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Splittability for Ordered Topological Spaces.

DERMOT J. MARRON - T. BRIAN M. MCMASTER

Sunto. – In quest’articolo dimostriamo come il concetto «spezzabilità», formulato e
sviluppato di Arhangel8skii, viene trasferito dallo studio di spazi topologici a quel-
lo di spazi topologici parzialmente ordinati. Otteniamo numerosi risultati in for-
ma «sè X e spezzabile (facendo uso di funzioni appropriatamente scelte) su spazi
che hanno una proprietà, allora anche X soddisfa la stessa proprietà».

1. – Introduction.

In the context of topology, where splittability was first formulated by
Arhangel8skii, and in which it has been extensively developed by him and by
his co-workers (see, for example, [1], [2], [3] and the articles referenced there-
in), a space X is said to be splittable (or cleavable) over a class P of spaces if,
for every subset A of X, there is a space Y in P and a continuous mapping f
from X into Y such that f 21 ( f (A) )4A. When the mappings may be chosen to
lie within a particular class M of continuous mappings, one speaks of M-split-
tability instead of splittability; and when the subsets A are constrained to be
singletons, the term pointwise splittability is employed. It is often convenient
to assume that all of the mappings involved are surjections; where this as-
sumption is made in the present article, we shall use the notations s-splittable,
pointwise s-splittable, M-s-splittable and so on.

Recent publications have pointed out that the basic ideas just outlined will
transfer readily to many other settings, in particular to those of semigroups
[8] and to those of partially-ordered sets [9]. The purpose of the present note
is to effect their extension to the realm of partially-ordered topological spaces
and, in particular, to obtain analogues of some classical theorems which assert
that a space that is splittable over a family of T1 (T2 , T3 et cetera) spaces must
itself be T1 (T2 , T3 R respectively). By a partially-ordered topological space
(or ordered space) we here intend merely a set equipped with both a topology
and a partial order, no a priori connection between the two structures being
presupposed. The conditions for these spaces which are analogous to separa-
tion axioms in pure topology are the so-called order-separation axioms which
were first systematically studied by L. Nachbin and subsequently developed
by other writers. We refer the interested reader to Nachbin [10], McCartan
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[5] and Choe [4] for fuller discussion, but we shall also now briefly describe
some of the more important of these conditions in order to make the present
account reasonably self-contained.

Let X4 ]X , G, t( denote an ordered space. For each point x of X the nota-
tions L(x) and M(x) represent the sets of lower and upper bounds of x:

L(x) 4 ]y�X : yGx( ,

M(x) 4 ]z�X : xGz(

and X is called lower T1-ordered if (for every x) L(x) is closed, upper T1-or-
dered if (for every x) M(x) is closed, and T1-ordered if it is both lower and up-
per T1-ordered. A subset S of X is termed increasing if s�S , sG t together
imply t�S, and it is called decreasing if it satisfies the dual condition (s�
S , tGs together imply t�S). The space X is T2-ordered if, whenever xGO y in
X, there exist disjoint neighbourhoods U of x and V of y such that U is increas-
ing and V is decreasing. If, whenever F is a closed decreasing subset of X and
x lies in X0F, there are disjoint neighbourhoods U of x and V of F with U be-
ing increasing and V decreasing, then X is called lower regularly ordered and
if, in addition, it is lower T1-ordered, the term lower T3-ordered is applied to it.
The duals of these conditions are called upper regularly ordered and upper
T3-ordered, while a space that is both lower and upper regularly ordered
(lower and upper T3-ordered) is said to be regularly ordered (T3-ordered)). By
a completely separated space X, we understand one within which, whenever
xGO y, there is a continuous order-preserving function f from X into the unit in-
terval [0 , 1 ] such that f (y) E f (x). If, in addition to this last condition, there
exist for each x in X and each open neighbourhood V of x two continuous func-
tions f and g from X into [0 , 1 ] such that f is order-preserving, g is order-re-
versing, f (x) 4g(x) 41 and X0V’ f 21 (0)Ng 21 (0), then X is designated as
completely regularly ordered. Lastly, X is called normally ordered if, whenev-
er A and B are disjoint closed subsets of X with A decreasing and B increas-
ing, there exist disjoint neighbourhoods G of A and H of B where G is decreas-
ing and H is increasing, and the conjunction of normally ordered and T1-or-
dered is defined as T4-ordered. Note that the term «neighbourhood» is not as-
sumed to be open in this discussion. Note also that the parallelism between or-
der-separation axioms and separation axioms, though compelling, is imperfect:
for instance, T4-ordered does not imply completely regularly ordered; again, it
appears not to be known whether T3-orderedness is always inherited by subspaces.

