Bollettino

Unione Matematica Italiana

Stéphane Descombes, Mohand Moussaoui
 Global existence and regularity of solutions for complex Ginzburg-Landau equations

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 3-B (2000), n.1, p. 193-211.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2000_8_3B_1_193_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Global Existence and Regularity of Solutions for Complex Ginzburg-Landau Equations

Stéphane Descombes - Mohand Moussaoui

Sunto. - Si considerano equazioni di Ginzburg-Landau complesse del tipo $u_{t}-\alpha \Delta u+$ $P\left(|u|^{2}\right) u=0$ in \mathbb{R}^{N} dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva $\mathfrak{R} \alpha$. Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso $|\alpha|<C \Re \alpha$, dove C dipende da K e N.

1. - Introduction.

Let K be an integer, $K \geqslant 1, \alpha$ and $\mu_{j}, j \in\{0, \ldots, K\}$, complex numbers with $\mathfrak{R} \alpha>0$, and $\mathfrak{R} \mu_{K}>0$. We consider the initial value problem

$$
\begin{cases}\frac{\partial u}{\partial t}-\alpha \Delta u+\sum_{j=0}^{K} \mu_{j}|u|^{2 j} u=0, & x \in \mathbb{R}^{N}, t>0 \tag{1.1}\\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

Without loss of generality, we suppose that $\mathfrak{R} \mu_{0}>0$. For example, when $K=1$, we obtain the well-known cubic Ginzburg-Landau equation, and when $K=2$, the equation given by Fauve-Thual in [3] as a model of localized structures generated by subcritical instabilities. In [1], Doering, Gibbon and Levermore have considered a system of the same form but with periodic boundary conditions:

$$
\begin{cases}\frac{\partial u}{\partial t}=R u+(1+i v) \Delta u-(1+i \mu)|u|^{2 \sigma} u, & x \in \mathbb{T}^{N}, t>0 \\ u(0, x)=u_{0}(x), & x \in \mathbb{T}^{N}\end{cases}
$$

They obtained existence of global-weak solutions in all dimensions and for all $\sigma>0$ and parameter values R, v and μ. Under certain assumptions, they also obtained global strong solutions. But their proofs use essentially the boundedness of the domain T^{N}. The case of the whole space is considered
in [4], [5] by Ginibre and Velo, for the system

$$
\begin{cases}\frac{\partial u}{\partial t}=\gamma_{1} u+\left(a+i \gamma_{2}\right) \Delta u-\left(b+i \gamma_{3}\right) g\left(|u|^{2}\right) u, & x \in \mathbb{R}^{N}, t>0 \\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

with $a>0, b>0$ and $g \geqslant 0$ satisfying

$$
x^{\sigma} \leqslant g(x) \leqslant C\left(1+x^{\sigma}\right)
$$

for some $\sigma(0<\sigma<\infty)$, some $C \geqslant 1$ and all $x \geqslant 0$. They obtained existence and uniqueness of solutions globally defined in time with initial data corresponding to the spaces \boldsymbol{L}^{p} for $p \geqslant 2$ or $\boldsymbol{H}^{1} \cap \boldsymbol{L}^{2 \sigma+2}$. They also studied the case where the nonlinear term is of the form $\left(b+i \gamma_{3}\right) f(u)$ with f belonging to $C^{1}(\mathrm{C}, \mathrm{C})$ and obtain local existence of solutions for initial data belonging to $\boldsymbol{L}^{p}, p \geqslant 2$.

In this article, under assumptions on α, we obtain for (1.1) existence and regularity of strong global solutions when u_{0} belongs to the space $\boldsymbol{W}^{2-2 / q, q}$ with $q>1+N / 2$ (so the results are different from [4], [5]) and we deduce existence of global weak-solutions when u_{0} belongs to $\boldsymbol{L}^{p}, p \geqslant 2$ or $\boldsymbol{H}^{1} \cap \boldsymbol{L}^{p}$ with $p>2$. The methods are different from [4], [5] and do not use a priori estimates obtained by multiplying the first equation of (1.1) by $\Delta \bar{u}$.

We use the notations:

$$
\begin{aligned}
\boldsymbol{L}^{p} & =L^{p}\left(\mathbb{R}^{N}, \mathbb{C}\right), \\
\boldsymbol{W}^{s, p} & =W^{s, p}\left(\mathbb{R}^{N}, \mathrm{C}\right) .
\end{aligned}
$$

Our purpose is to prove the following results:
Theorem 1. - Assume that u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$ with $q>1+N / 2$ and that α verifies

$$
|a|<\frac{(2 K+1) q-2 K}{(2 K+1) q-2 K-2} \mathfrak{R \alpha}
$$

and $\mathfrak{R} \mu_{K}>0$. Then (1.1) has a unique global solution u belonging to

$$
C\left([0, \boldsymbol{t}], \boldsymbol{W}^{2-2 / q, q}\right)
$$

for all $\boldsymbol{t}>0$.
Theorem 2. - Assume that u_{0} belongs to $\boldsymbol{H}^{1} \cap \boldsymbol{L}^{p}$ with $p=2+2 \sigma(\sigma>0)$ and that α satisfies the condition

