

Next we shall show that the converse of Corollary 3.3.b holds. This will
allow us to prove Theorem 3.1 in even more cases.

In the sequel Y3, ..., Y, and Z1, ..., Z,_ 4 will denote sets of independent
variables over K, and we let B, =6;Z,+... +f4_4Z;_,fori=1, ..., 4 as
well as D;=p,Y,+ ...+ B Y, for j=1,...,s— 4.

LEMMA 38. — Let 1su<Ady, let 1sv<s—Ax, and let M, , be the
matrix

(—B; 0 BuZy o Buln

0 _Bn uZ 1mZU
", - . BuZi . B
Bu¥r ... BuY. —D 0

xlelYI ﬂmLYu 0 _sz

Then detM, ,=0 tmplies that X splits cohomologically.

Proor. — We proceed by induction on u+v. In case u+v=2, we
_Bl ﬂllZI

are considering the matrix M, ; = (
ﬁ 11 Yl - Dl

). Since detM; ; =0, none
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of the variables Ys, ..., Y,, Z,, ..., Z,_, may occur in B; or D;. Hence
Biao=...=B14=0and By=...=8,_,1=0, i.e. B splits.

In order to prove the induction step, we grade the polynomial ring
KY,...Y , Zy,.... Z;_4,] by degY,=...=degY,=degZ,=...=deg Z,=0
anddegZ,,;=...=degZ,_,=1. We expand det M, , and look at its leading
form. Note that Z,. ., ..., Z,_, only occur in By, ..., B,, and renumber
Py, ..., P, such that {1, ..., u'} with 1 <u'<wu are precisely those indices 7
among {1, ..., u} for which 8,,1,=...=0,_4,=0.

Here we must have #'=1, since «’ =0 would imply that the leading form
of detMu,v is i(ﬁ’U+11Z’U+1+“'+ﬁS—A1ZS—A)"‘(ﬁ7)+1ﬂZ7)+1+"‘+
Bs—auZs_4)Dy...D,#0, contradicting detM, ,=0. If w'=1, the leading
form of det M, ,is *(Byi1w1Zvi1t -+ Bssw1Zs-a)-Boyr1ulvir t+
vt Bs_suds_4)-det M, ,. Thus if w’ <wu, the claim follows from the induc-
tion hypothesis.

We are left with the case u'=wu, ie. with the case that §,,,;,=...=
Ps_4;=0 for i=1,...,%. In this case we grade the polynomial ring
KY,...Y4,7Z,....,Z, 4] by degY,=...=degY,=degZ,=...=degZ, ,=0
and degY,,;=...=degY,=1. Again we consider the leading form of
detM, , wurt. this grading. Note that Y,.;,...,Y, only occur in
D, ..., D,, and renumber P, {, ..., P4, in such a way that {1, ..., v’} with
1 <v'<wv are precisely those indices j among {1, ..., v} for which 8;,.;=
. =Bu=0.

Here we have v'=1, since v'=0 would imply that the leading form
of detMu,v is i(ﬂl u+1Yu+1 + ... +ﬂ1AYA)-”(ﬂvu+1Yu+l t+ ... +ﬂvA YA)
B,...B,#0, contradicting detM, ,=0. If v'=1, the leading form of detM, ,
8 2By i1urtYurrt o+ Boi1a¥a) e Bourr1 Yurr+ oo+ foaYq)-detM, .
Thus if v’ <w, the claim follows from the induction hypothesis.

Finally we are left with the case u’'=w and v’ = v, i.e. with the case that
Bvi1i=-..=PBs-4;=0 for i=1,...,u and B;,.1=...=B;4=0 for j=
1, ..., v. Obviously, in this case the matrix B of X splits, too. =

PROPOSITION 3.9. — Let X cP? be a reduced, 0-dimensional subscheme. The
Sfollowing conditions are equivalent.

a) X is cohomologically uniform.

b) There are elements reR,, ¢pe3,,, such that conditions 3.2 a)-c)
hold.

ProoOF. — Because of 3.3 b), it suffices to show «a)<b)». By 3.5, we have to
find an element * =a,¢; + ... + a5,_ 4 g, _ 4 € R, such that rk Vi(r) = s — 1. Thus
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we have to show that the matrix

-B 0 ﬁllZI ﬁszIZszl

Mm= 0 —-B, BiaZy oo Bs—aaZs—4
BuY; Bi1aY, -D, 0

Bs—a1Yi . Bs_aa¥y 0 -D,_, )

has rank s — 1. Let 2’ be the matrix which is obtained from I by deleting the
last row and the last column. We shall show that X splits cohomologically, if
det D' =0.

Notice that Z,_ , appears only in the entries —Bj, ..., —B, of I'. W.Lo.g.
let we{l,..., 4} be such that f,_41=...=f,_4,=0 and B, 4,17
0,...,85-44%20. Here u = 4 is impossible because of Prop. 2.1. The leading
coefficient of det " wrt. Z,_ 4 is (=fs_sus1)--(=Ps_sa)-detM, o ,_;.
Hence detM, ;_,-1=0, and an application of the lemma finishes the
proof. =

Thus we have found yet another characterization of cohomological unifor-
mity. It allows us to determine the generic rank of Mi((?) in case o« = 1. Here
and later we use the phrase «for generic /e R;» to mean that there exists a
Zariski-open subset U of the affine space A(R;) such that the claimed proper-
ty holds whenever [ corresponds to a closed point of U.

COROLLARY 3.10. — Let XcP? be a reduced 0-dimensional subscheme with
ox=1. For generic le R; we have rk V() =s — 1.

