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On the Canonical Ideal of a Set of Points.

MARTIN KREUZER

Sunto. – Dato un insieme X di s punti nello spazio proiettivo, si costruisce un esplicito
ideale canonico I nel suo anello di coordinate R . Si descrivono le componenti omo-
genee di I e la struttura della mappa di moltiplicazione Rs7 Is11K I2s11 , dove
s4max ]iNHX (i) Es(. Tra le applicazioni ci sono varie caratterizzazioni di insie-
mi di punti coomologicamente uniformi, disuguaglianze nelle loro funzioni di Hil-
bert, il calcolo del primo modulo delle sizigie di I in casi particolari, una generaliz-
zazione della «trasformata di Gale» a trasformate canoniche di grado superiore e
infine alcune osservazioni sui codici MDS.

1. – Introduction.

Given a set of points X4 ]P1 , R , Ps ( in projective space Pd over an alge-
braically closed field K , we are interested in studying relations between the
geometry of the configuration of the points and the algebraic structure of cer-
tain ideals and modules over the homogeneous coordinate ring R4

K[X0 , R , Xd ]OIX of X . In three previous papers [6], [10], and [11], we saw that
many geometric properties of X are encoded in the R-module structure of the
canonical module

v R ` HomK[x0 ] (R , K[x0 ] )(21)

of R , where we assume XO Z(X0 ) 4¯ and let x0 4X0 1IX�R .
The purpose of this paper is to refine those methods by noting that, for re-

duced 0-dimensional subschemes X’Pd as above, there exists an ideal
IR/K[x0 ] ’R which is – up to a shift in degrees – isomorphic to the canonical mod-
ule. Such an ideal is called a canonical ideal of X . In section 1 the ideal IR/K[x0 ]

is constructed in an analogous manner to the local case (cf. [9]), but with addi-
tional care taken to keep all maps and modules homogeneous and to make
them completely explicit.

The canonical ideal of X constructed in this way depends on the choice
of the element x0 �R , but in a very manageable fashion (cf. Prop. 1.8). It
has the advantage of being contained in RFs X11 4 5

iFs X11
Ri , where s X4

max ]i�ZNdimK (Ri ) Es(. By [6], 1.13, this part of the ring R can be described
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precisely using the separators f1 , R , fs �Rs X11 of X : we have a K-basis for
each homogeneous component Ri with iFs X11, and an explicit description
of the multiplication of R in terms of those bases. This in turn allows us to com-
pletely describe the homogeneous components Is X11 and I2s X11 of I 4 IR/K[x0 ]

by constructing K-bases for them (cf. Cor. 1.10 and Cor. 1.11), and to compute
the matrix of the multiplication map Rs X

7 Is X11 K I2s X11 (cf. Cor. 1.14).
In the remaining part of the paper we show several applications of the

canonical ideal. The main application is the solution of a question about the
Hilbert function of cohomologically uniform sets of points posed in [11]. This
uniformity condition was introduced in [11] as an intermediate condition be-
tween 1-uniformity and D X-uniformity. Here D X4HX (s X11)2HX (s X ) is
the last increase of the Hilbert function HX (i) 4dimK (Ri ) of X , and X is
called n-uniform, if every subset Y’X with s2nGJYGs satisfies HY4

min ]HX , JY(. Cohomological uniformity is defined by the non-existence of a
splitting X4YNQ Y8 such that !

Pi�Y
K QLfi O !

Pj�Y8
K QLfj 4 (0), where Lfi is the

image of fi in R/(x0 ). We characterize cohomological uniformity in terms of the
structure of the canonical ideal in the following way.

THEOREM 0.1. – For a set of points X’Pd , the following conditions are
equivalent.

a) X is cohomologically uniform.

b) The multiplication map Rs X
7 Is X11 K I2s X11 is nondegenerate and

surjective.

It is then an immediate consequence of [10], 2.6 and 3.1 that D X-uniform
points are cohomologically uniform and cohomologically uniform sets of points
are 1-uniform.

At the end of section 2 we also relate cohomological uniformity in the case

of d12 GsGgd12

2
h points to the condition that X does not split linearly,

i.e. that there are no two linear subspaces L1 , L2 ’Pd such that X’L1 NL2 and
L1 OL2 c¯ (cf. Prop. 2.7). We obtain another proof of the result of [2] which
says in our situation that X does not split linearly if and only if the canonical
ideal is generated by its elemets of degree two. An example shows that coho-
mological uniformity generalizes linear splitting in a suitable way to point sets
with s XF2 (cf. Ex. 2.8).

The main result of section 3 is the following affirmative soultion of [11],
Question, p. 248.
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THEOREM 0.2. – If X’Pd is a cohomologically uniform set of points,
then

HX (n)1HX (s X2n) Gs2D X11

for all n� ]0, R , s X(.

In order to prove this theorem, we characterize cohomological uniformity
of X by the existence of elements r�Rs X

and W� Is X11 such that I2s X11 is of
the form

I2s X11 4Rs X
W5KrW 2 5R5KrW D X

for any K-basis ]W , W 2 , R , W D X
( of Is X11 (cf. Prop. 3.9). The core part of the

proof is to show that one can in fact choose r4 l s X for a generic element l�R1

in this characterization (cf. Prop. 3.12). Then the desired inequalities follow
easily (cf. Cor. 3.3). For a discussion of the meaning of Theorem 0.2 and for ex-
amples we refer the reader to [11].

In the fourth section we apply our knowledge of the canonical ideal in the

case of d11 EsEgd12

2
h cohomologically uniform points in order to give a

description of its first syzygy module. Both for the syzygy module of I , consid-
ered as a P4K[X0 , R , Xd ]-module, and of I , considered as an R-module, we
provide explicit homogeneous systems of generators (cf. Lemma 4.2.b and
Prop. 4.3), and we show how one can compute those elements effectively (cf.
Rem. 4.7). In the case of s4d13 F6 cohomologically uniform points in Pd ,
we prove that the R-syzygy module of I is generated by its homogeneous ele-
ments of lowest degree (cf. Prop. 4.4), and we relate this to the analogous re-
sult of [3] for the P-syzygy module of I (cf. Rem. 4.5).

Finally, in section 5, we use the homogeneous components of the canonical
ideal to generalize the Gale transform of a set of s points X (see for in-
stance [5]). We show that the Gale transform can be defined explicitly by rep-
resenting a K-basis of I2s in terms of the separators, and that it consists of s
distinct points, if and only if every subset of s22 points of X spans Pd (cf.
Prop. 5.2). More generally, we can use the homogeneous components I2s112 i

for i41, R , s to define higher «canonical transforms» k i (X) of X . After de-
scribing those components explicitly (cf. Prop. 5.1), we formulate again the
precise uniformity condition on X to ensure that k i (X) consists of s distinct
points. We end the paper by connecting the uniformity of X to the uniformity
of k s (X) (cf. Prop. 5.10), and by interpreting this result in the language of
Coding Theory (cf. Cor. 5.11).

Acknowledgements. Mayor parts of this paper were done while the author
was enjoying the hospitality of the Departments of Mathematics of Queen’s
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1. – Construction of the canonical ideal.

After fixing notations, we describe how to construct the canonical ideal of
the projective coordinate ring of a set of points. We follow the procedure out-
lined in [9], 2. Vortrag, with two major differences: we are dealing with a grad-
ed situation, and we want explicit descriptions of the homogeneous compo-
nents of the canonical ideal.

Throughout this paper we work over an algebraically closed field K of ar-
bitrary characteristic. Our central object of interest is a given set of points
X4 ]P1 , R , Ps ( in Pd , the d-dimensional projective space over K . The coor-
dinate functions ]X0 , R , Xd ( of Pd are always chosen in such a manner that
X’D1 (X0 ), i.e. such that no point of X lies on the hyperplane Z(X0 ). The pro-
jective coordinate ring of X in Pd is R4K[X0 , R , Xd ] /IX , where IX denotes
the homogeneous saturated ideal of X .

Let us collect a few elementary observations. The ring R4 5
nF0

Rn is a 1-di-

mensional reduced Cohen-Macaulay K-algebra, and x0 »4X0 1IX�R1 is not a
zerodivisor of R . The Hilbert function HX : ZKN (nOdimK Rn ) of X
satisfies

R40 4HX (21) E1 4

HX (0) EREHX (s X ) Es4HX (s X11) 4HX (s X12) 4R

for some number s XF21. Its first difference function DHX (n) »4HX (n)2

HX (n21) therefore has a nonzero value DHX (n) c0 if and only if 0 GnG

s X11. We let D X »4DHX (s X11) and write simply s4s X and D4D X , if no
confusion can arise.

As in [6] and [10], for i� ]1, R , s( we denote by fi �Rs11 a separator
of Pi in X , i.e. a function such that fi (Pj ) 40 for jc i and fi (Pi ) c0. Here
we let f ( P) »4 f (1 , p1 , R , pd ), if f �R is a homogeneous element and
P4 (1 : p1 : R : pd ) �D1 (X0 ) a closed point. We normalize ] f1 , R , fs ( by re-
quiring fi (Pi ) 41 for i41, R , s . Now [6], 1.13, says that ]x0

n f1 , R , x0
n fs ( is a

K-basis of Rs111n for each nF0, and [6], 3.2.a, shows that the multiplication
in R satisfies rfi 4r (Pi ) x0

n fi for i41, R , s and r�Rn .
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LEMMA 1.1. – A homogeneous element r�Rn is not a zerodivisor of
R if and only if r (Pi ) c0 for i41, R , s .

PROOF. – If nFs X11, we have r4r(P1 ) x0
n2s21 f11R1r(Ps) x0

n2s21 fs ,
and if nGs X , then rx0

s112n 4r (P1 ) f1 1R1r (Ps ) fs . In any case, r (Pi ) 40
implies rfi 40, i.e. r is a zerodivisor of R . The converse follows from
rfi 4r (Pi ) x0

n fi . r

The image of fi in R »4R/(x0 ) is denoted by Lfi and is called the leading
form of fi (i41, R , s). By [6], 2.13, we can renumber ]P1 , R , Ps ( in such a
way that ]Lf1 , R , LfD( is a K-basis of Rs11 . Then we write

LfD1 j 4b j1 Lf1 1R1b jD LfD

for j41, R , s2D , and we form the matrix �»4 (b ji )transp .

LEMMA 1.2. – a) For i41, R , D we have b 1 i 1R1b s2Di 421.

b) The elements g1 , R , gs2D�Rs which satisfy

x0 gi 4 fD1 i 2b i1 f1 2R2b iD fD

form a K-basis of Rs .

PROOF. – Part a) follows, if we consider the equation f1 1R1 fs 4x0
s11

and pass to R. Part b) follows from the observation that the elements
fD1 i 2b i1 f1 2R2b iD fD with i41, R , s2D are linearly independent ele-
ments of x0 Rs . r

Notice that � depends on the numbering of ]P1 , R , Ps ( in an obvious
way. The dependency of � on the choice of x0 is governed by the following
rule.

LEMMA 1.3. – Let l�R1 be a nonzerodivisor, and let b l
ji be constructed as

above, but using l instead of x0 . Then

b l
ji 4

l (PD1 j )
s

l (Pi )s
Qb ji

for i41, R , D and j41, R , s2D .

PROOF. – If f 1
l , R , f s

l denote the separators w.r.t. l , then f 1
l 1R1 f s

l 4

l s11 yields f i
l 4 l (Pi )s11 fi for i41, R , s . Now notice that fD1 j

l 2

(l (PD1 j )s Ol (P1 )s ) b j1 f 1
l 2 R 2 (l (PD1 j )s Ol (PD )s ) b jD fD

l 4 l (PD1 j )s11 fD1 j 2

l (PD1 j )s l (P1 ) b j1 f1 2R2 l (PD1 j )s l (PD ) b jD fD4 l (PD1 j )s lgj is an element
of lRs . r
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At this point we are ready to start with our construction of the canonical
ideal. Recall that the integral closure RA of R in its total ring of quotients can
be described as follows (cf. [13] or [6]):

RA`R/]1 3R3R/]s `K[T1 ]3R3K[Ts ]

where ]i is the homogeneous ideal of Pi in X , and Ti is the image of x0 in R/]i .
Using the above notations, the canonical map i : R %KRA satisfies i(r) 4

(r (P1 )T1
n , R , r (Ps ) Ts

n ) for r�Rn . In particular, i(x0 ) 4 (T1 , R , Ts ) and
i( fi ) 4 (0 , R , 0 , Ti

s11 , 0 , R , 0 ). Since RA is graded by deg Ti 41, the map i is
homogeneous of degree zero.

From this description we find that the full ring of quotients Q(R) of R can
be identified with Q(R) `K(T1 )3R3K(Ts ). In the next step we compute
Q h (R), the homogeneous ring of quotients of R , i.e. the localization of R w.r.t.
the set of all homogeneous nonzerodivisors.

PROPOSITION 1.4. – a) Using the above identifications, we have

Q h (R) `K[T1 , T 21
1 ]3R3K[Ts , T 21

s ] .

Here an element f/g�Q h (R) with f�Rm and a nonzerodivisor g�Rn is iden-
tified with the tuple

g f (P1 )

g(P1 )
T1

m2n , R ,
f (Ps )

g(Ps )
Ts

m2nh .

b) We have Q h (R) `Rx0
.

PROOF. – Let f/g�Q h (R) be as in a). The image of f in Q(R) is
( f (P1 ) T1

m , R , f (Ps ) Ts
m ) , and the image of g in Q(R) is

(g(P1 ) T1
n , R , g(Ps ) Ts

n ) . Therefore f/g is identified in Q(R) as claimed and is
contained in K[T1 , T 21

1 ]3R3K[Ts , T 21
s ].