$$
|a|<\min \left(\frac{(2 K+1) N+2}{(2 K+1) N-2}, \frac{1+\sigma}{\sigma}\right) \mathfrak{R} \alpha
$$

and $\mathfrak{R} \mu_{K}>0$. Then (1.1) possesses at least a global weak-solution u of the form $u=v+w$ such that

$$
v \in C\left([0,+\infty), \boldsymbol{H}^{1}\right), \quad w \in C\left([0,+\infty), \boldsymbol{W}^{2-2 / q, q}\right) \text { and } w(0, \cdot)=0,
$$

with

$$
q=1+\frac{2 \sigma+1}{2 K+1}
$$

In particular if $\sigma \geqslant K$ and

$$
|a|<\frac{(2 K+1) N+2}{(2 K+1) N-2} \Re \alpha,
$$

u belongs to $C\left([0,+\infty), \boldsymbol{H}^{1}\right)$.
Section 2 is devoted to some results on the L^{p} regularity of solutions of linear equations analogous to (1.1). In section 3, we prove the local existence of solutions when $u_{0} \in \boldsymbol{L}^{\infty}$. In section 4 , we provide estimates on this local solution; then we prove, under assumptions on α, that when u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$, with $q>1+N / 2$, the solution is global in time. Then we pass to the limit to cover the case where u_{0} belongs to \boldsymbol{L}^{p} or $\boldsymbol{H}^{1} \cap \boldsymbol{L}^{p}$ with $p=2+2 \sigma$ ($\sigma>0$).

REmark 1. - The same results hold if we consider problem (1.1) in a bounded regular domain of \mathbb{R}^{N} and add a Dirichlet or Neumann boundary condition.

In this article, we denote:

$$
F(u)=\sum_{j=0}^{K} \mu_{j}|u|^{2 j} u .
$$

2. - L^{p} regularity.

Consider the Cauchy problem:

$$
\begin{cases}\frac{\partial u}{\partial t}-\alpha \Delta u+\mu u=f, & x \in \mathbb{R}^{N}, t>0, \tag{2.1}\\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N} .\end{cases}
$$

We assume that α and μ are complex numbers with positive real parts α_{r} and μ_{r}, that p belongs to $(1,+\infty), f$ is given in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$ and u_{0} in $\boldsymbol{W}^{2-2 / p, p}$. We are interested in the L^{p} regularity of solutions of (2.1), we will prove that
(2.1) has a unique solution $u \in W^{1, p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right) \cap L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right)$ and that $u, \Delta u$ and $\partial u / \partial t$ depend continuously on f.

To obtain this result, we will use the imaginary powers of the operators appearing in (2.1), according to an idea of Prüss and Sohr [9]. We refer to the book of Triebel [12] for a definition of the imaginary powers of an operator. Let us recall some definitions. Let A be a closed linear operator in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$, with dense domain $D(A) ; N(A)$ and $R(A)$ denote the kernel and the range of $A, \varrho(A)$ and $\sigma(A)$ the resolvent set and the spectrum of A. Finally, $B\left(L^{p}\right)$ is the space of bounded linear operators in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$.

Definition 2 [9]. - Let θ belong to [0, π). A closed linear densely defined operator A in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$ belongs to the class $B I P\left(L^{p}, \theta\right)$, if it satisfies:
(H1) The set $(-\infty, 0)$ is included in $\varrho(A)$, the kernel $N(A)$ is reduced to 0 , the range $R(A)$ is dense in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$, and, there exists $a M \geqslant 1$, such that

$$
\begin{equation*}
\left|(t+A)^{-1}\right| \leqslant M / t \quad \text { for all } t>0 \tag{2.2}
\end{equation*}
$$

(H2) For all $s \in \mathbb{R}, A^{i s}$ belongs to $B\left(L^{p}\right)$, and there exists a K_{0} such that

$$
\begin{equation*}
\left|A^{i s}\right| \leqslant K_{0} \exp (\theta|s|) \tag{2.3}
\end{equation*}
$$

Definition 3. - Let A, B two linear operators. We say that A, B are resolvent commuting if for all λ (respectively v) in the resolvent set $\varrho(A)$ (respectively $\varrho(B))(\lambda-A)^{-1}(\nu-B)^{-1}=(\nu-B)^{-1}(\lambda-A)^{-1}$.

Let us quote the main result of [9]:
Theorem 4 [9]. - We are given $k \geqslant 2$ elements A_{i} in $\operatorname{BIP}\left(L^{p}, \theta_{i}\right)$, such that, for each pair $i \neq j, A_{i}$ and A_{j} are resolvent commuting and satisfy $\theta_{i}+\theta_{j}<\pi$. Let $\theta=\max \theta_{i}$ and assume that there is only one i with $\theta=\theta_{i}$.

Then the operator A defined by

$$
D(A)=\bigcap_{1}^{k} D\left(A_{i}\right), \quad A=\sum_{i=1}^{k} A_{i}
$$

is closed and belongs to the class $B I P\left(L^{p}, \theta\right)$. Moreover, there is a constant $C>0$ such that

$$
\sum_{i=1}^{k}\left|A_{i} x\right| \leqslant C|A x|, \quad \forall x \in D(A)
$$

In particular, $N(A)=0$ and $R(A)$ is dense in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$.