Proor. - It suffices to apply the proposition and to note that the condition
rk () =s — 1 defines an open subset of A(R;). =

Our next lemma and proposition constitute the heart of the proof of Theo-
rem 3.1.

LEMMA 3.11. — Let XcP? be a nondegenerate, reduced, 0-dimensional sub-
scheme with o« = 2, suppose that char (K) ¢ {2, ..., ox}, and suppose there
are 1e{l,...,4}, je{l,...,s—A4}, and pairwise distinct elements
Viy . vie{l, ., s =4} such that APy, ) By, i+ . + UP4,) By, =0
for generic le Ry. Then we have 8, ;= ... =ﬁvji=0.
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d+o
ProOF. — Let PY = P(4,) with N = ( p ) be the projective space associ-

ated with A, = K[X,, ..., X;],. If we use the lexicographically ordered set of
monomials {X¢, X§ X, ..., X7} of degree o as a K-basis of A,, and if
L=21yXy+...+14X;€A; with 4y, ..., ;€ K is a linear form, then L°e€A,
is given in this basis by the coordinate tuple (1§, 1§~ !4, ..., 19), where the

coefficient of A3°...4%¢ is the multinomial coefficient ( ) Since

Voy «ooy Vg
char (K) ¢ {2, ..., o}, all of those coefficients are nonzero. In the lexicograph-

v v
Xy X

ically ordered basis [( Vot ... tv;= o} of A,, the ele-

Viy eeney V d)
ment L ° is then given by the coordinate tuple (1§, 1§ 14, ..., 19). The set of
all elements of the form L such that L € A; is therefore precisely the set of
closed points of a Veronese variety V, namely of the ¢ Veronese embedding
of P4 in PV,

Now we consider the linear subspace A = P((Ix),) of P¥. It has codimen-
sion codim(A, PY) =s—A. Since I is a radical ideal, it follows from L°e
(Ix), for some L e A; that L e (Ix),, i.e. that L = 0, since X is nondegenerate.
Altogether we conclude 4 NV =@. Next we let 7: PYM\A—P* 4~ 1=P(R,)
be the morphism given by (F') —(F + I) for F e A,\(Ix),, i.e. we let 7 be the
projection from PV with center A. Since ANV =, the image V=ma(V)c
P*~4~1ig a closed subscheme (cf. [4], 14.2), and since V is well-known to be ir-
reducible and nondegenerate, the same is true for V. Thus the set of all closed
points of P(R,) of the form [’ with [ e R, is not contained in a hyperplane of
P(R,).

If we look at the coordinate system of P(R,) which corresponds to the K-
basis {g1, ..., gs—4} of R,, we can use the equation [°=1UP,,1)¢;+ ... +
(P,)’g,_ 4 for le R, to conclude that the closed point {{?) e P(R,) is in that co-
ordinate system given by the tuple (I(P,.1)°: ...: (P,)?). By the hypothesis,
it is for generically chosen /e R, contained in the variety H = Z(f,, ; X,, +
o+ By, X)) CP(R,). Since V is nondegenerate, the variety H cannot be a hy-
perplane, i.e. we have to have H = P(R,) and Bo i=... =ﬁvj. ;=0. =

PROPOSITION 3.12. — If XcP? is a nondegenerate, reduced, 0-dimensional,
cohomologically uniform scheme, and if char (K)¢{2,...,0x}, then
rkD(1?) =s — 1 for generic le R;.

PRroor. — Because of 3.10 it suffices to consider the case o« = 2. We renum-
beI' the pOintS PA+1’ ey PS SuCh that ﬂn ¢0, ey ﬁtll Z 0, ﬁt1+1 1= e =
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Bs_41=0for some 1<t;<s—A.Notethatt; =1, since f;;+...+B,_41=
—1 (cf. 1.2.a). Next we renumber P, ..., P, such that one of 8y,, ..., B2 18
not zero. This is possible, because B does not split. Then we renumber
Piiyv1, ..y Pysuchthat B, 1 12#0, .., B1,2%0, B, 12=...=B5_42=0 for
some t; < t, < s — 4, and we renumber Pj, ..., P, such that one of B3, ..., B3
is not zero. Continuing this way, we find numbers 1<, <t,<...<t,_<s—4
such that the matrix 8 of X looks as follows:

Bu o By 0 . 0 0 ... 0 .. 0 .0

B o Buz Busiz o Bue 0 . 0 .. 0 .0
| : : D Buirs o B

0 .0

Bia - Bua Bus1ia - Buwa Buira - Biga - Biy_ii1a o Bs-aa

Notice that ¢, =s— 4, because no column of ¥ is zero by 2.1. For j=
1,...,s—4 we let 1;,=U(P,.;)°. In addition, we have arranged this matrix
such that yo =481+ ...+ 4,827 0, ., ya=A1B1at ...t A4, Bt ,a=0
for generic (e R;.

In the matrix (1) we add columns 2, ..., 4 +¢; to column 1 and obtain
the following matrix

M, =
0 0 . 0 By . AuPu 0 0
62 _bZ 0 ;Llﬂlz j’tlﬁtlz lt1+lﬁt1+12 A’S*AﬁS*AZ
04 0 —by ABia o AyBua AuiiBuria - As—aBs-aa
0 BuYs .. BuYs —D 0 0 0
0 BusYe . Bus¥s O ~D, 0 0
Dt1+1 ﬁt1+12Y2 ﬁt1+1AYA 0 0 _Dt1+l 0
L Dsz ﬁszZYZ ﬂszAYA 0 0 0 _Ds—A

J

If Ax=1, we have t; =s — 4, and the claim rk (1) = rk D, = s — 1 follows
from (—D;)...(—D,_,) #0. Therefore we shall assume 4y =2 from now
on.