2. – Results on order-separation.

All the conclusions of this section take the same basic form: if X is split-
table (or pointwise-splittable, or s-splittable R) using suitable mappings over
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a family of ordered spaces each of which satisfies an axiom listed in the previ-
ous paragraph, then X satisfies it also. Our first concern is which family of
mappings we should use and, as was pointed out in [6], the most obvious
choice, that of the continuous and order-preserving maps, fails to give satisfac-
tory results. Indeed, we presented in [7] a simple example of ordered spaces X
and Y where X is splittable over Y using (continuous) order-preserving map-
pings and Y is T4-ordered, but X is not even lower T1-ordered. This compels us
to identify more appropriate classes of transformations.

DEFINITION. – A map f : XKY between ordered spaces is L-preserving (or
Lp for short) if

f(L(x) )4L( f (x) ) , (x�X

and it is M-preserving (or Mp briefly) if

f(M(x) )4M( f (x) ) , (x�X .

It is easy to see that these conditions are stronger than order-preserving, and
independent of one another. The classes of continuous Lp and continuous Mp

maps, with domain and codomain specified by the context of the problem, will
be denoted by Lp and Mp respectively.

THEOREM 1. – Let S denote one of the three properties

(a) lower T1-ordered,

(b) upper T1-ordered,

(c) T1-ordered,

and let the ordered space X be either

(i) pointwise Lp-splittable or

(ii) pointwise Mp-splittable or

(iii) (Lp N Mp )-splittable

over a family of S-spaces. Then X also is S.

PROOF. – First, consider (a)(i). If X is not lower T1-ordered we can find x
and z such that z� L(x) 0L(x), and then a continuous Lp map f : XKY where
f 21 ( f (z) )4 ]z( and Y is lower T1-ordered. Now f (z) � f(L(x) )4L( f (x) ) which
is closed, so its preimage under f is a closed superset of L(x) excluding z, a
contradiction.

Next, we examine (b)(i). For any x in X choose a continuous Lp map f from X
into an upper T1-ordered space Y such that f 21 ( f (x) )4 ]x(. Since f is readily
checked to be order-preserving, we see that f 21 (M( f (x) )) is an increasing set
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and it includes x, so M(x) ’ f 21 (M(f (x) )). On the other hand, z� f 21 (M( f (x) ))
implies f (x) �L(f (z) )4 f(L(z) ), so f (x) 4 f (p) for some p�L(z). This forces
x4p and xGz and z�M(x). We now have M(x) 4 f 21 (M( f (x) )) and it follows
that M(x) is closed, as required.

The pairings (a)(ii) and (b)(ii) are clearly dual to what has just been done,
while (c)(i) and (c)(ii) follow by combining appropriate «lower» and «upper»
halves, but the arguments involving (iii) are somewhat different. First, we may
readily verify the following:

(I) If f : XKY is an Mp-map and f (X) ’A’Y then the co-restriction
f A : XKA is Mp also.

(II) If f : XKY is an Mp surjection, x�X and f 21 ( f(L(x) ))4L(x) then
f(L(x) )4L( f (x) ).

Now suppose that X is (Lp N Mp )-splittable over a family of lower T1-or-
dered spaces. Given x�X we can thus choose f : XKY where Y is lower T1-or-
dered, f 21 ( f(L(x) ))4L(x) and f is either Lp or Mp. If f is Lp , we immediately
get L(x) 4 f 21 ( f(L(x) ))4 f 21 (L( f (x) )) to be closed. If f is Mp , then (I) and
the observation that lower T1-order is inherited by subspaces together show
that there is no loss of generality in assuming f to be a surjection. Now (II)
gives us L(x) closed, as before. This establishes (a)(iii), the dual argument pro-
vides (b)(iii) and their conjunction yields (c)(iii) and concludes the demonstra-
tion.

THEOREM 2. – Let X be either pointwise Lp-splittable, pointwise Mp-split-
table or (Lp N Mp )-splittable over a family of T2-ordered spaces. Then X is T2-
ordered also.