In the following sequence of lemmas, we show that the operators appearing in (2.1) belong to the class $B I P\left(L^{p}, \theta\right)$ and we characterize the relevant θ.

Lemma 5. - Define A_{1} and B_{1} respectively by

$$
\begin{array}{ll}
D\left(A_{1}\right)=W_{0}^{1, p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right), & A_{1}=\partial / \partial t \\
D\left(B_{1}\right)=L^{P}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right), & B_{1}=-\Delta
\end{array}
$$

Then for all $\varepsilon>0$:

$$
A_{1} \in B I P\left(L^{p}, \pi / 2+\varepsilon\right) \text { and } B_{1} \in B I P\left(L^{p}, \varepsilon\right)
$$

Proof. - The result for A_{1} is due to [2] [9]. In the scalar case the result for B_{1} is due to [11] [10], the vector generalization is straightforward.

Lemma 6. - Let β be a complex number of positive real part β_{r}. The operator I_{β} is the multiplication by β in $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$. Then

$$
I_{\beta} \in B I P\left(L^{p},|\operatorname{Arg} \beta|\right),
$$

where Arg is the principal determination of the argument.
Proof. - It suffices to prove (2.3). Let $s \in \mathbb{R}$, then we have

$$
\left|\beta^{i s}\right|=|\exp (i s \log |\beta|-s \operatorname{Arg} \beta)|=\exp (-s \operatorname{Arg} \beta),
$$

thus

$$
\left|\beta^{i s}\right| \leqslant \exp (|s||\operatorname{Arg} \beta|)
$$

Lemma 7. - Define an operator B_{α} by

$$
D\left(B_{\alpha}\right)=L^{P}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right), \quad B_{\alpha}=-\alpha \Delta,
$$

then for all $\varepsilon>0$

$$
B_{\alpha} \in B I P\left(L^{p},|\operatorname{Arg} \alpha|+\varepsilon\right)
$$

Proof. - Remark that $B_{\alpha}=I_{\alpha} B_{1}$, then thanks to the corollary 3 of [9],

$$
B_{\alpha} \in B I P\left(L^{p}, \theta_{B_{1}}+\theta_{I_{\alpha}}\right) .
$$

Now, we can prove the following theorem:
Theorem 8. - Let α, μ be complex numbers such that $\alpha_{r}>0, \mu_{r}>0$; let u_{0} belong to $\boldsymbol{W}^{2-2 / p, p}$. Then for all $f \in L\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right), 1<p<\infty$, the Cauchy problem (2.1) has a unique solution $u \in W^{1, p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right) \cap L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right)$. Moreover
there exists a constant $C>0$, such that

$$
\begin{equation*}
\left|\frac{\partial u}{\partial t}\right|_{L^{p}\left(\mathbb{R}_{+} ; L^{p}\right)}+|u|_{L^{p}\left(\mathbb{R}_{+} ; W^{2, p}\right)} \leqslant C\left(|f|_{L^{p}\left(\mathbb{R}_{+} ; L^{p}\right)}+\left|u_{0}\right|_{\left.W^{2-2 / p, p}\right)} .\right. \tag{2.4}
\end{equation*}
$$

Proof. - Consider the problem

$$
\begin{cases}\frac{\partial v}{\partial t}-\Delta v=f, & x \in \mathbb{R}^{N}, t>0 \tag{2.5}\\ v(0, x)=u_{0}, & x \in \mathbb{R}^{N}\end{cases}
$$

where u_{0} is as in the statement of Theorem 8. It is a well known fact (see for example [7]) that (2.5) possesses a unique solution v, which belongs to $W^{1, p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right) \cap L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right)$. Moreover there exists a constant C_{1} such that v verifies

$$
\begin{equation*}
\left|\frac{\partial v}{\partial t}\right|_{L^{p}\left(\mathbb{R}_{+} ; L^{p}\right)}+|v|_{L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right)} \leqslant C_{1}\left(|f|_{L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)}+\left|u_{0}\right|_{\left.W^{2-2 / p, p}\right)} .\right. \tag{2.6}
\end{equation*}
$$

Define

$$
f_{v}=f-\frac{\partial v}{\partial t}+\alpha \Delta v-\mu v
$$

We observe that f_{v} belongs to $L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)$. The function $w=u-v$ is solution of

$$
\begin{cases}\frac{\partial w}{\partial t}-\alpha \Delta w+\mu w=f_{v}, & x \in \mathbb{R}^{N}, t>0 \tag{2.7}\\ w(0, x)=0, & x \in \mathbb{R}^{N}\end{cases}
$$

Let A be the operator defined by

$$
D(A)=W_{0}^{1, p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right) \cap L^{P}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right), \quad A=A_{1}+B_{\alpha}+I_{\mu}
$$

we can rewrite the problem (2.7) under the form

$$
A w=f_{v}
$$

Thanks to Lemma 5, 7 for ε sufficiently small, the hypotheses of Theorem 4 are satisfied; therefore A is invertible in $D(A)$ and there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\frac{\partial w}{\partial t}\right|_{L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)}+|w|_{L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{W}^{2, p}\right)} \leqslant C\left|f_{v}\right|_{L^{p}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{p}\right)} \tag{2.8}
\end{equation*}
$$

Now $u=w+v$ and (2.4) comes from (2.6) and (2.8). This concludes the proof of Theorem 8 .