Let the matrix D, be obtained from ¢, by deleting its first row and its first
column. We shall show rk J¢(1°) = rk I, = s — 1 by proving det D¢, = 0. Notice
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that Y; appears only in the entries —D;, ..., —D, of ;. Let the matrix 2, be
obtained form ¢, by deleting the columns and rows containing those entries.
Then the coefficient of Y{' in det¥; is (—=f11)...(=f1)-detDi,. Hence
det %, #= 0 implies det D¢, = 0.

More generally, for each ie {2, ..., 4} we define a submatrix %t; of ¢, by

E);Ri:
—b; 0 i y+1Buyyvri oo AyBui 0 0
0 —by /Iti,1+1ﬁti,1+14| Miﬂtm lt,‘+1ﬂt,;+lA veo As—aBs-aa
ﬂtifl‘f’ll‘Yi ﬁti,1+1AYA _Dti,1+1 0 0
BiiYi . BuaYa 0 -D, 0 0
0 o Bui1aYy 0 0 ~Dy s 0
| 0 i Baas¥, 0 W0 0 -D, ,
Using downward induction on ie {2, ..., 4}, we shall show that if

det ¢; = 0, then the matrix B splits. For cohomologically uniform schemes X,
this proves det M, = 0.

We begin the induction by looking at the case i =A4. If det, =0, then
ty_1<s—A4, since t,_,=s— A implies detV, = —b, = 0 for generic feR;.
Starting from column 2, we add all columns of J¢, to column 1, and we obtain
the matrix

Va4 Ay +1Biy 14 - lsAﬂsAA]

0 _DtA,ﬁ-l 0
VY = ‘ . . ‘
L o 0 -D, , |
which has det 0t = det i, =0, since —y, = —A1f1u—... =4y, B, ,4%0

for generic (e R;.

Finally we prove the induction step. We assume ¢ <4 and det; =0. If
t;_1 =t;, then the only nonzero entry in the first row of ¥¢; is —b;, and we have
det V¢; = (—b;)-det V¢; . ;. In this case the claim follows from the induction hy-
pothesis, because b; # 0 for generic fe R;. Thus we may also assume ¢;_; <t,.
Then we add columns 2, ..., 4—i+1+1¢ —¢;_; of IV to column 1, and we
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obtain the following matrix

=
Vi 0 0 A qe1Bo g1 - B 0
MNit1 =b;i 4y 0 Ap_1+1Bu_qirivr o AyByina *
Na 0 —by iti,lﬂﬁti,ﬁm lt{,ﬁt{A *
0 ﬁt571+1i+1Yi+1 ﬂtiAYA 7Dt5,1+1 0 0
0 ﬁtiHlYHl ﬂtiAYA 0 _Dti 0 :
Dti+1 ﬁti+1i+1Yi+1 ﬂti+1AYA 0 0 _th+1
Dsz ﬁszi+lyvf+l ﬁszAYA 0 0 0 7DS—A )

L

Here the elements «: » have to be replaced by the corresponding entries of
;. Notice that the only entries of )] containing Y; are —D, .1, ..., —D;.
Let the matrix I;<< be obtained form Mt} by deleting the rows and columns
containing those entries. Then the coefficient of Y/~ %-1 in detd is
(=B y+11)---(=By)-detD; <<, and det ;= det D&} = 0 implies det D/ = 0.
We observe that —y; = —4,8y,—... —4;,_ B _, %0 is the only nonzero en-
try in the first row of 9/, and that det V¢ = (—y;)-det V¢ ;. Thus the claim

follows from the induction hypothesis. =

In view of 3.3a), 3.5, and 3.12, the proof of Theorem 3.1 is now
complete.

4. — The syzygy module of the canonical ideal.

In this section we give a description of the first syzygy module of the
d+2
canonical ideal in the case of d+1 <s< ( 5 ) points X = {Py, ..., P;} in

P?. We shall assume that X is nondegenerate, cohomologically uniform and
satisfies o0« = 1. We use the notations introduced in the previous sections. Our
first goal is to find an explicit homogeneous system of generators of the first
syzygy module of J.

The Hilbert function of 3is H;: 00 s—d—1s—1 s s ..., and a K-basis of
3y is given by {m@y, ..., w4}, where 4 =s—d — 1. Since X is cohomologically
uniform, Prop. 2.7 implies that {7y, ..., 74} is a minimal homogeneous system
of generators of §. Now we choose a generic element ¢ =¢; fi + ... + ¢, f€h
with ¢, ..., ¢,e K. By using the representation ¢ =c¢;t,+ ... +c,m 4 and
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Prop. 2.1, we see that we may assume c, ..., ¢, # 0. After a generic change of
coordinates, we may also assume by Prop. 3.9 that
J3 :Rl(p@Kxoﬂg@ EBKQC()JTA .