PROOF. – Let xGO y in X. If we can find a continuous Lp map f : XKY where
f 21 ( f (x) )4 ]x( and Y is T2-ordered, then f (x) � f(L(y) )4L( f (y) ), that is,
f (x) GO f (y) so there are disjoint neighbourhoods U of f (x) and V of f (y) such
that U is increasing and V is decreasing. Bearing in mind that f is order-pre-
serving, it follows that the disjoint neighbourhoods f 21 (U) of x and f 21 (V) of y
are increasing and decreasing respectively, so X is T2-ordered. The dual argu-
ment runs in case f is Mp instead of Lp .

Turning now to the case where X is (Lp N Mp )-splittable, we choose
f : XKY where f 21 (f(M(x) ))4M(x), Y is T2-ordered and f is either Lp or Mp.
Now xGO y so M(x)OL(y) 4f, from which we see that f(M(x) )O f(L(y) ) is
empty also. Since x�M(x), f (x) � f(L(y) ) so, if f is Lp , f (x) GO f (y). Equally, if f
is Mp we get f (y) � f(M(x) )4M( f (x) ) yielding f (x) GO f (y) again. The proof
that X is T2-ordered now completes as before.
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THEOREM 3. – If X is pointwise (closed, Lp )-splittable over a class of lower
regularly ordered spaces, then X itself is lower regularly ordered.

PROOF. – Given x�X0F where F is both closed and decreasing, choose a
closed, continuous Lp map f : XKY where Y is lower regularly ordered and
f 21 ( f (x) )4 ]x(. Then f (F) is closed in Y, decreasing because

f (F) 4 f(N ]L(x): x�F( )4N]f(L(x) ) : x�F(4N]L( f (x) ) : x�F(

and f (x) lies in its complement, so we can choose disjoint neighbourhoods U of
f (x) and V of f (F) where U is increasing and V is decreasing in Y. It follows
that f 21 (U), f 21 (V) separate x and F in the desired fashion.

COROLLARY. – (i) If X is pointwise (closed, Mp )-splittable over spaces, each
of which is upper regularly ordered [or upper T3-ordered], then so is X.

(ii) If X is pointwise (closed, Lp O Mp )-splittable over T3-ordered spaces,
then X is T3-ordered.

The requirement in (ii) here that the relevant maps be both L-preserving
and M-preserving, as well as closed and continuous, may well be seen as unde-
sirably restrictive. One way to lighten this restriction becomes available if
they may be chosen to be surjective:

THEOREM 4. – If X is (closed, Lp N Mp )-s-splittable over T3-ordered spaces,
then X is T3-ordered.

PROOF. – Let x�X0F where F is closed and decreasing in X. Choose a
closed continuous surjection f : XKY where Y is T3-ordered, f 21 ( f (F) )4F
and f� Lp N Mp . In the case where f is Lp , we know that f (F) is a decreasing
set. On the other hand, when f is Mp , consider yG f (v) where v�F. Then
y4 f (z) for some z in X because of surjectivity, and f (v) �M( f (z) )4 f(M(z) )
yielding f (v) 4 f (w) for some wFz. Next, w�F by choice of f, and z�F also
since F is decreasing. Thus y4 f (z) � f (F) and we again find that f (F) is de-
creasing. The proof that X is lower regularly ordered completes as in Theorem
3, while the dual argument deals with upper regularly ordered. Lastly, we in-
voke part (c)(iii) of Theorem 1.

We have obtained variants of Theorems 3 and 4 for mappings that are open
rather than closed. The proofs are similar to those already presented.

THEOREM 5. – (i) If X is (open, Lp )-splittable over upper T3-ordered spaces,
then X is upper T3-ordered.

(ii) If X is (open, Lp )-s-splittable over lower T3-ordered spaces, then X is
lower T3-ordered.
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THEOREM 6. – If X is (Lp N Mp )-splittable over a class of completely sepa-
rated spaces, then X is completely separated.

PROOF. – Given xGO y in X, choose continuous f : XKY such that
f 21 ( f(M(x) ))4M(x) and f� Lp N Mp . If f is Mp then y�M(x) gives f (y) �
f(M(x) )4M( f (x) ), that is, f (x) GO f (y). If f is Lp , we saw in the proof of Theo-
rem 2 how to reach the same conclusion. So there must exist continuous, or-
der-preserving g : YK [0 , 1 ] that makes g( f (x) )Dg( f (y) ). The composite
map g i f shows us that X is completely separated also.