Remark 9. - The result of Theorem 8 can be also obtained using the results of Hieber and Prüss [6].

3. - Local existence.

In this section, we prove the following existence result:

Lemma 10. - Let $u_{0} \in \boldsymbol{L}^{\infty}$; then there exists a positive number T_{0}, depending only on $\left|u_{0}\right|_{L^{\infty}}$ and F, such that (1.1) has at least a solution $u \in L^{\infty}\left(0, T_{0} ; \boldsymbol{L}^{\infty}\right)$. Moreover u is infinitely differentiable over $\left(0, T_{0}\right) \times$ \mathbb{R}^{N} 。

Proof. - Let G be the Green function corresponding to the linear initial value problem

$$
\begin{cases}\frac{\partial u}{\partial t}-\alpha \Delta u=0, & x \in \mathbb{R}^{N}, t>0 \\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N} .\end{cases}
$$

It is given explicitly by

$$
G(t, x)=(4 \pi \alpha t)^{-N / 2} \exp \left(-|x|^{2} / 4 \pi \alpha t\right),
$$

where the fractional powers are defined as principal determination when necessary.

Let τ and ϱ be positive real numbers and $B\left(u_{0}, \tau, \varrho\right)$ be the ball in $L^{\infty}\left(0, \tau ; \boldsymbol{L}^{\infty}\right)$ of center u_{0} and radius ϱ. Define an application \mathscr{C} from $L^{\infty}\left(0, \tau ; \boldsymbol{L}^{\infty}\right)$ into itself by

$$
(\mathscr{G} u)(t, \cdot)=G(t, \cdot) \star u_{0}-\int_{0}^{t} G(t-s, \cdot) F(u(\cdot, s)) d s
$$

For $u \in B\left(u_{0}, \tau, \varrho\right)$ and $t \leqslant \tau$; we have

$$
\begin{aligned}
\left|(\mathcal{G} u)(t, \cdot)-u_{0}(\cdot)\right|_{L^{\infty}} \leqslant\left|u_{0}\right|_{L^{\infty}}+ & \left|G(t, \cdot) \star u_{0}\right|_{L^{\infty}} \\
& +\int_{0}^{t}|G(t-s, \cdot) \star F(u(\cdot, s))|_{L^{\infty}} d s,
\end{aligned}
$$

and by Young's inequality, we obtain

$$
\begin{aligned}
\left|(\mathcal{C} u)(t, \cdot)-u_{0}(\cdot)\right|_{L^{\infty}} \leqslant & \left(1+|G(t, \cdot)|_{L^{1}}\right)\left|u_{0}\right|_{L^{\infty}} \\
& +\int_{0}^{t}|G(t-s, \cdot)|_{L^{1}}|F(u(\cdot, s))|_{L^{\infty}} d s
\end{aligned}
$$

but

$$
\begin{aligned}
|G(t, \cdot)|_{L^{1}} & =\left|(4 \pi \alpha t)^{-N / 2}\right|_{\mathbb{R}^{N}}\left|\exp \left(-|x|^{2} / 4 \pi \alpha t\right)\right| d x \\
& =(4 \pi|\alpha| t)^{-N / 2} \int_{\mathbb{R}^{N}} \exp \left(-\alpha_{r}|x|^{2} / 4 \pi|\alpha|^{2} t\right) d x \\
& =|a|^{-N / 2} \int_{R^{N}} \exp \left(-\alpha_{r}|y|^{2} /|a|^{2}\right) d y \\
& =k_{N} .
\end{aligned}
$$

Thus, we have
(3.1) $\left|(\mathscr{C} u)(t, \cdot)-u_{0}(\cdot)\right|_{L^{\infty}} \leqslant\left(1+k_{N}\right)\left|u_{0}\right|_{L^{\infty}}+k_{N} \int_{0}^{t}|F(u(\cdot, s))|_{L^{\infty}} d s$.

The function F is Lipschitz continuous on the set

$$
V_{a, \varrho}=\{v \in \mathrm{C} ;|v-a| \leqslant \varrho\},
$$

with Lipschitz constant $L(a, \varrho)$; set

$$
\lambda=\underset{x \in \mathbb{R}^{N}}{\operatorname{ess}} \sup \left\{L\left(u_{0}(x), \varrho\right)\right\}<+\infty
$$

We deduce from (3.1) that

$$
\left|(\mathfrak{G} u)(t, \cdot)-u_{0}(\cdot)\right|_{L^{\infty}} \leqslant\left(1+k_{N}\right)\left|u_{0}\right|_{L^{\infty}}+k_{N} \tau\left(\lambda \varrho+\left|F\left(u_{0}\right)\right|_{L^{\infty}}\right) .
$$

Choose $\varrho>2\left(1+k_{N}\right)\left|u_{0}\right|_{L^{\infty}}$ and τ sufficiently small such that

$$
\left|(\mathscr{C} u)(t, \cdot)-u_{0}(\cdot)\right|_{L^{\infty}} \leqslant \varrho ;
$$

we deduce that

$$
\mathcal{G}\left(B\left(u_{0}, \tau, \varrho\right)\right) \subset B\left(u_{0}, \tau, \varrho\right) .
$$