Therefore there are unique elements [;eR; and A%, ..., 1{"eK such

yoo .
that
X, = l1_7¢ + A(i]z)xoﬂg + ... +/1%f>9007t4‘

fori=1,...,dandj=2, ..., 4. Since {¢, 7o, ..., 74} is a minimal homoge-
neous system of generators of J, we can use those relations to describe the
R-module

Sp :=Syzp(@, woy ooy g) = {1, ...y 1)) eRY |+ 1o+ ...+ 1y =0}
explicitly.
REMARKS 4.1. — a) From the exact sequence of graded R-modules
0—Syzh(@, 72, ..., ) = R(-2)" 5 5—0

with e(e;) =¢ and e(e;)) =m; for i=2,...,4, we obtain Hg,:000
A4-1)dUd—-1)s(4—-1)s....

b) The elements
0y= Uy, 2D, ..., 24 Vg, 2§ w0 — @i, 24 Vg, ..., AP 2y) € R(—2)

such that 1 <i<d and 2 <j < 4 form a K-basis of (Sg);, since they are K-lin-
early independent and Hg,(3) = (4 —1)d.

c¢) Let P=K[X,, ..., X;] and
Sp=Syzp(@, w3, ..., wg)={(F1, ..., F))eP* |Fi@p+Fyms+...+F 7 ,=0}.
From the exact sequence of graded P-modules
0—Syzb(@, s, ..., m4) > P(—2"—>3—0
we obtain an exact sequence of graded R-modules
0— Torh (3, R) —>Syzb(¢, my, ..., 14) Q R—Syzk(@, ms, ..., m4) —0.

In particular, we get Hg,(3) = (4 —1)d=Hg,(3). Therefore any set of
preimages
2= (Ly lg;z)Xo, ey }L%)Xo - X, M’f‘)Xo) e P(-2)”

i

of the elements oijeR(—Z)“ forms a K-basis of (Sp)s.
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d) From the short exact sequence 0 —Ix— P —R—( we get a long ex-
act sequence of graded P-modules

0—Torh(s, B) =1 ® s 5% 550

from which we conclude that Tork(J, R) = IX@R %J = (I« /I¥) %J. Thus

the second exact sequence of ¢) translates in degree four into a short exact se-
quence of K-vector spaces

0_>(IX)2®32—L>SYZ}J((P» oy ooey T4)a—>SYZR(@, Ty ...y T4)s—0

where ¢ is given by «(F\ Q¢+ FoQuas+ ...+ F,Qmn ) =Fy, ..., Fy) for
F,, ..., Fie(x),.

Next we determine how big a part of Syzh(¢, s, ..., 7 4), is generated by
the elements X';.

LEMMA 4.2. —a) The set {X; |1 <i<d, 2 <j <A} generates a subspace of
Syzb(@, s, ..., 4), which is at least (4 —1)((1/2)d?+ (3/2) d)-dimen-
stonal.

b) The P-module Syzh(¢p, s, ..., T 4) is generated by the elements
{Zy]1sisd,2<jsA}U{(F,0,...,0)|Felx)}U{O;|2<sj<s4}

where ©;=(Q;, 0, ..., 0, -X2,0,...,0) and Q; s a preimage in Py of the
unique element q;e Ry such that aim;=q;@.

PrOOF. — «a)» Let <, be the lexicographical term ordering on P, where
Xy <,X;<,...<,X,;. On P(—2) we define a module term ordering <, in the
following way. If t;,{,e P are power products of variables, and if i, je
{1, ..., 4}, then we let t;e; <,tye; if and only if one of four conditions is
satisfied:

1) 1 :] =1 and t; Sgtg,
2)1=1and j>1,
3)i>1,75>1, and t; <,ts,
4) 1 <ZSj and ty =t.

It is easy to check that <, is in fact a module term ordering (cf. [4], p. 324)
and that the elements X, have leading terms Lt (2;)=(0,...,0,

-X;,0,...,0). Now it is a standard fact that, for U= ({¥;|l1<i<d,
2<j<A})cP(-2)*, we have

dimy (U,) = dimg (Lt, (1)), = dimg({Lt.(Z;) |1 <i<d, 2<j<A4})
(cf. [4], 15.26). The last number is obviously (4 —1)((1/2) d? + (3/2) d).
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«b)» By subtracting suitable multiples of the syzygies X, every P-syzy-
gy of (¢, s, ..., ) can be reduced to one of the form (F, y,X¢, ..., y 4 X&)

A
with Fe Py and ys, ..., v 4€ K. Then one can subtract >, v;© ;. The result is
j=2

a syzygy of the form (G, 0, ..., 0) with G € P,. Since Anng(¢) = (0), this im-
plies G e (Ix),. It is well-known that it follows from ox=1=ax—1 that
Syzb(@, @s, ..., m4) is generated by its homogeneous elements of degrees
three and four (cf. e.g.[10], 5.1). m

PROPOSITION 4.3. — For j=2, ..., A let 6;=(¢;, 0, ..., 0, —x§, 0, ...,0) €
R(—2)" be the image of ©; (c¢f 4.20b). The graded R-module
Syzk (@, 73, ..., m4) is generated by the homogeneous elements {o;|1=i=d,
2 <j< A} of degree three and the homogeneous elements {6;|2 <j< A} of
degree four.

Proor. — The claim is a consequence of Remark 4.1.c and Lemma
42p. =

Notice that the elements o; are minimal generators of
Syzk (@, s, ..., T 4), Whereas it is not clear how many of the elements 6 jare
actually needed. In the case A =2, ie. for s=d + 3 points in P?, we can in
fact do without the elements 6;.

PROPOSITION 4.4. — Let d = 3, and let XcP? be a set of s = d + 3 cohomolog-
ically uniform points with generic Hilbert function AH«: 1 d 2. Then the R-
module Syzk(p, my) is genervated by its homogeneous elements of degree
three.