Conversely, for any element (g1 , R , gs ) �K[T1 , T 21
1 ]3R3K[Ts , T 21

s ]
and any nc0, we have (T1

n g1 , R , Ts
n gs ) 4 i( f ) for some f�R , because

dimK Rm 4s4dimK (K[T1 , T 21
1 ]3R3K[Ts , T 21

s ] )m for mc0. Thus
(g1 , R , gs ) is the image of f/x0

n �Q h (R), proving a) and b). r

In what follows, we let L0 »4K[x0 , x0
21 ] and L»4Q h (R). From 1.4 b) we

conclude that L4L0 7
K[x0 ]

R . Since R is a Cohen-Macaulay ring, it is a free

K[x0 ]-module of rank s . Therefore L is a free L0-module of rank s , and there is
an L0-basis ]e1 , R , es ( of L which is identified with the standard basis of
K[T1 , T 21

1 ]3R3K[Ts , Ts
21 ] under the isomorphism of 1.4 a). Let s L/L0

:
LKL0 (ei O1) be the canonical trace map.
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PROPOSITION 1.5. – The homomorphism S : LK HomL0
(L , L0 ) (1Os L/L0

)
is an isomorphism of graded L-modules.

PROOF. – Let W : LKL0 be an L0-linear map and gi (x0 , x0
21 ) »4W(ei )

for i41, R , s . Then W4 (g1 (T1 , T1
21 ), R , gs (Ts , Ts

21 ) ) Qs L/L0
shows that S is

surjective. The map S is also injective, since from c4

(g1 (T1 , T1
21 ), R , gs (Ts , Ts

21 ) ) Qs L/L0
40 we obtain 0 4c(ei ) 4gi (x0 , x0

21 ) for
i41, R , s , and hence (g1 (T1 , T1

21 ), R , gs (Ts , Ts
21 ) )40. r

DEFINITION. – Now we consider the following homomorphism of graded
R-modules

F : HomK[x0 ] (R , K[x0 ] ) %KHomL0
(L , L0 ) K

S21

L ,

fOW7 idL0
.

Its image is a homogeneous fractional R-ideal ÷R/K[x0 ] of L which is called the
Dedekind complementary module of R with respect to x0 .

It is not difficult to see (cf. [6], 3.1) that the Hilbert function of
÷»4÷R/K[x0 ] ` HomK[x0 ] (R , K[x0 ] ) is given by H÷ (n) 4s2HX (2n21) for
all n�Z .

PROPOSITION 1.6. – (Explicit description of ÷R/K[x0 ] ).
Let nF0, and let W� HomK[x0 ] (R , K[x0 ] )2s211n . For i41, R , s we write

W( fi ) 4ci x0
n with ci �K . Then

F(W) 4 (c1 T1
2s211n , R , cs Ts

2s211n ) �L .

PROOF. – Since i : R %KL satisfies i( fi ) 4 (0 , R , 0 , Ti
s11 , 0 , R , 0 ), the

map W7 idL0
: L`R 7

K[x0 ]
L0 KL0 is given by (W7 idL0

)(x0
s11 ei ) 4

(W7 idL0
) ((0 , R , 0 , Ti

s11 , 0 , R , 0 ) )4W( fi ) 4ci x0
n . Therefore we have

W7 idL0
4x0

2s211n (c1 , R , cs ) s L/L0
in HomL0

(L , L0 ). Thus the claim follows
from the description of S21 given in the proof of 1.5. r

COROLLARY 1.7. – The set x0
2s12 Q÷R/K[x0 ] ’L is an ideal of R.

PROOF. – Clearly this set is an R-submodule of L . We shall show that it
is contained in the image of R in L . Let W� HomK[x0 ] (R , K[x0 ] )2s211n with
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nF0, and let W( fi ) 4ci x0
n with ci �K for i41, R , s . Then we have

x0
2s12 F(W) 4x0

2s12 Q (c1 T1
2s211n , R , cs Ts

2s211n ) 4

(c1 T1
s111n , R , cs Ts

s111n ) ,

and this element is the image of x0
n (c1 f1 1R1cs fs ) �R in L . r

DEFINITION. – The ideal IR/K[x0 ] »4x0
2s12 Q÷R/K[x0 ] of R is called the canoni-

cal ideal of X with respect to x0 . Since the choice of x0 will remain fixed, we
shall also denote this ideal by I»4 IR/K[x0 ] .

Later we shall show that, in general, s X12 is the smallest number n such
that x0

n Q÷R/K[x0 ] is contained in R , but in special cases also smaller numbers n
can suffice for this to be true. It is also clear that IR/K[x0 ] depends on the choice
of the linear nonzerodivisor x0 of R . The next proposition makes this depen-
dency explicit.

PROPOSITION 1.8. – If l�R1 is a nonzerodivisor of R, then x0 Q÷R/K[x0 ] 4

l Q÷R/K[l] and l 2s11 Q IR/K[x0 ] 4x0
2s11 Q IR/K[l] ’R.

In other words, for an element f4x0
n(c1 f11R1cs fs) of Rs111n ,

with ci �K and nF0, we have f� IR/K[l] if and only if x0
n (l (P1 )22s21 c1 f1 1

R1 l (Ps )22s21 cs fs )� IR/K[x0 ] .

PROOF. – In view of the definition, it suffices to prove the first claim. Be-
cause of symmetry reasons, we only show x0 Q÷R/K[x0 ] ’ l Q÷R/K[l] . Let W : RK

K[x0 ] be a homogeneous K[x0 ]-linear map of degree 2s X211n with nF0,
and let W( fi ) 4ci x0

n with ci �K for i41, R , s . Since W(Rs2n ) ’K[x0 ]21 4 (0),
we have l 1 c1 1R1l s cs 40 whenever l 1 , R , l s �K and l 1 f1 1R1l s fs 4

x0
n11 g for some g�Rs2n . By 1.6, we have F(x0 W) 4 (c1 T1

2s1n , R , cs Ts
2s1n )

in L .
Now let Ui be the image of l in R/]i , and consider the representation

L4K[U1 , U1
21 ]3R3K[Us , Us

21 ]. Since Ui 4 l (Pi ) Ti for i41, R , s , the
element F(x0 W) is given by (c1 l (P1 )s2n U1

2s1n , R , cs l (Ps )s2n Us
2s1n ) in this

representation.
Next we let c : RKK[l , l 21 ] be the homogeneous K[l]-linear map of de-

gree 2s X211n such that c( fi
(l) )4ci l (Pi )s2n l n for i41, R , s . Here

f1
(l) , R , fs

(l) are the normalized separators with respect to l . Using 1.6 again,
we see that (c1 l (P1 )s2n U1

2s1n , R , cs l (Ps )s2n Us
2s1n ) is also the image of lc

in L .
Therefore it suffices to show imc’K[l]. For this we need to prove

c(Rs2n ) 40. Let g�Rs2n , and let x0
n11 g4l 1 f1 1R1l s fs with l 1 , R ,

l s�K . By the proof of 1.3 we know fi
(l)4l (Pi )s11 fi for i41, R , s . Therefore

we have l n11 g4l 1 l (P1 )n11 f1 1R1l s l (Ps )n11 fs 4l 1 l (P1 )2s1n f1
(l) 1
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R1l s l (Ps )2s1n fs
(l) . Thus we obtain l n11 c(g) 4c(l n11 g) 4l 1 l(P1 )2s1n Q

c( f1
(l) )1R1l s l(Ps )2s1n c( fs

(l) )4 l n (l 1 c1 1R1l s cs ) 40. Altogether we
get c(g) 40, as desired. r

The explanation why IR/K[x0 ] is important for the study of X and why it is
called the canonical ideal of X is provided by the following proposi-
tion and its corollaries. Recall that the graded R-module v R 4

HomK (HY
1 (R), K)` HomK[x0 ] (R , K[x0 ] )(21) is the canonical module of R

and can be used to characterize many geometric properties of X
(cf. [10]).

PROPOSITION 1.9. – There are isomorphisms of graded R-modules

v R `÷R/K[x0 ] (21) ` IR/K[x0 ] (2s X11) .

Here an element W� (v R )2s1n 4 HomK[x0 ] (R , K[x0 ] )2s211n with nF0 is
identified with the element W( f1 ) f1 1R1W( fs ) fs of Is111n .

PROOF. – Since F is a monomorphism of graded R-modules and I 4

x0
2s12 ÷R/K[x0 ] `÷R/K[x0 ] (22s X22), the first claim is clear. For the second

claim, let W� (v R )2s1n be given by W( fi ) 4ci x0
n , with nF0 and ci �K

for i41, R , s . Then multiplication by x0
2s12 provides an isomorphism

÷R/K[x0 ] (21) `÷R/K[x0 ] (2s X11) which identifies F(W) 4 (c1 T1
2s211n , R ,

cs Ts
2s211n ) with x0

n (c1 f1 1R1cs fs ) 4W( f1 ) f1 1R1W( fs ) fs . r

As a first application, we can use the isomorphism of this proposition to
give explicit descriptions of Is11 ` (v R )2s and I2s11 ` (v R )0 . From what we
mentioned earlier, we know the Hilbert funtion of I , namely

HI (n) 4s2HX (2s X112n)

for all n�Z . Thus Is11 and I2s11 are the first and last nontrivial homogeneous
components of I . In section 5 we shall also give a (somewhat less explicit) de-
scription of the remaining nontrivial homogeneous components of I .

COROLLARY 1.10. – The elements p i »4 fi 1b 1 i fD11 1R1b s2Di fs such
that 1 G iGD form a K-basis of Is11 .

SINCE ]Lf1 , R , LfD( is a K-basis of Rs11 , the projections p 1 , R , p D de-
fined by p i ( fj ) »4d ij for j41, R , D form a K-basis of (v R )2s4

HomK[x0 ] (R , K[x0 ] )2s21 (cf. [10], 1.5). For j41, R , s2D this yields
p i ( fD1 j ) 4p i (b j1 f1 1R1b jD fD ) 4b ij . Now an application of 1.9 finishes the
proof. r
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COROLLARY 1.11. – The elements hi »4x0
s ( fi11 2 fi ) with i41, R , s21

form a K-basis of I2s11 . An element x0
s (c1 f1 1R1cs fs ) of R2s11 is contained

in I2s11 if and only if c1 1R1cs 40.

PROOF. – An element W of (v R )0 ` HomK[x0 ] (R , K[x0 ] )21 yields a K-linear
map WNRs11

: Rs11 KK[x0 ]s with the property (WNRs11
)(x0

s11 ) 4x0
s11 W(1) �

x0
s11 K[x0 ]21 4 (0). Conversely, a K-linear map c : Rs11 KK[x0 ]s extends to a

K[x0 ]-linear homogeneous map c: RKK[x0 ] of degree 21 if and only if
c(x0

s11 ) 40, because dimK (v R )0 4s21 and c is uniquely determined by
cNRs11

(cf. [10], 1.4). Now x0
s11 4 f1 1R1 fs implies W( f1 )1R1W( fs ) 40 for

W� (v R )0 , and the claims of the corollary follow from Proposition
1.9. r

Using Corollary 1.10, we can now give the promised examples which show
that, in general, one has to multiply IR/K[x0 ] by x0

2s12 in order to get an ideal of
R , but in special cases a lower power of x0 may suffice.

EXAMPLE 1.12. – Let char Kc2, 3 , and let X4 ](1 : 0 : 0 ),
(1 : 1 : 0 ), (1 : 2 : 0 )( ’P 2 . Then X is a complete intersection of type (3 , 1 ), i.e.
IX4(X2 , X1 (X12X0 )(X122X0 )) , its Hilbert function is given by DHX : 1 1 1 0R ,
and s X41. It is easy to compute f1 4 (1O2)(x1 2x0 )(x1 22x0 ), f2 4

2x1 (x1 22x0 ), and f3 4 (1O2) x1 (x1 2x0 ) (cf. [6], 1.15). Thus Lf2 4b 11 Lf1

with b 11 422, and Lf3 4b 21 Lf1 with b 21 41. By Corollary 1.10, the element
p 1 4 f1 22 f2 1 f3 is a K-basis of Is11 . Since X is a complete intersection,
]p 1 ( is even an R-basis of I . Clearly, p 1 �x0 Rs , so that in this case
x0

2s11 ÷R/K[x0 ] ’OR .

EXAMPLE 1.13. – Let K»4C , and let X»4 ](1 : 0 : 0 ), (1 : 2 : 0 ), (1 :
11k3 i : 0 )( ’P 2 . Again X is a complete intersection of type (3 , 1 ), its
Hilbert function is DHX : 1 1 1 0R , and s X41. This time we find

f1 4 (1O(212 k3 i) )(x1 22x0 )(x1 2x0 2k3 ix0 ) ,

f2 4 (1O(222 k3 i) x1 (x1 2x0 2k3 ix0 ) , and f3 42(1O4) x1 (x1 22x0 ).

Thus Lf2 4b 11 Lf1 with b 11 4 (1O2)(k3 i21) and Lf3 4b 21 Lf1 with b 21 42

(1O2)(k3 i11). Therefore the R-basis p 1 4 f1 1b 11 f2 1b 21 f3 of IR/K[x0 ] satis-
fies Lp 1 4Lf1 1b 11 Lf2 1b 21 Lf3 40, i.e. we have p 1 �x0 Rs . This means that
we could have taken x0

2s11 ÷R/K[x0 ] 4x0
3 ÷R/K[x0 ] and obtained an ideal of R .