For u and v in $B\left(u_{0}, \tau, \varrho\right)$ and $t \leqslant \tau$, we have

$$
\begin{aligned}
|(\mathscr{C} u)(t, \cdot)-(\mathscr{C} v)(t, \cdot)|_{L^{\infty}} & \leqslant k_{N} \lambda \int_{0}^{t}|u(\cdot, s)-v(\cdot, s)|_{L^{\infty}} d s \\
& \leqslant k_{N} \lambda \tau|u-v|_{L^{\infty}\left(0, t ; \boldsymbol{L}^{\infty}\right)} .
\end{aligned}
$$

Thus

$$
|\mathscr{C} u-\mathscr{C} v|_{L^{\infty}\left(0, t ; L^{\infty}\right)} \leqslant k_{N} \lambda \tau|u-v|_{L^{\infty}\left(0, t ; L^{\infty}\right)},
$$

and therefore

$$
|\mathcal{G} u-\mathscr{C} v|_{L^{\infty}\left(0, t ; \boldsymbol{L}^{\infty}\right)} \leqslant k_{0}|u-v|_{L^{\infty}\left(0, t ; \boldsymbol{L}^{\infty}\right)},
$$

with $k_{0}<1$. We can deduce that \mathcal{G} is a contraction from $B\left(u_{0}, \tau, \varrho\right)$ to itself. By Banach's fixed point theorem, we conclude that \mathfrak{G} has a fixed point in $B\left(u_{0}, \tau, \varrho\right)$, which is a solution of (1.1). The proof that u is infinitely differentiable over $(0, T) \times \mathbb{R}^{N}$ is identical to the proof of Proposition 2.1 of [8], to which the reader is referred. This concludes the proof of Lemma 10.

4. - Global estimates and global existence.

Let $s \in(0,+\infty)$, in this section, we denote $\boldsymbol{K}=2 K+2, s=2 s+2$, and $\boldsymbol{m}=2 K+2 s+2$.

Theorem 11. - Assume that u_{0} belongs to $\boldsymbol{L}^{\infty} \cap \boldsymbol{L}^{2}$. Let u be the local solution obtained at Lemma 10 and T less than the maximal existence time. Then there exists two positive constants C_{K}, C_{K}^{\prime} such that for all $t \in[0, T]$,

$$
\begin{equation*}
|u(t, \cdot)|_{L^{2}} \leqslant \exp \left(C_{K} t\right)\left|u_{0}\right|_{L^{2}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|u|_{L^{K}\left(0, T ; \boldsymbol{L}^{K}\right)}^{K_{1}} \leqslant \frac{\exp \left(2 C_{K} T\right)}{2 C_{K}^{\prime}}\left|u_{0}\right|_{L^{2}}^{2} \tag{4.2}
\end{equation*}
$$

and for α such that $|\alpha|<(1+s) \alpha_{r} / s$, we have

$$
\begin{equation*}
|u(t, \cdot)|_{L^{s}} \leqslant \exp \left(C_{K} t\right)\left|u_{0}\right|_{L^{s}} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|u|_{L^{m}\left(0, T ; L^{m}\right)}^{m^{m}} \leqslant \frac{\exp \left(2(s+1) C_{K} T\right)}{2(s+1) C_{K}^{\prime}}\left|u_{0}\right|_{s}^{s} . \tag{4.4}
\end{equation*}
$$

Proof. - Multiplying the first equation of (1.1) by $|u|^{2 s} \bar{u}$ and integrating the result by parts in space, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial t}|u|^{2 s} \bar{u} d x+\alpha \int_{\mathbb{R}^{N}} \nabla u \nabla\left(|u|^{2 s} \bar{u}\right) d x+\int_{\mathbb{R}^{N}} F(u)|u|^{2 s} \bar{u} d x=0 . \tag{4.5}
\end{equation*}
$$

An elementary calculation shows that

$$
\begin{aligned}
\alpha \int_{\mathbb{R}^{N}} \nabla u \nabla\left(|u|^{2 s} \bar{u}\right) d x= & (s+1) \alpha \int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2 s} d x \\
& +s \alpha \sum_{k=1}^{n} \int_{\mathbb{R}^{N}}\left(\frac{\partial u}{\partial x_{k}} \bar{u}\right)^{2}|u|^{2 s-2} d x .
\end{aligned}
$$

Let Q be the polynominal

$$
Q(y)=\sum_{j=0}^{K} \mathfrak{R} \mu_{j} y^{2 j} \quad \text { for all } y \in \mathbb{R} .
$$

We take the real part of (4.5) and we obtain
(4.6) $\quad \frac{1}{2} \frac{d}{d t} \int_{\mathrm{R}^{N}}|u|^{2 s+2} d x+(s+1)^{2} \alpha_{r} \int_{\mathrm{R}^{N}}|\nabla u|^{2}|u|^{2 s} d x+$

$$
(s+1) \int_{\mathbb{R}^{N}} Q(|u|)|u|^{2 s+2} d x=-s(s+1) \mathfrak{R}\left(\alpha \sum_{k=1}^{n} \int_{\mathbb{R}^{N}}\left(\frac{\partial u}{\partial x_{k}} \bar{u}\right)^{2}|u|^{2 s-2} d x\right) .
$$