Proor. — We choose the coordinate system and the element ¢ € 4, as at the
beginning of this section. For 1 <1 <d we write x;m, =1, ¢ + 4,207, with [; e
R, and 1;e K, and we let o, = (I;, A; 2, — x;) € R(—2)?. Furthermore, we let
q € R, be the unique element such that x¢m, = q@. By Prop. 4.3, we need to

d
show that (—gq, x¢) € 2. P;0;. Since Anng(¢) = (0), this amounts to showing
i=1

that xZ is an element of the ideal J = (1,2 — a1, ..., 4% — %;) of R.
As a first step, we prove that not all elements /;, ..., [;€ R, can be zero.
Otherwise (A;xg—a;)my=0 for i1=1,...,d and m@.=fr+Bpfs+...+

Baii2fisgimply that (A2 — 2y, ..., 142 — a4) equals p,, the ideal of P, in X.
Since X does not split cohomologically, Lemma 2.3 yields 5, # 0 for some
je{l, ..., d+1}. Since not all elements of p, vanish at P; ., there exists a
ke{l, ..., d+1} such that (1,xo—x,)(Pj+2) =0 Now (A,20—a;) w2 (Pj.z) =
(Ao — 2, )(Pj 4 2)Bj2 =0 implies (A, — ,)(P;2) =0, a contradiction.
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Let @ =(1:1,:...: 14) €P’. In the next step, we prove @ ¢ X. Suppose
Q =Py, and let plgR be the ideal of P; in X. If we use the equation ;¢ +
(Aijxg—2;) 1o=0, as well as 1,xp—x;eJ=p; and A=f,+ B fs+
Ba+12firs3€ b, we obtain [; ¢ + p? = 0 in R/p?. Since the residue class of ¢ ¢ p,
is not a zero divisor in that ring, we arrive at [; € p?, which means [, =0, be-
cause ;€ Ry and p? is generated in degree two. But the first step shows that
[; =0 cannot hold simultaneously for i =1, ..., d.

Next we suppose Qe{Ps, ..., P;}. Then the equation [;¢+ (1;x0—2;)
Te=0 shows that [; vanishes at Pl and @, i.e. there are elements c; € K such

that [; = 2 c;j(Ajxg — a;) for i = , d. Furthermore, by passing to the ring
j=1 "

R/J? and arguing as before, we see that 7,(Q) # 0, i.e. @ has to be P, or one of
the points P; such that 3<j<d+ 3 and f8;_,,# 0. Using the representation

of l;ed, we get equations E cjlig+1l;my=0. Again the conditions
liepy, moe Py, and @ ¢ p; can only be satisfied if E ¢;l;=0 and [;m;=0. Now

lig+ (A;x0— ;) mo = 0 implies that [;(P,) =0 for all ve {1, ..., d+3} such
that w,(P,) = 0, while [;7, = 0 means [;(P,) =0 for all ve {1, ..., d + 3} such
that 7,(P,) #0. Thus we get [;=0 for i1=1, ..., d, contradicting the first
step.

Altogether we have shown that @ ¢ X, and we can consider the Hilbert
function of ¥ =X U {Q}. We claim that it is given by 4H+: 1 d 3. The only
other possibility is A4H+: 1 d 2 1. In that case the canonical Ideal J of Y
starts in degree three and satisfies H, (3) =1, H, (4) = 3. Thus a nonzero el-
ement of (Jy); has a nontrivial annihilator, i.e. Y is not a Cayley-Bacharach
scheme. Therefore there exists an ie {1, ..., s} such that AHp):1d 11
and AHx(p;y: 1 d 1. Now [7], 5.2 shows that @ and three points of X lie on a
line in P?. Since the other d points of X span at most a (d — 1)-dimensional lin-
ear space, we get that X splits linearly, in contradiction with our hypothe-
sis.

Thus we have Hy:1d+1d+4d+4 ..., and the formula Hp;,(i) =
Hy (1) + Hyqy (1) — Hy (1) proves Hp,;(2) =0, so that xéedJ, as was to be
shown. =

It is instructive to compare the preceding result to a similar one for the P-
module Syz3(¢, m5) which follows from [3].

REMARK 4.5. — Let d =3, and let XcP? be a set of s =d + 3 points. Then
the following conditions are equivalent.
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a) The set X is cohomologically uniform, has generic Hilbert function
AH:1 d 2, and Syzh(@, w5) is minimally generated by (4 —1) d homoge-
neous elements of degree three and d —1 homogeneous elements of degree
four. (The number d —1 is the minimal possible one, here.)

b) No d + 2 points of X are on a hyperplane and no d points of X are on a
linear subspace of P? of dimension d — 2.

The implication «a)-b)» follows from 2.7 and[3], 4.3. Conversely, [3], 1.3
shows that X has generic Hilbert function, [3], 4.1 and our Prop. 2.7 imply that
X is cohomologically uniform, and [3], 4.3 yields the remaining claim.

It is an elementary exercise to verify directly that condition 4.5 b) implies
that X does not split linearly. Our next example shows that it is in fact a
stronger hypothesis.

EXAMPLE 4.6. — Let X ¢ IP® consist of three points on a line and three gener-
ically chosen points. Then we have AH: 1 3 2, and X is cohomologically uni-
form. But Syzp (¢, 7,) needs three minimal generators in degree four besides
its three minimal generators of degree three. The module Syzk(¢, 75), how-
ever, is minimally generated in degree three by Prop. 4.4.

To conclude the discussion of Syzh (@, 7o, ..., 7 4), We show how the ele-
ments o; and 6; can be computed effectively in terms of the constants 3, the
separators fi, ..., f; € Ry, and the coordinates of the points. We note that the
numbers 3 ;; and the separators fi, ..., f;€ R, can be found as a by-product of
the Buchberger-Méller Algorithm (cf. [12], sect. 1.2).