Let us also show that x0
2 ÷R/K[x0 ] ’OR here. This fractional ideal starts in de-

gree zero, so that we want to show p 1 � (x0
2 ). But p 1 4lx0

2 4lf1 1lf2 1lf3 for
some l�K implies b 11 4b 21 41, which is not the case.

In [10], 2.6 and 3.1, the multiplication map Rs7 Is11 K I2s11 has been used
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to characterize geometrical properties of X . By applying 1.10 and 1.11, we
shall now give an explicit matrix for this map.

COROLLARY 1.14. – Let ]g1 , R , gs2D(, ]p 1 , R , p D(, and ]h1 , R , hs21 ( be
as in 1.2.b, 1.10, and 1.11, resp. Then the multiplication map Rs7 Is11 K

I2s11 is given by

gj Qp i 4
.
/
´

b j1 hD1 j21

b ji hD1 j21 2b ji hi21

for i41 and j41, R , s2D ,

for i42, R , D and j41, R , s2D .

PROOF. – For i� ]1, R , D( and j� ]1, R , s2D( we have

x0 gj p i 4 ( fD1 j 2b j1 f1 2R2b jD fD ) Q ( f1 1b D11 i fD11 1R1b s2Di fs2D ) 4

x0
s (b ji fD1 j 2b ji fi ) .

From this the claim follows immediately. r

Finally, we remind the reader that in complete analogy with [9], 6.13, one
can show the following proposition in our situation.

PROPOSITION 1.15. – The ring R/I is a 0-dimensional Gorenstein ring.

2. – Canonical ideals of cohomologically uniform schemes.

In this section we shall apply our knowledge of the canonical ideal in order
to study the property of cohomological uniformity introduced in [11]. Recall
that a 0-dimensional scheme X4 ]P1 , R , Ps ( ’Pd is called n-uniform for
some nF0, if every subset Y’X consisting of s2n points has the same
Hilbert function, namely HY4min ]HX , s2n(. In [6], 1-uniform schemes
were also called Cayley-Bacharach schemes.

Our main goals are to characterize cohomological uniformity in terms of
the structure of the canonical ideal of X and to show that this property is in-
termediate between 1-uniformity and D X-uniformity. Towards the end of the
section we shall also give a concrete geometrical interpretation of cohomologi-

cal uniformity in the case of d12 GsGgd12

2
h points with generic Hilbert

function.
Let us start with the definition. We continue to use all notations and con-

ventions of section 1.

DEFINITION. – We say that X splits cohomologically, if we can decompose
X4YNY8 such that Yc¯ , Y8c¯ , YOY84¯ and !

Pi�Y
K QLfiO !

Pi�Y8
K QLfi4(0)

in Rs11 .
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If X does not split cohomologically, we say that X is cohomologically
uniform.

The choice of this name is explained in [11], sec. 3. From our next proposi-
tion and Lemma 1.3 it follows that the definition is in fact independent of the
choice of the linear nonzerodivisor x0 �R1 (for another proof see [11]).

PROPOSITION 2.1. – The following conditions are equivalent.

a) X splits cohomologically.

b) We can renumber the points of ]P1 , R , PD( and of ]PD11 , R , Ps (

such that the matrix � is of the form �4g *
0

0

*
h, where each block may

have zero rows or columns and is strictly smaller than � .

PROOF. – Suppose condition a) holds. If Lfi 40 for some i� ]1, R , s(, then
one of the columns of � is zero, i.e. after renumbering ]PD11 , R , Ps ( the ma-
trix � is of the form �4 (0 * ). Therefore we shall assume now that all ele-
ments Lf1 , R , Lfs are different from zero. Let X4YNQ Y8 be the decomposi-
tion according to the above definition. Renumber ]P1 , R , PD( and
]PD11 , R , Ps ( such that we have Y4 ]P1 , R , Pd , PD11 , R , PD1e( for some
0 GdGD and 0 GeGs2D .

Here we cannot have d40, since in that case Rs11 agrees with !
Pi�Y8

K QLfi ,

and for all points Pj �Y we have Lfj 40. In an analogous way we see that
dED holds. In case e40 we have Lfj � !

Pi�Y8
K QLfi for D11, R , s , so that �

is of the form �4g0

*
h. Similarly, if e4s2D , the matrix � is of the form

�4g *
0
h. Hence we can assume that 1 GeEs2D .

Now we observe that for j41, R , e it follows from b jd11 Lfd11 1

R1b jD LfD4LfD1j2b j1 Lf12R2b jd Lfd� !
Pi�Y

K QLfiO !
Pi�Y8

K QLfi that b jd114

R4b jD40. Also, for j4e11, R , s2D it follows from

b j1 Lf11R1b jd Lfd4LfD1j2b jd11 Lfd112R2b jD LfD� !
Pi�Y

K QLfiO !
Pi�Y8

K QLfi

that b j1 4R4b jd40. Thus the matrix � has the required shape.
Conversely, suppose that b j1 4R4b jD40 for some j� ]1, R , s2D(.

Then we can choose Y4 ]Pj ( and Y84X0]Pj (, and we get the desired de-
composition of Rs11 . On the other hand, if the matrix � is of the form �4
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g *
0

0

*
h or �4g *

0
h or �4g0

*
h, we let d� ]1, R , D21( be the number of

rows of the upper blocks and e� ]1, R , s2D21( the number of columns of
the left-hand blocks. Then we can choose Y4 ]P1 , R , Pd , PD11 , R , PD1e(

and Y84 ]Pd11 , R , PD , PD1e11 , R , Ps (, and we get the desired decomposi-
tion of Rs11 again. r

This proposition implies that cohomologically uniform schemes have Lfi c0
for i41, R , s , i.e. that they are 1-uniform (cf. [6], 2.6). Let us illustrate the
phenomenon of cohomological splitting with an example. We note that condi-
tion 2.1.b) yields a computational way to check for this property.

EXAMPLE 2.2. – Consider two skew lines L1 , L2 ’P 3 , e.g. L1 4 Z(X2 , X3 ) and
L2 4 Z(X3 2X0 , X1 ). Let X4 ]P1 , R , P6 ( ’P 3 with ]P1 , P3 , P4 ( ’L1 and
]P2 , P5 , P6 ( ’L2 , e.g. P1 4 (1 : 0 : 0 : 0 ), P2 4 (1 : 0 : 0 : 1 ), P3 4 (1 : 1 : 0 : 0 ),
P4 4 (1 : 21: 0 : 0 ), P5 4 (1 : 0 : 1 : 1 ), and P6 4 (1 : 0 : 21: 1 ). Here we assume
char Kc2. Then X has Hilbert function DHX : 1 3 2 0R and s X41. We com-
pute the separators of X and find f1 4x0

2 2x0 x3 2x1
2 , f2 4x0 x3 2x2

2 ,
f3 4 (1O2) x0 x1 1 (1O2) x1

2 , f4 42(1O2) x0 x1 1 (1O2) x1
2 , f5 4 (1O2) x0 x2 1

(1O2) x2
2 , and f6 42(1O2) x0 x2 1 (1O2) x2

2 .
Thus ]Lf1 , Lf2 ( is a K-basis of Rs11 , and we see that the matrix � of X is

given by g21/2

0

21/2

0

0

21/2

0

21/2
h. Using 2.1 we conclude that X splits

cohomologically in the form X4 ]P1 , P3 , P4 (N ]P2 , P5 , P6 (.

The following lemma gives us a different coherence property of the matrix
� of a cohomologically uniform scheme.

LEMMA 2.3. – Suppose X4 ]P1 , R , Ps ( ’Pd is a cohomologically uniform
set of points, and A is an equivalence relation on the set ]1, R , s( with the
property that iA j whenever i� ]1, R , D(, j� ]D11, R , s(, and b j2Di c0.
Then 1 A2 ARAs .

PROOF. – W.l.o.g. let ]D11, R , D1 t1 ( with t1 F1 be the set of those
numbers j among ]D11, R , s( for which b j2D 1 c0. Here we have t1 F1
because of 1.2.a. By assumption we then get 1 AD11 ARAD1 t1 , and for
j�]D1t111, R , s( we have b j2D 1 40. Since X is cohomologically uniform,
Proposition 2.1 yields a number i� ]2, R , D( such that not all elements of
]b 1 i , R , b t1 i ( are zero. W.l.o.g. let i42 and b n 1 2 c0 with n 1 � ]1, R , t1 (.
Then we have 2 AD1n 1 A1.

W.l.o.g. let ]D1 t1 11, R , D1 t2 ( with t2 F t1 be the set of those numbers
j among ]D1 t1 11, R , s( for which b j2D 2 c0. (Notice that we allow t2 4 t1
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and an empty set.) Thus we have 2 AD1 t1 11 ARAD1 t2 and b j2D 2 40
for j4D1 t1 12, R , s . Since X is cohomologically uniform, Proposition 2.1
yields a number i� ]3, R , D( such that not all elements of the set
]b 1 i , R , b t2 i ( are zero. W.l.o.g. let i43 and b n 2 3 c0 with n 2 � ]1, R , t2 (.
Then we have 3 AD1n 2 A2 A1.

Continuing in this manner we finally obtain tD4s2D , since not all ele-
ments of ]b s2D 1 , R , b s2DD( are zero, and we get DAD21 ARA1. By 2.1,
each column of � has a nonzero entry, so 1 ARADAD1

1 ARAs . r

Now we are ready to prove the main theorem of this section.

THEOREM 2.4. – Let X4 ]P1 , R , Ps ( ’Pd be a set of points. The following
conditions are equivalent.

a) X is cohomologically uniform.

b) The multiplication map m : Rs7 Is11 K I2s11 is nondegenerate and
surjective.

c) The multiplication map mA : Rs7 (v R )2sK (v R )0 is nondegenerate
and surjective.

PROOF. – «a) ¨b)». From Proposition 2.1 it follows that X is a Cayley-
Bacharach scheme. In [10], 2.6 it was shown that the multiplication map mA is
nondegenerate for Cayley-Bacharach schemes. By 1.9, also m is nondegener-
ate.

Because of 1.11, we still need to show that the elements hi 4x0
s ( fi11 2 fi )

such that 1 G iGs21 are in the image of m . Define a relation A on the set
]1, R , s( by iA j`x0

s ( fi 2 fj ) � im m . Obviously A is an equivalence relation.
If i� ]1, R , D( and j� ]D11, R , s(, then gj2D p i 4b j2Di x0

s ( fj 2 fi ) � im m
by 1.14. Hence if b j2Di c0, then iA j . Thus we can apply the lemma and ob-
tain 1 ARAs , i.e. x0

s ( fj 2 fi ) � im m for i , j� ]1, R , s(.

«b) `a)» Suppose that X splits cohomologically in the form X4YNY8.
Then D XF2, and we can renumber ]P1 , R , Ps ( such that Y4

]P1 , R , Pd , PD11 , R , PD1e( with 1 GdGD21 and 0 GeGs2D . Since the
image of m is generated by the elements gj2D p i 4b j2Di x0

s ( fj 2 fi ) with i�
]1, R , D( and j� ]D11, R , s(, it is already generated by the subset of
those elements for which b j2Di c0. As X splits cohomologically, that subset is
contained in the set

M»4 ]x0
s ( fj 2 fi )Ni41, R , d and j4D11, R , D1e(N

]x0
s ( fj 2 fi )Ni4d11, R , D and j4D1e11, R , s( .
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Now let x4x0
s (c1 f1 1R1cs fs ) with c1 , R , cs �K be an arbitrary element

of im m . We express x with the generators from M and get

x4 !
i41

d

!
j4D11

D1e

z ij x0
s ( fj 2 fi )1 !

i4d11

D

!
j4D1e11

s

z ij x0
s ( fj 2 fi )

with z ij �K . By comparing the two representations of x , we find

ci 4

.
/
´

2z iD11 2R2z iD1e

2z iD1e11 2R2z is

z 1 i 1R1z di

z d11 i 1R1z Di

for i41, R , d ,

for i4d11, R , D ,

for i4D11, R , D1e ,

for i4D1e11, R , s .

Thus we conclude !
Pi�Y

ci 40 and !
Pi�Y8

ci 40. In particular, the element

x0
s ( fD2 f1 ) is not in the image of m . This contradicts the hypothesis.

«b) `c)» is a consequence of 1.9. r

Using [10], 3.2, this theorem implies that D X-uniform schemes are cohomo-
logically uniform. In view of [6], example 3.11, it was asked in [11] whether co-
homological uniformity is the right condition to show the inequalities HX (n)1

HX (s X2n) Gs2D X11 for n41, R , s X for the Hilbert function of X . This
is the topic of our next section.

But before we want to specialize the situation for a moment and consider
schemes X consisting of «few» points in Pd . More precisely, let X4

]P1 , R , Ps ( ’Pd consist of d12 GsGgd12

2
h points, and suppose that X

is nondegenerate, i.e. it is not contained in a hyperplane, and that s X41.
Then X has generic Hilbert function, i.e. the Hilbert function of X is HX :
1 d11 s sR , and we have D X4s2d21. In this situation [10], 3.2 and 4.2
yield that some conditions of uniformity coincide.

REMARK 2.5. – The following conditions are equivalent.

a) X is in linearly general position, i.e. any subscheme Y’X consisting
of d11 points has Hilbert function HY : 1 d11 d11R .

b) X is D X-uniform.

c) The multiplication map m : R1 7 I2 K I3 is biinjective, i.e. m(r7W) 40
implies r40 or W40.