Since $\mathfrak{R} \mu_{K}>0$, there exists two positive constants C_{K}, C_{K}^{\prime} such that

$$
Q(y) \geqslant C_{K}^{\prime} y^{2 K}-C_{K} \quad \text { for all } y \in \mathbb{R} .
$$

It follows from (4.6) that
(4.7) $\quad \frac{1}{2} \frac{d}{d t} \int_{\mathrm{R}^{N}}|u|^{2 s+2} d x+$

$$
\begin{aligned}
& (s+1)^{2} \alpha_{r} \int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2 s} d x+C_{K}^{\prime}(s+1) \int_{\mathbb{R}^{N}}|u|^{2 K+2 s+2} d x \leqslant \\
& C_{K}(s+1) \int_{\mathbb{R}^{N}}|u|^{2 s+2} d x-s(s+1) \mathfrak{R}\left(\alpha \sum_{k=1_{\mathbb{R}^{N}}}^{n}\left(\frac{\partial u}{\partial x_{k}} \bar{u}\right)^{2}|u|^{2 s-2} d x\right) .
\end{aligned}
$$

When $s=0$, (4.7) gives

$$
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{N}}|u|^{2} d x \leqslant C_{K} \int_{\mathbb{R}^{N}}|u|^{2} d x
$$

Hence, by integrating, we find (4.1). We return to (4.7) with $s=0$, which we now integrate between 0 and T; this yields

$$
C_{K}^{\prime} \int_{0}^{T} \int_{\mathbb{R}^{N}}|u|^{2 K+2} d s d x \leqslant C_{K} \int_{0}^{T} \int_{\mathbb{R}^{N}}|u|^{2} d s d x+\frac{1}{2} \int_{\mathbb{R}^{N}}\left|u_{0}\right|^{2} d x
$$

It follows from (4.1) that

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{R}^{N}}|u|^{2} d s d x \leqslant \frac{1}{2 C_{K}}\left(\exp \left(2 C_{K} T\right)-1\right) \int_{\mathbb{R}^{N}}\left|u_{0}\right|^{2} d x \tag{4.8}
\end{equation*}
$$

and we deduce that

$$
C_{K}^{\prime} \int_{0}^{T} \int_{\mathbb{R}^{N}}|u|^{2 K+2} d x \leqslant \frac{\exp \left(2 C_{K} T\right)}{2} \int_{\mathbb{R}^{N}}\left|u_{0}\right|^{2} d x
$$

i.e. (4.2). When s is different from 0 , we notice that

$$
-\mathfrak{R}\left(\alpha \sum_{k=1}^{n} \int_{\mathbb{R}^{N}}\left(\frac{\partial u}{\partial x_{k}} \bar{u}\right)^{2}|u|^{2 s-2} d x\right) \leqslant|\alpha| \int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2 s} d x
$$

and we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{N}}|u|^{2 s+2} d x+(s+1)^{2} \alpha^{\prime} \int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2 s} d x+ \\
& \quad C_{K}^{\prime}(s+1) \int_{\mathbb{R}^{N}}|u|^{2 K+2 s+2} d x \leqslant C_{K}(s+1) \int_{\mathbb{R}^{N}}|u|^{2 s+2} d x
\end{aligned}
$$

where

$$
\alpha^{\prime}=\alpha_{r}-\frac{|\alpha| s}{s+1}
$$

If we suppose

$$
|\alpha|<\frac{1+s}{s} \alpha_{r}
$$

then α^{\prime} is positive and by the above argument we obtain (4.3), (4.4). This concludes the proof of Theorem 11.

In the next two theorems, we suppose now that u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$, with the condition

$$
q>1+\frac{N}{2}
$$

In this case, the space $\boldsymbol{W}^{2-2 / q, q}$ is included in \boldsymbol{L}^{∞}, and the local existence of a solution u is also a consequence of Lemma 10 .

Define

$$
H(u)=F(u)-\mu_{0} u=\sum_{j=1}^{K} \mu_{j}|u|^{2 j} u .
$$

Theorem 12. - Assume that u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$ with $q>1+N / 2$ and that α verifies

$$
\begin{equation*}
|\alpha|<\frac{(2 K+1) q-2 K}{(2 K+1) q-2 K-2} \mathfrak{R} \alpha \tag{4.9}
\end{equation*}
$$

and $\mathfrak{R} \mu_{K}>0$. Let u be the local solution obtained at Lemma 10 and T less than the maximal existence time. Then we have

$$
\begin{equation*}
H(u) \in L^{q}\left(0, T ; \boldsymbol{L}^{q}\right) \tag{4.10}
\end{equation*}
$$

Proof. - Since

$$
q>1+\frac{N}{2}>1+\frac{1}{2 K+1}
$$

there exists $s>0$ such that

$$
q=1+\frac{2 s+1}{2 K+1}
$$

Moreover, since

$$
2 s+2>\frac{2 s}{2 K+1}+2>1+\frac{2 s+1}{2 K+1}
$$

the initial condition u_{0} belongs to $\boldsymbol{L}^{2 s+2}$ and we deduce from (4.4) that u be-
longs to $L^{m}\left(0, T ; \boldsymbol{L}^{\boldsymbol{m}}\right)$ provided that

$$
\begin{equation*}
|\alpha|<\frac{1+s}{s} \mathfrak{R} \alpha \tag{4.11}
\end{equation*}
$$