REMARK 4.7. — Let us write xl; = 1" fi + ... + I[P f, with I{V, ..., I{’ e K.
Recall that we have P;= (1: p;y: ...:py) for i=1,...,sand g =c¢; fi +... +
csfswithes p=cfu+...+c fuafork=1,...,s—A. Fori=1, ...,d and
j=2, ..., A we express both sides of w;7; =l + AP woma+ ... + APy 4 in
the K-basis {x, fi, ..., %o f;} of Ry (cf.[6], 1.13). We get

Gy =ag ' Pufit o AP I+ B fasi T A Beoaifs) =
Dii%o fi t Pas1iB1j%fas1t o +DsiBs—aj%0fs
as well as
Lio+APums+ ...+ AP wom, =1 i fi + ... + 1P ¢ fo +
AP w fo+ AP Breao fasr+ . + AP B soito f)+ ... +

(/1%74)900.]04\ +/1§j74‘)ﬁ141 Cofas1t ... +/1(1:74)/387AA900.]€9) =
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1 2 2 A A

lé‘ )Clmo‘fl + (ll; )Cg+l§'j)) %Of.z‘*' A (ll_s )CA +/1(”)) xofA +
A 1 2 A

(lL(} )+ CA+1+/1<ii)ﬁl2+"'+lgj)ﬁlﬁl)x0f4|+l+"‘+

(li(js)cs+l(i]2)ﬁs—42+ +/1§jy4]>/33—4|4) Lo f -

Comparing coefficients yields If") =0, 4§ = =1 ¢; for ke {2, ..., 4}\{j}
and 1% = p; — 1 ¢;. Substituting this into the remaining equations yields

Mk 2 4
(=) Pasri—0i) By =1 Fearr =1 caBro— ... =15 caPia

for k=1, ...,s—A. Hence the elements 1%, ..., 2" are uniquely deter-
mined by [?, ..., I{”. The condition [{"’ = 0 means that the hyperplane Z(l;)
contains Py, and that we can find m;, ..., mye K such that [; =m,(x, —
P o) + ... + my(wy— piaxy). Therefore we have 1) =m,(py —p) + ... +
My (Pra — P1g) for k=2, ..., s. Now equations (=) yield s — 4 =d + 1 linear

equations ( * %) for my, ..., m,. But those equations are not linearly indepen-

s=A4 s=4
dent, because adding them up gives 1;—:1 Pa+riBi+ D= 1;—:1 U ey +

S S
li(iz)CZ + ...+ li'(jA)CA = Z (%lﬂi)(Pk) + 2 li(jk) Cp, = 0 in view of X; 7T, lij(pEJg
and 1.11. et et
Altogether, it follows from 3.9 and the above that the system of linear
equations

Ce)  Parri—0i) B =[mi(Pasp1— )+ o +Ma(Pavka— Pra)l €avr—
(71 (o1 — p11) + - + Mg(Pag — Pra)) C2Bro— - —

[my (a1 — P11) + - + Mg (Pag — Pra)] CaBra=

(PaskiCare—PuciBra— - —ParCaPra) My + ... +

(Pat+kaCare —Pra€1Br— - — PadCaPra) Ma

for k=1, ..., s — 4 uniquely determines m,, ..., m;€ K, and hence [;;€ R, as

well as 1%, ..., 1{” e K. Thus it suffices to solve the linear system of equa-
tions (* %) in order to compute the syzygies o ;.

Furthermore, if we want to find for je {2, ..., 4} the unique element g;e

R, such that wfm,=q;¢, we write ¢; =y fi + ...y fi With y1, ..., €K,
and we compare coefficients in
xozﬂj=9002(]§+ﬂ1jf4+1+---+ﬁd+1jfs)=q]'§0=9002(7j101fl+---"')’jscsfs)-

Thus y;=(1/¢;) 6 for k=1,...,4 and y;=(1/cy) Br-a; for k=A4+1,
..., s. This effectively computes the syzygies 6;= (¢;, —«¢) in terms of the
elements f; and the separators fi, ..., f;.
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5. — Canonical transforms.

The canonical ideal can also be used to generalize the Gale transform of a
set of points. In [5], it was shown that this transform may be defined using the
elements of 4,,. In this section we shall describe similar «canonical tansforms»
based on each of the homogeneous components J,,1, ..., J,. We start by
characterizing those components as explicitly as we can. The notations and as-
sumptions are the same as in sectionl. In particular, we let X =
{Py, ..., P,} cP? be a set of points with homogeneous coordinate ring R and
canonical ideal JCR.

PrOPOSITION 5.1. — For all i€ {0, ..., o}, the homogeneous component
Jy+1+: Of the canmonical ideal comsists precisely of those elements @ =
axifi+...+eaifieR, 14 such that ¢, ...,c,e K and r(Py)c;+ ...+
r(Py)c, =0 for all re R, _;.

In other words, if we apply the monomorphisms t;: R;—K® given by
> (r(Py), ..., r(Py)) for j =0, the homogeneous component 3,,.; of the
canonical ideal corresponds to the orthogonal space of R, _; with respect to
the standard pairing.