For i41, R , s , let us write Pi 4 (1 : pi1 : R : pid ) with pij �K . Because of
1.14 we know how the matrix of the above multiplication map m depends on the
coefficients of the matrix �4 (b ij ). In our situation, this matrix � has a par-
ticularly simple description.
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LEMMA 2.6. – If X is in linearly general position, and if we choose the co-
ordinate system suitably, the matrix �4 (b ij ) is given by

�4

.
`
´

211p11 1R1p1d

QQ
Q

211pD 1 1R1pDd

2p11

QQ
Q

2pD 1

R

R

2p1d

QQ
Q

2pDd

ˆ
`
˜

PROOF. – Recall that we have numbered P1 , R , Ps such that ]Lf1 , R , LfD(

is a K-basis of Rs11 . Since X is in linearly general position, PD11 , R , Ps span Pd .
Thus we may change the coordinate system such that PD114Ps2d4 (1: 0: R : 0),
Ps2d114 (1: 1: 0: R : 0), R , Ps4 (1: 0: R : 0: 1). Both ]x02x12R2xd ,
x1 , R , xd( and ]g1 , R , gd11( are K-bases of R1 (cf. 1.2.b). They attain the same
values (x02x12R2xd)(Ps2d1i) 4d i04g1 (Ps2d1i) and xj(Ps2d1i) 4d ij4

gj11 (Ps2d1i) for i40, R , d and j41, R , d at the points Ps2d , R , Ps . Since
those points span Pd , we have g14x02x12R2xd , g24x1 , R , gd114xd , and
the claim follows fromb ij42gi(Pj) for i41, R , d11 and j41, R , D . r

The following notion will be used to explain the geometrical meaning of cohomo-
logical splitting in the present situation.

DEFINITION. – We say that a reduced 0-dimensional subscheme X’Pd splits lin-
early, if there exist linear subspaces L1 , L2’Pd such that X’L1NL2 and L1OL24¯ .

For example, the scheme of 2.2 splits linearly. Like 2.5, the next proposition
shows that several notions which are distinct in general, coincide in the case of
«few» points. The equivalence of conditions a) and d) follows also from [2], 1.2
and 1.5.

PROPOSITION 2.7. – Let X’Pd be a nondegenerate, reduced, 0-dimensional

subscheme consisting of d12 GsGgd12

2
h points with generic Hilbert func-

tion. Then the following conditions are equivalent.

a) X does not split linearly.

b) X is cohomologically uniform.

c) The multiplication map m : R1 7 I2 K I3 is nondegenerate and surjec-
tive.

d) X is pure, i.e. its canonical ideal I is generated by the elements of I2 (cf. [11],
section 4).
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PROOF. – «a) `b)». The scheme X has the Cayley-Bacharach property w.r.t
hypersurfaces of degree s X41, because a hyperplane L1 containing exactly s21
points of X and the 0-dimensional linear space L2 consisting of the remaining point
would constitute a linear splitting. Thus X is 1-uniform.

Suppose X splits cohomologically, and we have renumbered ]P1 , R , Ps ( such
that the second part of 2.1.b holds. Then we have gj (Pi ) 40 for
j�]1, R , e( and i�]d11, R , D(N]D1e11, R , s(. Hence the linear sub-
space L1 »4 Z(g1 , R , ge ) of Pd contains ]Pd11 , R , PD(N ]PD1e11 , R , Ps (.
Analogously it follows that the linear subspace L2 4 Z(ge11 , R , gs2D ) of Pd con-
tains ]P1 , R , Pd(N ]PD11 , R , PD1e(. Altogether, L1 NL2 contains X and
L1 OL2 4 Z(g1 , R , gs2D ) 4 Z( 5

nF1
Rn )4¯ , contradicting a).

The equivalence «b) `c)» is a special case of 2.4. For «c) `d)» we note that I3

does not contain a minimal generator of I , that we have dimK I3 4s21, and that
dimK I4 4s . In view of this and 1.11, it suffices to find one element r4x0

2 (c1 f1 1

R1cs fs ) in I4 such that r�R2 I2 and c1 1R1cs c0. For this we can take any
nonzero element r 84c18 f1 1R1c 8s fs � I2 such that c 8i c0 for some i� ]1, R , s(

and multiply it by fi �R2 .
As «d) `c)» is trivially true, we are left with «b) `a)». Suppose there are lin-

ear subspaces L1 , L2 �Pd such that X’L1 NL2 and L1 OL2 4¯ . W.l.o.g. we may
assume that dim L1 1dim L2 4d21. We let e»4d2dim L1 4dim L2 11 �
]1, R , d(. By a linear change of coordinates, we may also assume L1 4

Z(X0 , R , Xe21 ) and L2 4 Z(Xe , R , Xd ). Notice that here we may loose the prop-
erty that x0 �R1 is not a zerodivisor. If we denote the number of points
of XOL1 by r� ]1, R , s21(, we can renumber ]P1 , R , Ps ( such that
XOL1 4 ]P1 , R , Pr ( and XOL2 4 ]Pr11 , R , Ps (. Furthermore, we choose a
nonzerodivisor l�R1 of R , we construct the normalized separators f1

l , R , f s
l

w.r.t l , and for i41, R , d we let xi be the image of Xi in R1 .
Because of X’L1 NL2 , we have xi xj 40 for i� ]0, R , e21( and

j� ]e , R , d(. Thus fi
l has a decomposition f i

l 4 f i81 f 9i such that
f 8i �K[x0 , R , xe21 ] ’R and f 9i �K[xe , R , xd ] ’R . For every i� ]1, R , s(,
the definitions of L1 and L2 imply f 8i (Pj ) 40 for j� ]1, R , r( and f 9i (Pj )40
for j� ]r11, R , s(. Since also f 8i (Pj ) 4 f i

l (Pj ) 40 for i41, R , r and
j4r11, R , s , we obtain f 8i 40 for i41, R , r . Analogously, we have f 9i 40
for i4r11, R , s . Altogether we have shown that f i

l �K[xe , R , xd ] for
i41, R , r and f i

l �K[x0 , R , xe21 ] for i4r11, R , s .
Now we can conclude that l Q (Kxe1R1Kxd ) ’Kf 1

l 5R5Kfr
l and l Q

(Kx0 1R1Kxe21 ) ’Kfr11
l 5R5Kfs

l . Hence c1 f 1
l 1R1cs f s

l � l QR1 for some
c1 , R , cs �K implies c1 f 1

l 1R1cr f r
l � lR1 and cr11 f r11

l 1R1cs f s
l � lR1 .

Thus we find the splitting (R/(l) )2 4 !
i41

r

K QLfi
l 5 !

i4r11

s

K QLfi
l , i.e. X splits

cohomologically. r
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We end this section with an example which shows that not every cohomo-
logically split scheme splits linearly. The second part of this example also
demonstrates that cohomological splitting or uniformity may depend on quite
subtle geometrical properties of the configuration of the points of X . This
example suggests us to ask if for every cohomologically split scheme X4

YNY8 there exist disjoint varieties V1 , V2 ’Pd of «small» degree such that
Y’V1 and Y8’V2 .

EXAMPLE 2.8. – a) Let C1 , C2 ’P 3
C be two skew twisted cubics, and let X

consist of 20 points on C1 and 20 points on C2 . For instance, we can take C1 4

](u 3 : u 2 v : uv 2 : v 3 )N(u : v)�P1
C( and C24](2uv 2 : u 3 : v 3 : u 2 v)N(u : v)�P1

C(,
and then choose the points corresponding to (u : v) 4 (1 : i) for i4

1, R , 20 on both C1 and C2 . The Hilbert function of X is
HX : 1 4 10 20 26 32 38 40 40 R , so that s X46 and D X42. The matrix � is

of the form g* R *
0 R 0

0 R 0

* R *
h, and therefore X splits in the form X4

(XOC1 )N (XOC2 ). Clearly X does not split linearly.
We note the inequality HX (3)1HX (s X23) 440 D39 4s2D X11, a

phenomenon which will be explored more deeply in the next section.

b) If we replace C2 by C3 4 ](u 3 : uv 2 : v 3 : 2u 2 v)N(u : v) �P 1
C(, then

C1 OC3 4 ](1 : 0 : 0 : 0 )(, and the analogously defined scheme X has
HX : 1 4 10 19 25 31 37 40 R . Since its matrix � does not split and has nonze-
ro columns, X is cohomologically uniform. We note that the inequalities
HX (n)1HX (s X2n) Gs2D X11 hold in this case for n40, R , s X .

The calculations for this example were done using the program COP for
computations with zerodimensional schemes (cf. [1]).

3. – Hilbert functions of cohomologically uniform schemes.

As in the previous sections, we let X4 ]P1 , R , Ps ( ’Pd be a set of points
with canonical ideal I ’R . We have seen that cohomological uniformity of X is
an intermediate property between 1-unformity and D X-uniformity. In [11] it
was shown that D X-uniformity implies certain inequalities for the Hilbert
function of X which do not hold in general for 1-uniform schemes (cf. [6], 3.10
and 3.11). Our goal in this section is to confirm the view expressed in [11], sec-
tion 3, that cohomological uniformity is the correct condition which implies
those inequalities.

THEOREM 3.1. – Let X4 ]P1 , R , Ps ( ’Pd be a cohomologically uniform
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set of points, and suppose that char (K) � ]2, R , s X(. Then we have

HX (n)1HX (s X2n) Gs2D X11

for all n� ]0, R , s X(.

Notice that if X consists of only one point, then s X421 and the theorem
does not claim anything. Similarly, the theorem is trivial in case s X40.
Therefore we shall assume sF3 and s XF1 for the rest of this section. For
proof of Theorem 3.1 we can assume that X’Pd is nondegenerate, since the
Hilbert function of X does not change, if we replace Pd by the linear span of X .
This proof relies on a detailed understanding of how those inequalities result
from structural properties of the canonical ideal of X . The next proposition
and its corollary provide us with the basic link.

PROPOSITION 3.2. – Let r�Rs and W� Is11 . The following conditions are
equivalent.

a) There exist elements W 2 , R , W D� Is11 such that

I2s11 4Rs W5KrW 2 5R5KrW D .

b) If W 2 , R , W D� Is11 are such that ]W , W 2 , R , W D( is a K-basis of
Is11 , then

I2s11 4Rs W5KrW 2 5R5KrW D .

c) We have Wc0, and if r 8�Rs , W 8� Is11 are such that r 8 W4rW 8 , then
r 84lr and W 84lW for some l�K .

PROOF. – First we show that a) implies c). From s21 4dimK I2s11 DD X2

1 FdimK (KrW 2 5R5KrW D ) we conclude that Wc0. Now suppose that
rW 84r 8 W for some r 8�Rs , W 8� Is11 . From the hypothesis it is clear that
]W , W 2 , R , W D( are K-linearly independent, and hence form a K-basis of
Is11 . Thus we can write W 84l 1 W1l 2 W 2 1R1l D W D with l 1 , R , l D�K ,
and we obtain r(l 2 W 2 1R1l D W D ) 4 (r 82l 1 r) W�Rs WO (KrW 2 5
R5KrW D ) 4 (0). Therefore l 2 4R4l D40 and W 84l 1 W . Since
the hypothesis also implies dimK (Rs W) 4s2D , we get r 82l 1 r40, i.e.
r 84l 1 r .

As «b) `a)» is trivially true, we are left with proving «c) `b)». We claim
that dimK (Rs W) 4s2D , i.e. that no element r 8�Rs 0]0( annihilates W . Oth-
erwise we could choose W 840, and r 8 W40 4rW 8 would imply W 84lW , r 84lr
for l40, contradicting r 8c0. We also claim that we may assume rc0. Oth-
erwise r 8 W40 ¨r 840 and [10], 2.6, imply that X is 1-uniform with D X41, so
that the claim is obviously true.

Suppose now that W 84l 2 W 2 1R1l D W D with l 2 , R , l D�K satisfies
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rW 840. Then rW 84r 8 W for r 840, and thus r 84lr , W 84lW with l40, i.e. we
have W 840. This shows dimK (KrW 2 5R5KrW D ) 4D X21. Finally, it is
clear from the hypothesis that (Rs W)O (KrW 2 5R5KrW D ) 4 (0), and the
claim follows by adding up dimensions. r

Note that if X is 1-uniform and D X41, then condition c) holds for r40
and every W�Is11 0]0(. The existance of r�Rs and W�Is11 such that 3.2. a)-c)
hold has strong consequences.

COROLLARY 3.3. – a) If there exists an element l�R1 such that the equiva-
lent conditions of 3.2 are satisfied for r4 l s and some W� Is11 , then

HX (n)1HX (s X2n) Gs2D X11

for all n� ]0, R , s X(.

b) If there exist r�Rs and W� Is11 such that the equivalent conditions
of 3.2 are satisfied, then X is cohomologically uniform.

PROOF. – To see a), we choose W 2 , R , W D� Is11 as in 3.2 b). Like in the
proof of 3.2, we find AnnR (W)ORs4 (0). Then we observe that l n (l 2 W 2 1

R1l D W D ) �Rn W for n� ]0, R , s( and l 2 , R , l D�K implies l s (l 2 W 2 1

R1l D W D ) �Rs W , and therefore l 2 4R4l D40. Thus s2HX (s X2n) 4

dimK Is111n FdimK (Rn W)1D X21 4HX (n)1D X21.
Now we show claim b). From AnnR (W)ORs4 (0) and [10], 2.6, it follows

that X is 1-uniform. A look at Theorem 2.4 finishes the proof. r

This corollary reduces the proof of Theorem 3.1 to showing that for every
cohomologically uniform scheme X there exist l�R1 and W� Is11 such that
3.2 a)-c) hold for r4 l s and W . This question will now be reduced to a linear al-
gebra problem.