Since

$$
s=(2 K+1) \frac{q}{2}-K-1
$$

we notice that the condition (4.11) is exactly (4.9). Let us show now that $H(u)$ belongs to $L^{q}\left(0, T ; \boldsymbol{L}^{q}\right)$, we already have

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{R}^{N}}\left(|u|^{2 K+1}\right)^{q} \leqslant \int_{0}^{T} \int_{\mathbb{R}^{N}}|u|^{m}<+\infty \tag{4.12}
\end{equation*}
$$

On the other hand, for all $j, j \in\{1, \ldots, K-1\}$, we have

$$
\begin{equation*}
q<3 q \leqslant(2 j+1) q<\boldsymbol{m} \tag{4.13}
\end{equation*}
$$

If $q \leqslant 2$, it follows from (4.8), (4.12) and by interpolation that for all j, $j \in\{1, \ldots, K-1\}$,

$$
|u|^{2 j} u \in L^{q}\left(0, T ; \boldsymbol{L}^{q}\right) .
$$

If $q>2$, we deduce from (4.13) that is sufficient to see that u belongs to $L^{q}\left(0, T ; \boldsymbol{L}^{q}\right)$ under the assumptions (4.9). But if $q>2$, there exists $s_{0}>0$ such that $q=2 s_{0}+2$ and we deduce (4.3) that u belongs to $L^{q}\left(0, T ; \boldsymbol{L}^{q}\right)$ provided that

$$
|\alpha|<\frac{1+s_{0}}{s_{0}} \mathfrak{R} \alpha
$$

Finally, there remains to show that

$$
\begin{equation*}
\frac{1+s}{s}<\frac{1+s_{0}}{s_{0}} \tag{4.14}
\end{equation*}
$$

But since

$$
s_{0}=\frac{q}{2}-1 \quad \text { and } \quad s=(2 K+1) \frac{q}{2}-K-1,
$$

we deduce that $s>s_{0}$ and as a consequence (4.14). This concludes the proof of Theorem 12.

Theorem 13. - Assume that u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$ with $q>1+N / 2$ and
that α verifies

$$
|\alpha|<\frac{(2 K+1) q-2 K}{(2 K+1) q-2 K-2} \mathfrak{R} \alpha
$$

and $\mathfrak{\Re} \mu_{K}>0$. Then (1.1) has a unique global solution u belonging to

$$
C\left([0, \boldsymbol{t}], \boldsymbol{W}^{2-2 / q, q}\right)
$$

for all $\boldsymbol{t}>0$.
Proof. - Let T_{m} be the maximum existence time. It follows from Theorem 12 that $H(u) \in L^{q}\left(0, T_{m} ; \boldsymbol{L}^{q}\right)$ and we infer from Theorem 8 that

$$
u \in W^{1, q}\left(0, T_{m} ; \boldsymbol{L}^{q}\right) \cap L^{q}\left(0, T_{m} ; \boldsymbol{W}^{2, q}\right) .
$$

The Sobolev embedding theorem gives

$$
u \in C\left(\left[0, T_{m}\right], \boldsymbol{W}^{2-2 q / q, q}\right) .
$$

Therefore T_{m} is not the maximal existence time, which proves that u is a global solution of (1.1).

In order to obtain the uniqueness, we consider two solutions u and v of (1.1), the function $w=u-v$ verifies

$$
\begin{equation*}
\frac{\partial w}{\partial t}-\alpha \Delta w+F(u)-F(v)=0 \tag{4.15}
\end{equation*}
$$

Multiplying (4.15) by \bar{w} and integrating by parts in space, this yields

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{\partial w}{\partial t} \bar{w} d x+\alpha \int_{\mathbb{R}^{N}}|\nabla w|^{2} d x+\int_{\mathbb{R}^{N}}(F(u)-F(v)) \bar{w} d x=0 . \tag{4.16}
\end{equation*}
$$

Since u and v belong to $C\left(\left[0, T_{m}\right], \boldsymbol{L}^{\infty}\right)$, there exists a positive constant C such that over $\left[0, T_{m}\right]$

$$
|F(u)-F(v)|_{L^{2}} \leqslant C|u-v|_{L^{2}} .
$$

It follows from (4.16) that

$$
\frac{1}{2} \frac{d}{d t_{\mathbb{R}^{N}}} \int_{|w|^{2}} d x+\alpha_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}}|\nabla w|^{2} d x \leqslant C \int|w|^{2} d x
$$

so that Gronwall's inequality gives the desired result. This completes the proof of Theorem 13.

Denote $\boldsymbol{C}_{0}^{\infty}$ the space of functions infinitely differentiable with compact support; a consequence of Theorem 13 is the following:

Corollary 14. - Assume that u_{0} belongs to $\boldsymbol{C}_{0}^{\infty}$ and that α verifies

$$
|\alpha|<\frac{(2 K+1) N+2}{(2 K+1) N-2} \mathfrak{R} \alpha
$$

and $\mathfrak{\Re} \mu_{K}>0$. Then (1.1) has a unique global solution u belonging to $C\left([0, \boldsymbol{t}], \boldsymbol{L}^{\infty}\right)$ for all $\boldsymbol{t}>0$.