THEOREM 7. – If X is (open, Lp N Mp )-splittable over a class of completely
regularly ordered spaces, then X is completely regularly ordered.

PROOF. – It is completely separated by Theorem 6. Now given x�X and an
open neighbourhood V of x, choose a continuous, open and order-preserving
map f : XKY where Y is completely regularly ordered and f 21 ( f (V) )4V.
Since f (V) is an open neighbourhood of f (x), there exist continuous g , h :
YK [0 , 1 ] such that g( f (x) )4h( f (x) )41, g is order-preserving, h is order-
reversing and Y0 f (V) ’g 21 (0)Nh 21 (0). Routine inspection of the functions
g i f and h i f will confirm that X is completely regularly ordered.

NOTE. – If the map f is closed rather than open, then f (X0V) 4 f (X) 0 f (V) is
closed and so V 84Y0 f (X0V) is also an open neighbourhood of x. By re-work-
ing the previous proof with f (V) replaced by V 8, we can show that (closed,
Lp N Mp )-splittability over completely regularly ordered spaces implies com-
pletely regular order also.

THEOREM 8. – If X is either (closed, Lp )-s-splittable or (closed, Mp )-s-split-
table over a class of spaces, each of which is

(i) normally ordered, or

(ii) T4-ordered
then X enjoys the same property.

[The proof follows the lines of argument established earlier in this
article.]

3. – Observations on other order-topological properties.

Although the «preservation under splittability» of order-separation axioms
was our motivation for introducing the Lp and Mp mappings, it turns
out that they are important for analysing the splittability behaviour of
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many other order-topological invariants. This section presents a brief account
of aspects of this analysis, beginning with another group of definitions.

For each subset A of an ordered space X let i(A) and d(A) denote the in-
creasing hull and the decreasing hull of A, that is,

i(A) 4N]M(x): x�A( ,

d(A) 4N]L(x): x�A( .

Then X is termed an Ii space (respectively, an Id space) if, for every open sub-
set G of X , i(G) is open (respectively, d(G) is open). When X is both Ii and Id , it
is called an I space. Analogously, X is a Ci space (respectively, a Cd space) if,
for every closed subset K of X , i(K) is closed (respectively, d(K) is closed), and
when both of these requirements are satisfied it is referred to as a C space.
Once again, easy examples show that splittability by order-preserving maps
with «good» topological behaviour can fail to preserve these conditions,
but:

THEOREM 9. – (i) If X is (open, Mp )-splittable over Ii spaces, then X is an Ii

space.

(ii) If X is (open, Mp )-splittable over Id spaces, then X is an Id

space.

(iii) The duals of (i) and (ii) are valid.

(iv) If X is (open, Lp N Mp )-splittable over a class of I spaces, then X is
an I space.

PROOF. – The key steps are that f(i(A) )4 i( f (A) ) whenever f is Mp, that
f(d(A) )4d( f (A) ) whenever f is Lp , and that if f : XKY is Mp and Y is Id then
f (X) is also Id (and dually).

A parallel theorem for Ci , Cd and C spaces may be derived by substituting
«closed» for «open».

The ordered space X is said to be order separated if X can be expressed as
the disjoint union of two non-empty open subsets one of which is increasing
(and therefore the other of which is decreasing). In the opposite eventuality it
is called order connected. The following is easily verified.

THEOREM 10. – (i) If X is order-preserving-s-splittable over a class of order
separated spaces, then X is order separated.

(ii) If X is (open, Lp N Mp )-s-splittable over a class of order connected
spaces, then X is order connected.
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Nachbin called a space X locally convex if, given x�X and a neighbour-
hood U of x, there is always a convex open set V such that x�V’U. It is readi-
ly checked that:

THEOREM 11. – If X is (open, order preserving)-splittable over locally con-
vex spaces, then X is locally convex.

To conclude on a related and as-yet-unresolved point: X is said to have
small intervals if, given x�X and a neighbourhood U of x, there exist y , z in U
with [y , z] ’U and [y , z] is a neighbourhood of x. We have not identified a
class M of mappings (other than homeomorphic order-isomorphisms!) for
which M-splittability over spaces that have small intervals implies the same
property for the split space.
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