Recall that we have explicit bases ]g1 , R , gs2D( of Rs (cf. 1.2 b)) and
]p 1 , R , p D( of Is11 (cf. 1.10).

PROPOSITION 3.4. – Let r�Rs and W� Is11 . Write r4a1 g1 1R1as2D gs2D

with a1 , R , as2D�K and W4c1 p 1 1R1cD p D with c1 , R , cD�K. Let bi 4

a1 b 1 i 1R1as2D b s2Di for i41, R , D and dj 4c1 b j1 1R1cD b jD for j4
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1 , R , s2D . Define the matrix

M(r , W) 4

.
`
`
`
`
`
´

2b1

0

a1 b 11

QQ
Q

as2D b s2D 1

Q Q
Q

R

R

0

2bD

a1 b 1 D

QQ
Q

as2D b s2D D

c1 b 11

QQ
Q

cD b 1 D

2d1

0

R

R

Q Q
Q

c1 b s2D 1

QQ
Q

cD b s2D D

0

2ds2D

ˆ
`
`
`
`
`
˜

.

Then conditions 3.2 a)-c) are equivalent with rk M(r , W) 4s21.

PROOF. – Using 1.14, we calculate

rp i 4a1 g1 p i 1R1as2D gs2D p i 4

a1 x0
s (b 1 i fD11 2b 1 i fi )1R1as2D x0

s (b s2Di fs 2b s2Di fi ) 4

x0
s (2bi fi 1a1 b 1 i fD11 1R1as2D b s2Di fs )

for i41, R , D and

gj W4c1 gj p 11R1cD gj p D4c1 x0
s (b j1 fD1j2b j1 f1 )1R1cD x0

s (b jD fD1j2b jD fD ) 4

x0
s (2c1 b j1 f1 2R2cD b jD fD1dj fD1 j )

for j41, R , s2D . Therefore the columns of the matrix

.
`
´

T1
2s11

0

Q Q
Q

0

Ts
2s11

ˆ
`
˜

QM(r , W)

represent the images of rp 1 , R , rp D , 2g1 W , R , 2gs2D W under the canoni-
cal injection i : R %KRA`K[T1 ]3R3K[Ts ] of section 1. Thus rk M(r , W) 4

s21 means that rIs11 1Rs W is (s21)-dimensional. This is equivalent to
dimK ((rIs11 )O (Rs W) )41 and hence to conditions 3.2 a)-c). r

PROPOSITION 3.5. – Let r4a1 g11R1as2D gs2D�Rs with a1 , R , as2D�K .
The following conditions are equivalent.

a) There exists an element W� Is11 such that conditions 3.2 a)-c)
hold.
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b) The matrix

8(r) 4

.
`
`
`
`
`
´

2b1

0

b 11 Y1

QQ
Q

b s2D 1 Y1

Q Q
Q

R

R

0

2bD

b 1D YD

QQ
Q

b s2D D YD

a1 b 11

QQ
Q

a1 b 1D

2D1

0

R

R

Q Q
Q

as2D b s2D

QQ
Q

as2D b s2D D

0

2Ds2D

ˆ
`
`
`
`
`
˜

has rank s21.
Here bi 4a1 b 1 i 1R1as2D b s2Di for i41, R , D , the symbols Y1 , R , YD

denote independent variables over K , and Dj 4b j1 Y1 1R1b jD YD for
j41, R , s2D .

PROOF. – This follows from the preceding proposition, since 8(r) has
rank s21 if and only if one of its specializations M(r , W)transp has rank
s21. r

Now we can prove Theorem 3.1 in some special cases.

COROLLARY 3.6. – a) If in the matrix � of X there is a row
(b 1 i , R , b s2Di ), all of whose entries are nonzero, and if l�R1 is a nonzerodi-
visor, then rk 8(l s ) 4s21 and the Hilbert function of X satisfies the in-
equalities of 3.1.

b) If X is D X-uniform, then rk 8(l s ) 4s21 for all nonzerodivisors
l�R1 .

PROOF. – To show a), we may assume that b 11 c0, Rb s2D 1 c0. Then we
cancel the first row and the first column of 8(l s ). The coefficient of Y1

s2D in
the determinant of the resulting matrix is

(2 l(PD11 )s b 11 )R(2 l(Ps )s b s2D 1 )c0 .

For the proof of claim b) we recall that gj p i 4b ji (hD1 j21 2d i1 hi21 ) by 1.14.
T h u s [ 1 0 ] , 3 . 2 i m p l i e s t h a t a l l e n t r i e s o f � a r e n o n z e r o a n d w e c a n a p -
p l y a) .  r

In view of 3.6 a) it is natural to ask if rk 8(l s ) 4s21 holds for all nonzero-
divisors l�R1 . Our next example demonstrates that this is not the case and
that we can only hope to show rk 8(l s ) 4s21 for generic l�R1 .

EXAMPLE 3.7. – Let X’P 3 consist of the following six points: P1 4
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(1 : 1 : 1 : 0 ), P2 4 (1 : 2 : 0 : 1 ), P3 4 (1 : 0 : 0 : 0 ), P4 4 (1 : 1 : 0 : 0 ), P5 4

(1 : 0 : 1 : 0 ), and P6 4 (1 : 0 : 0 : 1 ). We calculate HX : 1 4 6 6R , so that s X41
and D X42. We also calculate that the matrix � of X is given by

�4
.
`
´

1

2

21

22

21

0

0

21

ˆ
`
˜

Since the first two columns have nonzero entries, and since no column is zero,
we know from 2.1 that X is cohomologically uniform. But we may check
that

rk 8(x0
s )4rk

.
`
`
`
´

1

0

Y1

2Y1

2Y1

0

0

1

2Y2

22Y2

0

2Y2

1

2

2Y122Y2

0

0

0

21

22

0

Y112Y2

0

0

21

0

0

0

Y1

0

0

21

0

0

0

Y2

ˆ
`
`
`
˜

444s22 .

Next we shall show that the converse of Corollary 3.3.b holds. This will
allow us to prove Theorem 3.1 in even more cases.

In the sequel Y1 , R , YD and Z1 , R , Zs2D will denote sets of independent
variables over K , and we let Bi 4b 1 i Z1 1R1b s2Di Zs2D for i41, R , D as
well as Dj 4b j1 Y1 1R1b jD YD for j41, R , s2D .

LEMMA 3.8. – Let 1 GuED X , let 1 GvEs2D X , and let Mu , v be the
matrix

Mu , v 4

.
`
`
`
`
`
´

2B1

0

b 11 Y1

QQ
Q

b v1 Y1

Q Q
Q

R

R

0

2Bu

b 1u Yu

QQ
Q

b vu Yu

b 11 Z1

QQ
Q

b 1u Z1

2D1

0

R

R

Q Q
Q

b v1 Zv

QQ
Q

b vu Zv

0

2Dv

ˆ
`
`
`
`
`
˜

.

Then det Mu , v 40 implies that X splits cohomologically.

PROOF. – We proceed by induction on u1v . In case u1v42, we

are considering the matrix M1, 1 4g2B1

b 11 Y1

b 11 Z1

2D1
h. Since det M1, 1 40, none
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of the variables Y2 , R , YD , Z2 , R , Zs2D may occur in B1 or D1 . Hence
b 12 4R4b 1D40 and b 21 4R4b s2D 1 40, i.e. � splits.

In order to prove the induction step, we grade the polynomial ring
K[Y1 , R , YD , Z1 , R , Zs2D ] by deg Y1 4R4deg YD4deg Z14R4deg Zv40
and deg Zv11 4R4deg Zs2D41. We expand det Mu , v and look at its leading
form. Note that Zv11 , R , Zs2D only occur in B1 , R , Bu , and renumber
P1 , R , Pu such that ]1, R , u 8( with 1 Gu 8Gu are precisely those indices i
among ]1, R , u( for which b v11 i 4R4b s2D i 40.

Here we must have u 8F1, since u 840 would imply that the leading form
of det Mu , v is 6(b v11 1 Zv11 1R1b s2D 1 Zs2D )R(b v11 u Zv11 1R1

b s2D u Zs2D ) QD1 RDv c0, contradicting det Mu , v 40. If u 8F1, the leading
form of det Mu , v is 6(b v11 u 811 Zv11 1R1b s2D u 811 Zs2D )R(b v11 u Zv11 1

R1b s2D u Zs2D ) Qdet Mu 8, v . Thus if u 8Eu , the claim follows from the induc-
tion hypothesis.

We are left with the case u 84u , i.e. with the case that b v11 i 4R4

b s2D i 40 for i41, R , u . In this case we grade the polynomial ring
K[Y1 , R , YD , Z1 , R , Zs2D ] by deg Y14R4deg Yu4deg Z14R4deg Zs2D40
and deg Yu11 4R4deg YD41. Again we consider the leading form of
det Mu , v w.r.t. this grading. Note that Yu11 , R , YD only occur in
D1 , R , Dv , and renumber PD11 , R , PD1v in such a way that ]1, R , v 8( with
1 Gv 8Gv are precisely those indices j among ]1, R , v( for which b j u11 4

R4b jD40.
Here we have v 8F1, since v 840 would imply that the leading form

of det Mu , v is 6(b 1 u11 Yu11 1R1b 1D YD )R(b v u11 Yu11 1R1b vD YD ) Q
B1RBuc0, contradicting det Mu , v40. If v 8F1, the leading form of det Mu , v

is 6(b v 811 u11 Yu11 1R1b v 811 D YD )R(b v u11 Yu11 1R1b vD YD ) Qdet Mu , v 8 .
Thus if v 8Ev , the claim follows from the induction hypothesis.

Finally we are left with the case u 84u and v 84v , i.e. with the case that
b v11 i 4R4b s2D i 40 for i41, R , u and b j u11 4R4b jD40 for j4

1, R , v . Obviously, in this case the matrix � of X splits, too. r

PROPOSITION 3.9. – Let X’Pd be a reduced, 0-dimensional subscheme. The
following conditions are equivalent.

a) X is cohomologically uniform.

b) There are elements r�Rs , W� Is11 such that conditions 3.2 a)-c)
hold.

PROOF. – Because of 3.3 b), it suffices to show «a) `b)». By 3.5, we have to
find an element r4a1 g1 1R1as2D gs2D�Rs such that rk 8(r) 4s21. Thus
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we have to show that the matrix

84

.
`
`
`
`
`
´

2B1

0

b 11 Y1

QQ
Q

b s2D 1 Y1

Q Q
Q

R

R

0

2BD

b 1D YD

QQ
Q

b s2D D YD

b 11 Z1

QQ
Q

b 1D Z1

2D1

0

R

R

Q Q
Q

b s2D 1 Zs2D

QQ
Q

b s2D D Zs2D

0

2Ds2D

ˆ
`
`
`
`
`
˜

has rank s21. Let 88 be the matrix which is obtained from 8 by deleting the
last row and the last column. We shall show that X splits cohomologically, if
det 8840.

Notice that Zs2D appears only in the entries 2B1 , R , 2BD of 88 . W.l.o.g.
let u� ]1, R , D( be such that b s2D 1 4R4b s2D u 40 and b s2D u11 c

0, R , b s2D Dc0. Here u4D is impossible because of Prop. 2.1. The leading
coefficient of det 88 w.r.t. Zs2D is (2b s2D u11 )R(2b s2D D ) Qdet Mu , s2D21 .
Hence det Mu , s2D21 40, and an application of the lemma finishes the
proof. r

Thus we have found yet another characterization of cohomological unifor-
mity. It allows us to determine the generic rank of 8(l s ) in case s X41. Here
and later we use the phrase «for generic l�R1» to mean that there exists a
Zariski-open subset U of the affine space A(R1 ) such that the claimed proper-
ty holds whenever l corresponds to a closed point of U .

COROLLARY 3.10. – Let X’Pd be a reduced 0-dimensional subscheme with
s X41. For generic l�R1 we have rk 8(l) 4s21.

PROOF. – It suffices to apply the proposition and to note that the condition
rk 8(l) 4s21 defines an open subset of A(R1 ). r

Our next lemma and proposition constitute the heart of the proof of Theo-
rem 3.1.

LEMMA 3.11. – Let X’Pd be a nondegenerate, reduced, 0-dimensional sub-
scheme with s XF2, suppose that char (K) � ]2, R , s X(, and suppose there
are i� ]1, R , D(, j� ]1, R , s2D(, and pairwise distinct elements
n 1 , R , n j � ]1, R , s2D( such that l(PD1n 1

)s b n 1 i 1R1 l(PD1n j
)s b n j i 40

for generic l�R1. Then we have b n 1 i 4R4b n j i 40.
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PROOF. – Let PN 4P(As ) with N4gd1s

d
h be the projective space associ-

ated with As4K[X0 , R , Xd ]s . If we use the lexicographically ordered set of
monomials ]X0

s , X0
s21 X1 , R , Xd

s( of degree s as a K-basis of As , and if
L4l 0 X0 1R1l d Xd �A1 with l 0 , R , l d �K is a linear form, then L s�As

is given in this basis by the coordinate tuple (l 0
s , l 0

s21 l 1 , R , l d
s ), where the

coefficient of l 0
n 0

R l d
n d is the multinomial coefficient g s

n 0 , R , n d
h. Since

char (K) � ]2, R , s(, all of those coefficients are nonzero. In the lexicograph-

ically ordered basis {g s

n 0 , R , n d
h X0

n 0
RXd

n dNn 0 1R1n d 4s} of As , the ele-

ment L s is then given by the coordinate tuple (l 0
s , l 0

s21 l 1 , R , l d
s ). The set of

all elements of the form L s such that L�A1 is therefore precisely the set of
closed points of a Veronese variety V , namely of the s th Veronese embedding
of Pd in PN .