ProoOF. — If we consider g ed,,,.;=(wp)_,_; as a homogeneous K[x,]-
linear map ¢: R— K[x,] of degree —o — 1+ 1, we have ¢(R,_;) CKlxy]_ =
(0). For every element re R, _;, this implies ¢(x¢ ™17) = x¢ " @(r) = 0. Since
we have aitlr=rP)fit+...+rPy)f,, we get r(P)@(fi)+ ...+
r(P;) ¢(f;) =0. Now Proposition 1.9 yields ¢(f;) =c¢; for j=1, ..., s, and
therefore r(P;) ¢; + ... + r(P,) ¢, =0.

The reverse implication follows from the fact that the orthogonal space of
15_i(Rs_;) has dimension s — dimg(R,_;) = dimg(J,,14;). ™®

The next proposition provides the basis for our definition of the Gale trans-
form which differs slightly from the one in [5].

PROPOSITION 5.2. — Suppose XcP? has the property that any subset of
s — 2 points of X spans P*. We choose a K-basis {t,, ..., t,_q_1} of %, and write
ti=yaxd YAt tysal L f with v, ..., yseK fori=1,..,s—d—1.
Then any two columns of the matric I'=(y;) are K-linearly indepen-
dent.

ProOF. — We assume that there are indices u, ve {1, ..., s} and an ele-
ment A€ K\{0} such that y=v and y,, =Ay; fori=1,...,s—d—1. Let us
denote the homogeneous coordinate ring of the subscheme ¥ = X\{P,} of X
by Ry = K[X, ..., X;]/Iy, and its canonical ideal by JyCRy. Since Y spans
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P?, we have
dimg (Sy )z, = (s —1)—d—1.

We note that ox —1 <oy <oxand wp, = {gpewp |Iy¢ =0}, where Iy is the
image of Iy in R (ef.[10], 1.3 d)). Now we distinguish two cases.

Case 1: oy=ox. In this case we have (Jy)g,, = {crd 'fi+... +
c,xf " fiedyy|c, =0}, because Iy is given by Iy = (f,)™ and Iy, =
Kxf ' f,. Since (Iy)oy 925, We may assume yq, #0. Then we find

(39 )2, =K-(y1,ta =2, t) D ... OK- (Vi ts g1 = Vs—a-1,t1)

and all elements of (iy)y,, are of the form éaf ' fi+ ...+ éag ' f, with
15 .-, ¢seK and ¢, =¢,=0.

Case 2: oy=0x—1. Again we have (Jy)y,, = (wp,)_1C (@) 1= Sy,
and the same argument as above shows that all elements ¢;xf ' fi+ ... +
ésug ' fie (3y)z,, satisfy ¢, =¢,=0.

Im both cases all elements of (Jy)y,, are also contained in the canonical
ideal of Y’ = Y\{P, }. Then dimg (), = (s —2) — (d — 1) — 1 contradicts the
assumption that the points of Y’ span P¢. =

DEFINITION 5.3. — Let X={Py, ..., P,} cP? be a set of points with the
property that any subset consisting of s — 2 points of X spans P?, and let I" be
the matrix defined in Proposition 5.2. Then the set of points x(X) ¢ P* =9~ 2 de-
fined by the columns of the matrix I" is called the Gale transform (or the asso-
ciated set of points) of X.

By Proposition 5.2, the set x{(:X) consists of s distinct points of P* 971, It is
clear that x(X) does not depend on the choice of the linear nonzerodivisor
2y € R (see the proof of 1.3), and that it changes by a coordinate transformation
of P*~9~1 if we choose a different basis for 4, in Proposition 5.2. In [5], Gale
transforms were defined assuming only that subsets of s — 1 points of X span
P9, Out next example shows that in this case x(X) does not necessarily consist
of s distinet points in P* =971,

EXAMPLE 5.4. — Let K be a field of characterstic char (K) = 2, and let X c P?
consist of the following six points: P;=(1:1:0:0), P,=(1:0:1:0), P;=
(1: =1:0:0), P,=(1:0: —1:0), P;=(1:0:0:1), and Ps=(1:0:0: —1).
Then the Hilbert function of X is Hx: 146 6 ..., and we have ox =1 as well
as A« =2. A basis of R, is given by Lf; and Lf;, and we have Lf; = Lf,,
Lf,=Lf,, Lfs=Lfs= —Lfi — Lf;. Thus the homogeneous component J,=
Jy41= 2, has the K-basis {m, m,}, where w,=fi+fsi—fs—f; and m,
=htfi—f—f-
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It is clear that any five points of X span P®. But the Gale transform x(X) ¢ P!
consists only of the three points (1:0), (0: 1), and (1: 1).

If 0« =1, as in the previous example, the description of x(X) can be simpli-
fied considerably.

REMARK 5.5. — Let X ¢ P? be a set of s points such that o« = 1 and such that
any s — 2 points of X span P?. We form the matrix

&2
I
&

Then, by Corollary 1.10, the Gale transform of X is the set of points x(X) ¢
P41 defined by the columns of the matrix 0.

Next we want to generalize the Gale transform by using other components
of the canonical ideal as well. Again we are interested in the correct conditions
under which those constructions yield sets of s distinet points. To be able to
formulate those conditions, we introduce the following notion of uniformity.

DEFINITION 5.6. - Let 1 <i<s—1and 1 <j<ox. We say that X is (2, j)-
uniform, if every subscheme Y ¢ X consisting of deg Y =s — ¢ points satisfies
Hy(j) = Hx(j).

This notion generalizes most uniformity conditions for 0-dimensional
schemes considered in [10] and elsewhere. Recall that X is called i-uniform,
if every subset YcX of degree s—i<degY <s satisfies Hy=
min { H, deg Y}.