Now we consider the linear subspace L4P((IX )s ) of PN . It has codimen-
sion codim(L , PN ) 4s2D . Since IX is a radical ideal, it follows from L s�
(IX )s for some L�A1 that L� (IX )1 , i.e. that L40, since X is nondegenerate.
Altogether we conclude LOV4¯ . Next we let p : PN 0LKP s2D21 4P(Rs )
be the morphism given by aFb O aF1IX b for F�As 0(IX )s , i.e. we let p be the
projection from PN with center L . Since LOV4¯ , the image V 4p(V) ’
P s2D21 is a closed subscheme (cf. [4], 14.2), and since V is well-known to be ir-
reducible and nondegenerate, the same is true for V. Thus the set of all closed
points of P(Rs ) of the form l s with l�R1 is not contained in a hyperplane of
P(Rs ).

If we look at the coordinate system of P(Rs ) which corresponds to the K-
basis ]g1 , R , gs2D( of Rs , we can use the equation l s4 l(PD11 )s g1 1R1

l(Ps )s gs2D for l�R1 to conclude that the closed point al s b �P(Rs ) is in that co-
ordinate system given by the tuple (l(PD11 )s : R : l(Ps )s ) . By the hypothesis,
it is for generically chosen l�R1 contained in the variety H4 Z(b n 1 i Xn 1

1

R1b n j i Xn j
) ’P(Rs ). Since V is nondegenerate, the variety H cannot be a hy-

perplane, i.e. we have to have H4P(Rs ) and b n 1 i 4R4b n j i 40. r

PROPOSITION 3.12. – If X’Pd is a nondegenerate, reduced, 0-dimensional,
cohomologically uniform scheme, and if char (K) � ]2, R , s X(, then
rk 8(l s ) 4s21 for generic l�R1 .

PROOF. – Because of 3.10 it suffices to consider the case s XF2. We renum-
ber the points PD11 , R , Ps such that b 11 c0, R , b t1 1 c0, b t111 1 4R4
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b s2D 1 40 for some 1 G t1 Gs2D . Note that t1 F1, since b 11 1R1b s2D 1 4

21 (cf. 1.2.a). Next we renumber P2 , R , PD such that one of b 12 , R , b t1 2 is
not zero. This is possible, because � does not split. Then we renumber
PD1 t111 , R , Ps such that b t111 2 c0, ..., b t2 2 c0, b t211 2 4R4b s2D 2 40 for
some t1 G t2 Gs2D , and we renumber P3 , R , PD such that one of b 13 , R , b t2 3

is not zero. Continuing this way, we find numbers 1Gt1Gt2GRGtD21Gs2D
such that the matrix � of X looks as follows:

�4

.
`
`
`
`
`
´

b 11

b 12

QQQ

QQQ

b 1D

R

R

R

b t11

b t12

QQQ

QQQ

b t1 D

0

b t111 2

QQQ

QQQ

b t111 D

R

R

R

0

b t22

QQQ

QQQ

b t2 D

0

0

b t211 3

QQQ

b t211 D

R

R

R

R

0

0

b t33

QQQ

b t3 D

R

R

R

R

0

0

QQQ

0

b tD2111 D

R

R

R

R

0

0

QQQ

0

b s2D D

ˆ
`
`
`
`
`
˜

.

Notice that tD4s2D , because no column of � is zero by 2.1. For j4

1, R , s2D we let l j 4 l(PD1 j )s . In addition, we have arranged this matrix
such that g 2 4l 1 b 12 1R1l t1

b t1 2 c0, ..., g D4l 1 b 1D1R1l tD21
b tD21 Dc0

for generic l �R1 .
In the matrix 8(l s ) we add columns 2 , R , D1 t1 to column 1 and obtain

the following matrix

80 4

.
`
`
`
`
`
`
`
`
´

0

d 2

QQQ

d D

0

QQQ

0

Dt111

QQQ

Ds2D

0

2b2

0

b 12 Y2

QQQ

b t12 Y2

b t111 2 Y2

QQQ

b s2D 2 Y2

R

Q Q
Q

R

R

R

R

0

0

2bD

b 1D YD

QQQ

b t1 D YD

b t111 D YD

QQQ

b s2D D YD

l 1 b 11

l 1 b 12

QQQ

l 1 b 1D

2D1

0

0

QQQ

0

R

R

R

Q Q
Q

R

R

l t1 b t11

l t1 b t12

QQQ

l t1 b t1 D

0

2Dt1

0

QQQ

0

0

l t111b t111 2

QQQ

l t111b t111 D

0

QQQ

0

2Dt111

0

R

R

R

R

R

Q Q
Q

0

l s2D b s2D 2

QQQ

l s2D b s2D D

0

QQQ

0

0

2Ds2D

ˆ
`
`
`
`

.`
`
`
`
˜

If D X41, we have t1 4s2D , and the claim rk 8(l s ) 4rk 80 4s21 follows
from (2D1 )R(2Ds2D ) c0. Therefore we shall assume D XF2 from now
on.

Let the matrix 81 be obtained from 80 by deleting its first row and its first
column. We shall show rk 8(l s ) 4rk 80 4s21 by proving det 81 c0. Notice
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that Y1 appears only in the entries 2D1 , R , 2Dt1
of 81 . Let the matrix 82 be

obtained form 81 by deleting the columns and rows containing those entries.
Then the coefficient of Y1

t1 in det 81 is (2b 11 )R(2b t1 1 ) Qdet 82 . Hence
det 82 c0 implies det 81 c0.

More generally, for each i� ]2, R , D( we define a submatrix 8i of 81 by

8i 4

.
`
`
`
`
`
`
`
´

2bi

0

b ti2111 i Yi

QQQ

b ti i Yi

0

QQQ

0

Q Q
Q

R

R

R

R

0

2bD

b ti2111 D YD

QQQ

b ti D YD

b ti11 D YD

QQQ

b s2D D YD

l ti2111 b ti2111 i

QQQ

l ti2111 b ti2111 D

2Dti2111

0

0

QQQ

0

R

R

Q Q
Q

R

R

l ti b ti i

QQQ

l ti b ti D

2Dti

0

QQQ

0

0

QQQ

l ti11 b ti11 D

0

QQQ

0

2Dti11

0

R

R

R

R

Q Q
Q

0

QQQ

l s2D b s2D D

0

QQQ

0

0

2Ds2D

ˆ
`
`
`
`.
`
`
`
˜

Using downward induction on i� ]2, R , D(, we shall show that if
det 8i 40, then the matrix � splits. For cohomologically uniform schemes X ,
this proves det 82 c0.

We begin the induction by looking at the case i4D . If det 8D40, then
tD21 Es2D , since tD21 4s2D implies det 8D42bDc0 for generic l �R1 .
Starting from column 2, we add all columns of 8D to column 1, and we obtain
the matrix

88D4

.
`
`
`
´

2g D

0

QQ
Q

0

l tD2111 b tD2111 D

2DtD2111

0

R

Q Q
Q

l s2D b s2D D

0

2Ds2D

ˆ
`
`
`
˜

which has det 88D4det 8Dc0, since 2g D42l 1 b 1D2R2l tD21
b tD21 Dc0

for generic l �R1 .
Finally we prove the induction step. We assume iED and det 8i 40. If

ti21 4 ti , then the only nonzero entry in the first row of 8i is 2bi , and we have
det 8i 4 (2bi ) Qdet 8i11 . In this case the claim follows from the induction hy-
pothesis, because bi c0 for generic l �R1 . Thus we may also assume ti21 E ti .
Then we add columns 2 , R , D2 i111 ti 2 ti21 of 8i to column 1, and we
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obtain the following matrix

88i 4

.
`
`
`
`
`
`
`
`
´

2g i

h i11

QQQ

h D

0

QQQ

0

Dti11

QQQ

Ds2D

0

2bi11

0

b ti2111 i11 Yi11

QQQ

b ti i11 Yi11

b ti11 i11 Yi11

QQQ

b s2D i11 Yi11

R

Q QQ

R

R

R

R

0

0

2bD

b ti D YD

QQQ

b ti D YD

b ti11 D YD

QQQ

b s2D D YD

l ti2111 b ti2111 i

l ti2111 b ti2111 i11

QQQ

l ti2111 b ti2111 D

2Dti2111

0

0

QQQ

0

R

R

R

Q QQ

R

R

l ti b ti i

l ti b ti i11

QQQ

l ti b ti D

0

2Dti

0

QQQ

0

0

*
QQQ

*
0

QQQ

0

2Dti11

0

R

R

R

R

R

Q QQ

0

*
QQQ

*
0

QQQ

0

0

2Ds2D

ˆ
`
`
`
`

.`
`
`
`
˜

Here the elements « * » have to be replaced by the corresponding entries of
8i . Notice that the only entries of 88i containing Yi are 2Dti2111 , R , 2Dti

.
Let the matrix 8i b be obtained form 8i8 by deleting the rows and columns
containing those entries. Then the coefficient of Yi

ti2 ti21 in det 8i8 is
(2b ti2111 i )R(2b ti i ) Qdet 8i b, and det 8i 4det 8i840 implies det 8i940.
We observe that 2g i 42l 1 b 1 i 2R2l ti21

b ti21 i c0 is the only nonzero en-
try in the first row of 8i9 , and that det 8i94 (2g i ) Qdet 8i11 . Thus the claim
follows from the induction hypothesis. r

In view of 3.3 a), 3.5, and 3.12, the proof of Theorem 3.1 is now
complete.

4. – The syzygy module of the canonical ideal.

In this section we give a description of the first syzygy module of the

canonical ideal in the case of d11 EsEgd12

2
h points X4 ]P1 , R , Ps ( in

Pd . We shall assume that X is nondegenerate, cohomologically uniform and
satisfies s X41. We use the notations introduced in the previous sections. Our
first goal is to find an explicit homogeneous system of generators of the first
syzygy module of I .

The Hilbert function of I is HI : 0 0 s2d21 s21 s s R , and a K-basis of
I2 is given by ]p 1 , R , p D(, where D4s2d21. Since X is cohomologically
uniform, Prop. 2.7 implies that ]p 1 , R , p D( is a minimal homogeneous system
of generators of I . Now we choose a generic element W4c1 f1 1R1cs fs � I2

with c1 , R , cs �K . By using the representation W4c1 p 1 1R1cD p D and
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Prop. 2.1, we see that we may assume c1 , R , cs c0. After a generic change of
coordinates, we may also assume by Prop. 3.9 that

I3 4R1 W5Kx0 p 2 5R5Kx0 p D .

Therefore there are unique elements lij �R1 and l ij
(2) , R , l ij

(D) �K such
that

xi p j 4 lij W1l ij
(2) x0 p 2 1R1l ij

(D) x0 p D

for i41, R , d and j42, R , D . Since ]W , p 2 , R , p D( is a minimal homoge-
neous system of generators of I , we can use those relations to describe the
R-module

SR »4Syz1
R (W , p 2 , R , p D ) 4 ](r1 , R , rD ) �R D Nr1 W1r2 p 2 1R1rD p D40(

explicitly.

REMARKS 4.1. – a) From the exact sequence of graded R-modules

0 KSyz1
R (W , p 2 , R , p D ) KR(22)DK

e
I K0

with e(e1 ) 4W and e(ei ) 4p i for i42, R , D , we obtain HSR
: 0 0 0

(D21) d (D21) s (D21) s R .

b) The elements

s ij 4 (lij , l ij
(2) x0 , R , l ij

(j21) x0 , l ij
(j) x0 2xi , l ij

(j11) x0 , R , l ij
(D) x0 ) �R(22)D

such that 1 G iGd and 2 G jGD form a K-basis of (SR )3 , since they are K-lin-
early independent and HSR

(3) 4 (D21) d .

c) Let P4K[X0 , R , Xd ] and

SP4Syz1
P (W , p 2 , R , p D )4](F1 , R , FD )�P D NF1 W1F2 p 21R1FD p D40( .

From the exact sequence of graded P-modules

0 KSyz1
P (W , p 2 , R , p D ) KP(22)DK I K0

we obtain an exact sequence of graded R-modules

0 KTor1
P (I , R) KSyz1

P (W , p 2 , R , p D )7RKSyz1
R (W , p 2 , R , p D ) K0 .

In particular, we get HSP
(3) 4 (D21) d4HSR

(3). Therefore any set of
preimages

S ij 4 (Lij , l ij
(2) X0 , R , l ij

(j) X0 2Xi , l ij
(D) X0 )�P(22)D

of the elements s ij �R(22)D forms a K-basis of (SP )3 .
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d) From the short exact sequence 0 KIXKPKRK0 we get a long ex-
act sequence of graded P-modules

0 KTor1
P (I , R) KIX7

P
I K I K

id
I K0

from which we conclude that Tor1
P (I , R) `IX7

P
R7

R
I ` (IX OIX

2 ) 7
R

I . Thus

the second exact sequence of c) translates in degree four into a short exact se-
quence of K-vector spaces

0 K (IX )2 7 I2 K
i

Syz1
P (W , p 2 , R , p D )4 KSyz1

R (W , p 2 , R , p D )4 K0

where i is given by i(F1 7W1F2 7p 2 1R1FD7p D ) 4 (F1 , R , FD ) for
F1 , R , FD� (IX )2 .

Next we determine how big a part of Syz1
P (W , p 2 , R , p D )4 is generated by

the elements S ij .

LEMMA 4.2. – a) The set ]S ij N1 G iGd , 2 G jGD( generates a subspace of
Syz1

P (W , p 2 , R , p D )4 which is at least (D21)((1 /2) d 2 1 (3 /2) d)-dimen-
sional.

b) The P-module Syz1
P (W , p 2 , R , p D ) is generated by the elements

]S ij N1 G iGd , 2 G jGD(N ](F , 0 , R , 0 )NF� (IX )2 (N ]U j N2 G jGD(

where U j 4 (Qj , 0 , R , 0 , 2X0
2 , 0 , R , 0 ) and Qj is a preimage in P2 of the

unique element qj �R2 such that x0
2 p j 4qj W .

PROOF. – «a)» Let Gs be the lexicographical term ordering on P , where
X0 Es X1 Es REs Xd . On P(22)D we define a module term ordering Gt in the
following way. If t1 , t2 �P are power products of variables, and if i , j�
]1, R , D(, then we let t1 ei Gt t2 ej if and only if one of four conditions is
satisfied:

1) i4 j41 and t1 Gs t2 ,

2) i41 and jD1,

3) iD1, jD1, and t1 Es t2 ,

4) 1 E iG j and t1 4 t2 .

It is easy to check that Gt is in fact a module term ordering (cf. [4], p. 324)
and that the elements S ij have leading terms Ltt (S ij ) 4 (0 , R , 0 ,
2Xi , 0 , R , 0 ). Now it is a standard fact that, for U4 a]S ij N1 G iGd ,
2 G jGD(b ’P(22)D , we have

dimK (U4 ) 4dimK (Ltt (U) )4 FdimK a]Ltt (S ij )N1 G iGd , 2 G jGD(b4

(cf. [4], 15.26). The last number is obviously (D21)((1 /2) d 2 1 (3 /2) d) .
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«b)» By subtracting suitable multiples of the syzygies S ij , every P-syzy-
gy of (W , p 2 , R , p D ) can be reduced to one of the form (F , g 2 X0

2 , R , g D X0
2 )

with F�P2 and g 2 , R , g D�K . Then one can subtract !
j42

D

g j U j . The result is

a syzygy of the form (G , 0 , R , 0 ) with G�P2 . Since AnnR (W) 4 (0), this im-
plies G� (IX )2 . It is well-known that it follows from s X41 4a X21 that
Syz1

P (W , p 2 , R , p D ) is generated by its homogeneous elements of degrees
three and four (cf. e.g. [10], 5.1). r

PROPOSITION 4.3. – For j42, R , D let u j 4 (qj , 0 , R , 0 , 2x0
2 , 0 , R , 0 ) �

R(22)D be the image of U j (cf. 4.2 b)). The graded R-module
Syz1

R(W , p 2 , R , p D) is generated by the homogeneous elements ]s ij N1GiGd ,
2 G jGD( of degree three and the homogeneous elements ]u j N2 G jGD( of
degree four.

PROOF. – The claim is a consequence of Remark 4.1.c and Lemma
4.2.b. r

Notice that the elements s ij are minimal generators of
Syz1

R (W , p 2 , R , p D ), whereas it is not clear how many of the elements u j are
actually needed. In the case D42, i.e. for s4d13 points in Pd , we can in
fact do without the elements u j .

PROPOSITION 4.4. – Let dF3, and let X’Pd be a set of s4d13 cohomolog-
ically uniform points with generic Hilbert function DHX : 1 d 2. Then the R-
module Syz1

R (W , p 2 ) is generated by its homogeneous elements of degree
three.

PROOF. – We choose the coordinate system and the element W� I2 as at the
beginning of this section. For 1 G iGd we write xi p 2 4 li W1l i x0 p 2 with li �
R1 and l i �K , and we let s i 4 (li , l i x0 2xi ) �R(22)2 . Furthermore, we let
q�R2 be the unique element such that x0

2 p 2 4qW . By Prop. 4.3, we need to

show that (2q , x0
2 ) � !

i41

d

P1 s i . Since AnnR (W) 4 (0), this amounts to showing

that x0
2 is an element of the ideal J4 (l 1 x0 2x1 , R , l d x0 2xd ) of R .

As a first step, we prove that not all elements l1 , R , ld �R1 can be zero.
Otherwise (l i x0 2xi )p 2 40 for i41, R , d and p 2 4 f2 1b 12 f3 1R1

b d11 2 fd13 imply that (l 1 x0 2x1 , R , l d x0 2xd ) equals ]2 , the ideal of P2 in X .
Since X does not split cohomologically, Lemma 2.3 yields b j2 c0 for some
j� ]1, R , d11(. Since not all elements of ]2 vanish at Pj12 , there exists a
k�]1, R , d11( such that (l k x02xk )(Pj12 )c0 Now (l k x02xk ) p 2 (Pj12 )4
(l k x0 2xk )(Pj12 )b j2 40 implies (l k x0 2xk )(Pj12 ) 40, a contradiction.
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Let Q4 (1 : l 1 : R : l d ) �Pd . In the next step, we prove Q�X . Suppose
Q4P1 , and let ]1 ’R be the ideal of P1 in X . If we use the equation li W1

(l i x0 2xi ) p 2 40, as well as l i x0 2xi �J4]1 and p 2 4 f2 1b 12 f3 1R1

b d11 2 fd13 �]1 , we obtain li W1]1
2 40 in R/]1

2 . Since the residue class of W�]1

is not a zero divisor in that ring, we arrive at li �]1
2 , which means li 40, be-

cause li �R1 and ]1
2 is generated in degree two. But the first step shows that

li 40 cannot hold simultaneously for i41, R , d .
Next we suppose Q�]P2 , R , Ps (. Then the equation li W1(l i x02xi )

p 2 40 shows that li vanishes at P1 and Q , i.e. there are elements cij �K such

that li 4 !
j41

d

cij (l j x0 2xj ) for i41, R , d . Furthermore, by passing to the ring

R/J 2 and arguing as before, we see that p 2 (Q) c0, i.e. Q has to be P2 or one of
the points Pj such that 3 G jGd13 and b j22 2 c0. Using the representation

of li �J , we get equations !
j41

d

cij lj W1 li p 2 40. Again the conditions

li�]1 , p 2�]1 , and W�]1 can only be satisfied if !
j41

d

cij lj40 and li p 240. Now

li W1 (l i x0 2xi ) p 2 40 implies that li (Pn ) 40 for all n� ]1, R , d13( such
that p 2 (Pn ) 40, while li p 2 40 means li (Pn ) 40 for all n� ]1, R , d13( such
that p 2 (Pn ) c0. Thus we get li 40 for i41, R , d , contradicting the first
step.

Altogether we have shown that Q�X , and we can consider the Hilbert
function of Y4XN ]Q(. We claim that it is given by DHY : 1 d 3. The only
other possibility is DHY : 1 d 2 1. In that case the canonical Ideal IY of Y
starts in degree three and satisfies HIY

(3) 41, HIY
(4) 43. Thus a nonzero el-

ement of (IY )3 has a nontrivial annihilator, i.e. Y is not a Cayley-Bacharach
scheme. Therefore there exists an i� ]1, R , s( such that DHY0]Pi( : 1 d 1 1
and DHX0]Pi( : 1 d 1. Now [7], 5.2 shows that Q and three points of X lie on a
line in Pd . Since the other d points of X span at most a (d21)-dimensional lin-
ear space, we get that X splits linearly, in contradiction with our hypothe-
sis.

Thus we have HY : 1 d11 d14 d14 R , and the formula HR/J (i) 4

HX (i)1H]Q( (i)2HY (i) proves HR/J (2) 40, so that x0
2 �J , as was to be

shown. r

It is instructive to compare the preceding result to a similar one for the P-
module Syz 1

P (W , p 2 ) which follows from [3].

REMARK 4.5. – Let dF3, and let X’Pd be a set of s4d13 points. Then
the following conditions are equivalent.
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a) The set X is cohomologically uniform, has generic Hilbert function
DHX : 1 d 2, and Syz1

P (W , p 2 ) is minimally generated by (D21) d homoge-
neous elements of degree three and d21 homogeneous elements of degree
four. (The number d21 is the minimal possible one, here.)

b) No d12 points of X are on a hyperplane and no d points of X are on a
linear subspace of Pd of dimension d22.

The implication «a)-b)» follows from 2.7 and [3], 4.3. Conversely, [3], 1.3
shows that X has generic Hilbert function, [3], 4.1 and our Prop. 2.7 imply that
X is cohomologically uniform, and [3], 4.3 yields the remaining claim.

It is an elementary exercise to verify directly that condition 4.5 b) implies
that X does not split linearly. Our next example shows that it is in fact a
stronger hypothesis.

EXAMPLE 4.6. – Let X’P3 consist of three points on a line and three gener-
ically chosen points. Then we have DHX : 1 3 2 , and X is cohomologically uni-
form. But Syz1

P (W , p 2 ) needs three minimal generators in degree four besides
its three minimal generators of degree three. The module Syz1

R (W , p 2 ), how-
ever, is minimally generated in degree three by Prop. 4.4.

To conclude the discussion of Syz1
R (W , p 2 , R , p D ), we show how the ele-

ments s ij and u j can be computed effectively in terms of the constants b ij , the
separators f1 , R , fs �R2 , and the coordinates of the points. We note that the
numbers b ij and the separators f1 , R , fs �R2 can be found as a by-product of
the Buchberger-Möller Algorithm (cf. [12], sect. 1.2).

REMARK 4.7. – Let us write x0 lij 4 lij
(1) f1 1R1 lij

(s) fs with lij
(1) , R , lij

(s) �K .
Recall that we have Pi 4 (1 : pi1 : R : pid ) for i41, R , s and W4c1 f1 1R1

cs fs with cD1k 4c1 b k1 1R1cD b kD for k41, R , s2D . For i41, R , d and
j42, R , D we express both sides of xi p j 4 lij W1l ij

(2) x0 p 2 1R1l ij
(D) x0 p D in

the K-basis ]x0 f1 , R , x0 fs ( of R3 (cf. [6], 1.13). We get

xi p j 4x0
21 (p1 i f1 1R1psi fs )( fj 1b 1 j fD11 1R1b s2D j fs ) 4

pji x0 fj 1pD11 i b 1 j x0 fD11 1R1psi b s2D j x0 fs

as well as

lij W1l ij
(2) x0 p 2 1R1l ij

(D) x0 p D4 lij
(1) c1 x0 f1 1R1 lij

(s) cs x0 fs 1

(l ij
(2) x0 f2 1l ij

(2) b 12 x0 fD11 1R1l ij
(2) b s2D 2 x0 fs )1R1

(l ij
(D) x0 fD1l ij

(D) b 1D x0 fD11 1R1l ij
(D) b s2D D x0 fs ) 4
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lij
(1) c1 x0 f1 1 (lij

(2) c2 1l ij
(2) ) x0 f2 1R1 (lij

(D) cD1l ij
(D) ) x0 fD1

(lij
(D)11 cD11 1l ij

(2) b 12 1R1l ij
(D) b 1D ) x0 fD11 1R1

(lij
(s) cs 1l ij

(2) b s2D 2 1R1l ij
(D) b s2D D ) x0 fs .

Comparing coefficients yields lij
(1) 40, l ij

(k) 42lij
(k) cj for k� ]2, R , D(0]j(

and l ij
(j) 4pji 2 lij

(j) cj . Substituting this into the remaining equations yields

(pD1k i 2pji ) b kj 4 lij
(D)1k cD1k 2 lij

(2) c2 b k2 2R2 lij
(D) cD b kD( * )

for k41, R , s2D . Hence the elements l ij
(2) , R , l ij

(D) are uniquely deter-
mined by lij

(2) , R , lij
(s) . The condition lij

(1) 40 means that the hyperplane Z(lij )
contains P1 , and that we can find m1 , R , md �K such that lij 4m1 (x1 2

p11 x0 )1R1md (xd 2p1d x0 ). Therefore we have lij
(k) 4m1 (pk1 2p11 )1R1

md (pkd 2p1d ) for k42, R , s . Now equations ( * ) yield s2D4d11 linear
equations ( * * ) for m1 , R , md . But those equations are not linearly indepen-

dent, because adding them up gives !
k41

s2D

pD1k i b kj 1pji 4 !
k41

s2D

lij
(D)1k cD1k 1

lij
(2) c2 1R1 lij

(D) cD4 !
k41

s

(xi p j )(Pk )1 !
k41

s

lij
(k) ck 40 in view of xi p j , lij W� I3

and 1.11.
Altogether, it follows from 3.9 and the above that the system of linear

equations

( * * ) (pD1k i 2pji ) b jk 4 [m1 (pD1k 1 2p11 )1R1md (pD1k d 2p1d ) ] cD1k 2

[m1 (p21 2p11 )1R1md (p2d 2p1d ) ] c2 b k2 2R2

[m1 (pD1 2p11 )1R1md (pDd 2p1d ) ] cD b kD4

(pD1k 1 cD1k 2p11 c1 b k1 2R2pD1 cD b kD ) m1 1R1

(pD1k d cD1k 2p1d c1 b k1 2R2pDd cD b kD ) md

for k41, R , s2D uniquely determines m1 , R , md �K , and hence lij �R1 as
well as l ij

(2) , R , l ij
(D) �K . Thus it suffices to solve the linear system of equa-

tions ( * * ) in order to compute the syzygies s ij .
Furthermore, if we want to find for j� ]2, R , D( the unique element qj �

R2 such that x0
2 p 2 4qj W , we write qj 4g j1 f1 1Rg js fs with g j1 , R , g js �K ,

and we compare coefficients in

x0
2 p j 4x0

2 ( fj 1b 1 j fD11 1R1b d11 j fs ) 4qj W4x0
2 (g j1 c1 f1 1R1g js cs fs ) .