REMARK 5.7. — a) A set of points XcP? is i-uniform, if and only if X is

(2, o)-uniform. In particular, X is a Cayley-Bacharach scheme, if and only if X

is (1, o)-uniform, and X is in uniform position, if and only if X is (s — 1, o)-uni-
form.

b) If XcP?is nondegenerate, then X is in linearly general position (i.e.

any d + 1 points of X span P?), if and only if X is (s — d — 1, 1)-uniform. More
generally, X is in lineraly general position of i" order (cf. [10]), if and only if X

. d+1\ . .
is (s— ( p ), z)-umform.

PROPOSITION 5.8. — Let XcP? be a set of s points, let 1 <i<o, let r=
s —Hx(1), and let {t,...,t.} be a K-basis of Jpy,1_;. For j=1,...,r
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we write t=yaf " fit ... +yiag " fo with vy, ..., vie K, and we form
the matrix I';= (y ). Then the following conditions are equivalent.

a) X is (2, 1)-uniform.

b) The colummns of the matrix I'; are pairwise K-linearly indepen-
dent.

PRrOOF. — Suppose b) holds. Let 1 <j <k <. Clearly, condition b) does not
depend on the choice of the basis {t;, ..., t,} of &,,;_;. If we choose it suit-
ably, the j” and k™ columns of I'; are given by (1,0, ...,0) and
(0,1,0, ..., 0), respectively. Then we get

(x) dimg{ciag " fHi+...+ead  fieSsi1-ilC, ..., €K, ¢=0¢,=0} =
dlmK 520+1—i_2 =r—2.

This implies dimg(w g, )_; =dimg(wp)_; —2 for all subschemes Y cX with
deg ¥ =s — 2 and canonical module w g, . Since we have

Hy(i) = deg Y — dimg (0 ,)_; = (s — 2) — (dimg (0 z) _; — 2) = Hy (1),

we see that X is (2, ¢)-uniform.

Conversely, given a), the same calculation shows that equation (=) holds
for all 1 <j<k<s, ie. that columns j and k of I'; are K-linearly indepen-
dent. =

DEFINITION 5.9. — Let XcP? be a (2, i)-uniform set of s points, let
1e{l, ..., 0}, let r=s— Hx (1), and let I'; be the matrix defined in the previ-
ous proposition. Then the set of s distinet points &;(X)cP" defined by the
columns of I'; is called the i canonical transform of X.

It is clear that x;(X) = k(X)) is the Gale transform of X, and «;(X) is de-
termined up to a coordinate transformation in P". It seems to be a largely un-
explored question how properties of the embedding X ¢ P* are related to prop-
erties of k;(X)cP". Our next proposition gives a small result in this
direction.

PROPOSITION 5.10. — Let XcP? be a set of s points. Then X is A s-uniform
(or (A<, ox)-uniform in the terminology of Definition 5.6), if and only if
K,(X) c P is in linearly general position (i.e. if and only if any subset of
A points of k,(X) spans PA71)

Proor. — By Corollary 1.10, the set x,(X) is given by the columns
of the matrix 5 defined in Remark 5.5. Those columns are the coordinate
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vectors of Lfi, ..., Lf; in the K-basis {Lf, ..., Lfy} of R,.;. Now the
claim follows from[10], 3.4. =

We end this section (and this paper) by pointing out some connections be-
tween the material presented above and Coding Theory. Let p > 0 be a prime
number, ¢ >0, ¢ =p*, and I, the field with ¢ elements. In Coding Theory, a
linear subspace C' ¢ I, is called a linear code. The number s is called the length
of C, the number d(C) = dimqu(C) is called the dimension of C, and the mini-
mal number m(C) of nonzero components of a nonzero vector of C is called the
minimal distance of C. With those notations, C is also called an [s, d(C)],-
code. It satisfies the Singleton bound m(C) <s —d(C) + 1, and if it achieves
equality there, it is called an MDS-code («maximum distance separable»).

In [8], J. P. Hansen described the following way to associate linear codes to
a set of F,rational points X= {Py, ..., P,} cP*(F,) ﬂD+(X0)gP%q. If R=
IFy[Xo, ..., X41/Ix is the homogeneous coordinate ring of X and 1 <r<oy,
then the image of the map

DR, — F

= (f(P), ..., f(Py))

is called the ™ associated Reed-Muller code of X and denoted by C.(X) =
im®,. In case r =1, the code C(X) =im @, is also called the associated lin-
ear code of X. In [8], Prop. 6 and Thm. 8, the uniformity of X and invariants of
C,(X) were interrelated as follows.

PROPOSITION 5.11. — For all 1<r<ox and i =1, we have m(C.(X)) =
s—1+1, i and only if X is (s —1, r)-uniform. In particular, C,.(X) is an
MDS-code, if and only if X is (s — Hx(r))-uniform.

If we specialize to the case » = g, we see that C,(X) is the linear code gen-
erated by the vectors (—p;,..., =B4,0,...,0,1,0,...,0) for j=
1, ..., s— 4. Thus C,(X) is precisely the kernel of the hnear map with matrix
SB (deﬁned as in 5.5). In Coding Theory, one says that P isa parity check ma-
trixz for C,(X). From Propositions 5.10 and 5.11 we get the following relation
between the linear code C,(X) and the canonical transform k,(X).

COROLLARY 5.12. — For a set of F-rational points X ¢ P%q as above, the fol-
lowing conditions are equivalent.
a) The linear code C,(X) is an MDS-code.
b) The set of points X is A -uniform.

¢) The o™ canonical transform x,(X) is in linearly general posi-
tion.
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