Thus g jk4(1Ocj ) d jk for k41, R , D and g jk4(1Ock ) b k2D j for k4D11,
R , s . This effectively computes the syzygies u j 4 (qj , 2x0

2 ) in terms of the
elements b ij and the separators f1 , R , fs .



M. KREUZER256

5. – Canonical transforms.

The canonical ideal can also be used to generalize the Gale transform of a
set of points. In [5], it was shown that this transform may be defined using the
elements of I2s . In this section we shall describe similar «canonical tansforms»
based on each of the homogeneous components Is11 , R , I2s . We start by
characterizing those components as explicitly as we can. The notations and as-
sumptions are the same as in section 1. In particular, we let X4

]P1 , R , Ps ( ’Pd be a set of points with homogeneous coordinate ring R and
canonical ideal I ’R .

PROPOSITION 5.1. – For all i� ]0, R , s(, the homogeneous component
Is111 i of the canonical ideal consists precisely of those elements W4

c1 x0
i f1 1R1cs x0

i fs �Rs111 i such that c1 , R , cs �K and r (P1 ) c1 1R1

r (Ps )cs 40 for all r�Rs2 i .
In other words, if we apply the monomorphisms i j : Rj KK s given by

r O (r (P1 ), R , r (Ps ) ) for jF0, the homogeneous component Is111 i of the
canonical ideal corresponds to the orthogonal space of Rs2 i with respect to
the standard pairing.

PROOF. – If we consider W� Is111 i ` (v R )2s2 i as a homogeneous K[x0 ]-
linear map W : RKK[x0 ] of degree 2s211 i , we have W(Rs2 i ) ’K[x0 ]21 4

(0). For every element r�Rs2 i , this implies W(x0
i11 r) 4x0

i11 W(r) 40. Since
we have x0

i11 r4r (P1 ) f1 1R1r (Ps ) fs , we get r (P1 )W( f1 )1R1

r (Ps ) W( fs ) 40. Now Proposition 1.9 yields W( fj ) 4cj for j41, R , s , and
therefore r (P1 ) c1 1R1r (Ps ) cs 40.

The reverse implication follows from the fact that the orthogonal space of
ıs2 i (Rs2 i ) has dimension s2dimK (Rs2 i ) 4dimK (Is111 i ). r

The next proposition provides the basis for our definition of the Gale trans-
form which differs slightly from the one in [5].

PROPOSITION 5.2. – Suppose X’Pd has the property that any subset of
s22 points of X spans Pd . We choose a K-basis ]t1 , R , ts2d21( of I2s and write
ti 4g i1 x0

s21 f1 1R1g is x0
s21 fs with g i1 , R , g is �K for i41, R , s2d21.

Then any two columns of the matrix G4 (g ij ) are K-linearly indepen-
dent.

PROOF. – We assume that there are indices m , n� ]1, R , s( and an ele-
ment l�K0]0( such that mcn and g im4lg in for i41, R , s2d21. Let us
denote the homogeneous coordinate ring of the subscheme Y4X0]Pn( of X
by RY4K[X0 , R , Xd ]OIY , and its canonical ideal by IY’RY . Since Y spans
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Pd , we have

dimK (IY )2s Y
4 (s21)2d21 .

We note that s X21 Gs YGs X and v RY
` ]W�v R NIY QW40(, where IY is the

image of IY in R (cf. [10], 1.3 d)). Now we distinguish two cases.

Case 1: s Y4s X . In this case we have (IY )2s Y
` ]c1 x0

s21 f1 1R1

cs x0
s21 fs � I2s Ncn40(, because IY is given by IY 4 ( fn )sat and (IY)2s4

Kx0
s21 fn . Since (IY )2s Y

I2s , we may assume g 1nc0. Then we find

(IY )2s Y
4K Q (g 1n t2 2g 2n t1 )5R5K Q (g in ts2d21 2g s2d21 n t1 )

and all elements of (IY )2s Y
are of the form cA1 x0

s21 f1 1R1cAs x0
s21 fs with

cA1 , R , cAs �K and cAm4cAn40.

Case 2: s Y4s X21. Again we have (IY )2s Y
` (v RY

)21 ’ (v R )21 ` I2s X
,

and the same argument as above shows that all elements cA1 x0
s21 f1 1R1

cAs x0
s21 fs � (IY )2s Y

satisfy cAm4cAn40.
Im both cases all elements of (IY )2s Y

are also contained in the canonical
ideal of Y84Y0]Pm(. Then dimK (IY8 )2s4 (s22)2 (d21)21 contradicts the
assumption that the points of Y8 span Pd . r

DEFINITION 5.3. – Let X4 ]P1 , R , Ps ( ’Pd be a set of points with the
property that any subset consisting of s22 points of X spans Pd , and let G be
the matrix defined in Proposition 5.2. Then the set of points k(X) ’Ps2d22 de-
fined by the columns of the matrix G is called the Gale transform (or the asso-
ciated set of points) of X .

By Proposition 5.2, the set k(X) consists of s distinct points of Ps2d21 . It is
clear that k(X) does not depend on the choice of the linear nonzerodivisor
x0 �R (see the proof of 1.3), and that it changes by a coordinate transformation
of Ps2d21 , if we choose a different basis for I2s in Proposition 5.2. In [5], Gale
transforms were defined assuming only that subsets of s21 points of X span
Pd . Out next example shows that in this case k(X) does not necessarily consist
of s distinct points in Ps2d21 .

EXAMPLE 5.4. – Let K be a field of characterstic char (K) c2, and let X’P3

consist of the following six points: P1 4 (1 : 1 : 0 : 0 ), P2 4 (1 : 0 : 1 : 0 ), P3 4

(1 : 21: 0 : 0 ), P4 4 (1 : 0 : 21: 0 ), P5 4 (1 : 0 : 0 : 1 ), and P6 4 (1 : 0 : 0 : 21).
Then the Hilbert function of X is HX : 1 4 6 6 R , and we have s X41 as well
as D X42. A basis of Rs11 is given by Lf1 and Lf2 , and we have Lf3 4Lf1 ,
Lf4 4Lf2 , Lf5 4Lf6 42Lf1 2Lf2 . Thus the homogeneous component I2 4

Is11 4 I2s has the K-basis ]p 1 , p 2 (, where p 1 4 f1 1 f3 2 f5 2 f6 and p 2

4 f2 1 f4 2 f5 2 f6 .
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It is clear that any five points of X span P3 . But the Gale transform k(X) ’P1

consists only of the three points (1 : 0 ), (0 : 1 ), and (1 : 1 ).
If s X41, as in the previous example, the description of k(X) can be simpli-

fied considerably.

REMARK 5.5. – Let X’Pd be a set of s points such that s X41 and such that
any s22 points of X span Pd . We form the matrix

�
A

4u1

0

Q Q
Q

0

1
N �v

Then, by Corollary 1.10, the Gale transform of X is the set of points k(X) ’
PD21 defined by the columns of the matrix �

A
.

Next we want to generalize the Gale transform by using other components
of the canonical ideal as well. Again we are interested in the correct conditions
under which those constructions yield sets of s distinct points. To be able to
formulate those conditions, we introduce the following notion of uniformity.

DEFINITION 5.6. – Let 1 G iGs21 and 1 G jGs X . We say that X is (i , j)-
uniform, if every subscheme Y’X consisting of deg Y4s2 i points satisfies
HY ( j) 4HX ( j).

This notion generalizes most uniformity conditions for 0-dimensional
schemes considered in [10] and elsewhere. Recall that X is called i-uniform,
if every subset Y’X of degree s2 iGdeg YGs satisfies HY4

min ]HX , deg Y(.

REMARK 5.7. – a) A set of points X’Pd is i-uniform, if and only if X is
(i , s)-uniform. In particular, X is a Cayley-Bacharach scheme, if and only if X
is (1 , s)-uniform, and X is in uniform position, if and only if X is (s21, s)-uni-
form.

b) If X’Pd is nondegenerate, then X is in linearly general position (i.e.
any d11 points of X span Pd ), if and only if X is (s2d21, 1 )-uniform. More
generally, X is in lineraly general position of i th order (cf. [10]), if and only if X

is gs2gd1 i

d
h, ih-uniform.

PROPOSITION 5.8. – Let X’Pd be a set of s points, let 1 G iGs , let r4

s2HX (i), and let ]t1 , R , tr ( be a K-basis of I2s112 i . For j41, R , r



ON THE CANONICAL IDEAL OF A SET OF POINTS 259

we write tj 4g j1 x0
s2 i f1 1R1g js x0

s2 i fs with g j1 , R , g js �K , and we form
the matrix G i 4 (g jk ). Then the following conditions are equivalent.

a) X is (2 , i)-uniform.

b) The columns of the matrix G i are pairwise K-linearly indepen-
dent.

PROOF. – Suppose b) holds. Let 1 G jEkGs . Clearly, condition b) does not
depend on the choice of the basis ]t1 , R , tr ( of I2s112 i . If we choose it suit-
ably, the j th and k th columns of G i are given by (1 , 0 , R , 0 ) and
(0 , 1 , 0 , R , 0 ), respectively. Then we get

( * ) dimK ]c1 x0
s2 i f1 1R1cs x0

s2 i fs � I2s112 i Nc1 , R , cs �K , cj 4ck 40( 4

dimK I2s112 i 22 4r22 .

This implies dimK (v RY
)2i 4dimK (v R )2i 22 for all subschemes Y’X with

deg Y4s22 and canonical module v RY
. Since we have

HY (i) 4deg Y2dimK (v RY
)2i 4 (s22)2 (dimK (v R )2i 22)4HX (i) ,

we see that X is (2 , i)-uniform.
Conversely, given a), the same calculation shows that equation ( * ) holds

for all 1 G jEkGs , i.e. that columns j and k of G i are K-linearly indepen-
dent. r

DEFINITION 5.9. – Let X’Pd be a (2 , i)-uniform set of s points, let
i� ]1, R , s(, let r4s2HX (i), and let G i be the matrix defined in the previ-
ous proposition. Then the set of s distinct points k i (X) ’Pr defined by the
columns of G i is called the i th canonical transform of X .

It is clear that k 1 (X) 4k(X) is the Gale transform of X , and k i (X) is de-
termined up to a coordinate transformation in Pr . It seems to be a largely un-
explored question how properties of the embedding X’Ps are related to prop-
erties of k i (X) ’Pr . Our next proposition gives a small result in this
direction.

PROPOSITION 5.10. – Let X’Pd be a set of s points. Then X is D X-uniform
(or (D X , s X )-uniform in the terminology of Definition 5.6), if and only if
k s (X) ’PD21 is in linearly general position (i.e. if and only if any subset of
D X points of k s (X) spans PD21 )

PROOF. – By Corollary 1.10, the set k s (X) is given by the columns
of the matrix �

A
defined in Remark 5.5. Those columns are the coordinate
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vectors of Lf1 , R , Lfs in the K-basis ]Lf1 , R , LfD( of Rs11 . Now the
claim follows from [10], 3.4. r

We end this section (and this paper) by pointing out some connections be-
tween the material presented above and Coding Theory. Let pD0 be a prime
number, eD0, q4p e , and Fq the field with q elements. In Coding Theory, a
linear subspace C’Fq is called a linear code. The number s is called the length
of C , the number d(C) 4dimFq

(C) is called the dimension of C , and the mini-
mal number m(C) of nonzero components of a nonzero vector of C is called the
minimal distance of C . With those notations, C is also called an [s , d(C) ]q-
code. It satisfies the Singleton bound m(C) Gs2d(C)11, and if it achieves
equality there, it is called an MDS-code («maximum distance separable»).

In [8], J. P. Hansen described the following way to associate linear codes to
a set of Fq-rational points X4 ]P1 , R , Ps ( ’Pd (Fq )OD1 (X0 ) ’Pd

Fq
. If R4

Fq [X0 , R , Xd ]OIX is the homogeneous coordinate ring of X and 1 GrGs X ,
then the image of the map

F r : Rr K

f O

Fq
s

( f (P1 ), R , f (Ps ) )

is called the r th associated Reed-Muller code of X and denoted by Cr (X) 4

im F r . In case r41, the code C(X) 4 im F 1 is also called the associated lin-
ear code of X . In [8], Prop. 6 and Thm. 8, the uniformity of X and invariants of
Cr (X) were interrelated as follows.

PROPOSITION 5.11. – For all 1 GrGs X and iF1, we have m(Cr (X) )F

s2 i11, if and only if X is (s2 i , r)-uniform. In particular, Cr (X) is an
MDS-code, if and only if X is (s2HX (r) )-uniform.

If we specialize to the case r4s X , we see that Cs (X) is the linear code gen-
erated by the vectors (2b j1 , R , 2b jD , 0 , R , 0 , 1 , 0 , R , 0 ) for j4

1, R , s2D . Thus Cs (X) is precisely the kernel of the linear map with matrix
�
A

(defined as in 5.5). In Coding Theory, one says that �
A

is a parity check ma-
trix for Cs (X). From Propositions 5.10 and 5.11 we get the following relation
between the linear code Cs (X) and the canonical transform k s (X).

COROLLARY 5.12. – For a set of Fq-rational points X’Pd
Fq

as above, the fol-
lowing conditions are equivalent.

a) The linear code Cs (X) is an MDS-code.

b) The set of points X is D X-uniform.

c) The s th canonical transform k s (X) is in linearly general posi-
tion.
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