Proof. - We just need to prove that u belongs to $C\left([0, \boldsymbol{t}], \boldsymbol{L}^{\infty}\right)$ for all $\boldsymbol{t}>0$. Let $\varepsilon>0$ and define

$$
r(\varepsilon)=\frac{(2 K+1)(1+N / 2+\varepsilon)-2 K}{(2 K+1)(1+N / 2+\varepsilon)-2 K-2} .
$$

u_{0} belongs to $\boldsymbol{W}^{2-2 / q, q}$ with $q=1+N / 2+\varepsilon$ and since

$$
\lim _{\varepsilon \rightarrow 0} r(\varepsilon)=\frac{(2 K+1) N+2}{(2 K+1) N-2}
$$

and

$$
r(\varepsilon)<\frac{(2 K+1) N+2}{(2 K+1) N-2},
$$

we can choose ε sufficiently small such that

$$
|\alpha|<r(\varepsilon) \Re \alpha .
$$

Thanks to Theorem 13, u belongs to $C\left([0, t], L^{\infty}\right)$ for all $t>0$.
We now define notion of global weak-solution of (1.1):
Definition 15. - A function u is a global weak solution of (1.1) if it belongs to

$$
L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}_{+}: \boldsymbol{L}^{2}\right) \cap L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+}: \boldsymbol{H}^{1}\right) \cap L_{\mathrm{loc}}^{2 K+2}\left(\mathbb{R}_{+} ; \boldsymbol{L}^{2 K+2}\right),
$$

and for any $\psi \in \boldsymbol{C}_{0}^{\infty}\left([0,+\infty) \times \mathbb{R}^{N}\right)$, it verifies

$$
\int_{\mathbb{R}_{+} \times \mathbb{R}^{N}}\left(-u \frac{\partial \psi}{\partial t}+\alpha \nabla u \nabla \psi+F(u) \psi\right) d s d x=\int_{\mathbb{R}^{N}} u_{0}(x) \psi(\cdot, x) d x
$$

Theorem 16. - Assume that α satisfies the condition

$$
|\alpha|<\frac{(2 K+1) N+2}{(2 K+1) N-2} \mathfrak{\Re \alpha}
$$

and $\mathfrak{R} \mu_{K}>0$. Then for all $u_{0} \in \boldsymbol{L}^{2}$, (1.1) possesses at least a global weak-solution.

Proof. - Let $\boldsymbol{t}>0$, introduce a sequence ($u_{0 m}$) in $\boldsymbol{C}_{0}^{\infty}$ such that ($u_{0 m}$) tends to u_{0} in \boldsymbol{L}^{2} and let u_{m} be a solution of (1.1) over ($0, \boldsymbol{t}$) with initial condition ($u_{0 m}$). It follows from (4.1) that the sequence (u_{m}) remains in a bounded set of $L^{\infty}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{2}\right)$, from (4.2) that the sequence $\left(u_{m}\right)$ remains in a bounded set of $L^{2 K+2}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{2 K+2}\right)$. With the help of (4.7), we can see that the sequence (u_{m}) remains in a bounded set of $L^{2}\left(0, \boldsymbol{t} ; \boldsymbol{W}^{1,2}\right)$.

These estimates ensure the existence of an element u and a subsequence still denoted $\left(u_{m}\right)$ such that as m tends to infinity, $\left(u_{m}\right)$ tends weakly to u in $L^{2}\left(0, \boldsymbol{t} ; \boldsymbol{W}^{1,2}\right)$, weakly to u in $L^{2 K+2}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{2 K+2}\right)$ and tends weakly-star to u in $L^{\infty}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{2}\right)$ We also introduce v_{m} and w_{m} solutions of the following problems:

$$
\begin{cases}\frac{\partial v_{m}}{\partial t}-\alpha \Delta v_{m}+\mu_{0} v_{m}=0, & x \in \mathbb{R}^{N}, t \in(0, \boldsymbol{t}) \\ v_{m}(0, x)=u_{0 m}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

and

$$
\begin{cases}\frac{\partial w_{m}}{\partial t}-\alpha \Delta w_{m}+\mu_{0} w_{m}+H\left(u_{m}\right)=0, & x \in \mathbb{R}^{N}, t \in(0, \boldsymbol{t}) \\ w_{m}(0, x)=0, & x \in \mathbb{R}^{N}\end{cases}
$$

We recall that $H=F-\mu_{0} I d$; it is clear that $u_{m}=v_{m}+w_{m}$. The sequence (v_{m}) converges to v, solution of the problem

$$
\begin{cases}\frac{\partial v}{\partial t}-\alpha \Delta v+\mu_{0} v=0, & x \in \mathbb{R}^{N}, t \in(0, \boldsymbol{t}) \\ v(0, x)=u_{0}(x), & x \in \mathbb{R}^{N},\end{cases}
$$

in $C\left([0, \boldsymbol{t}), \boldsymbol{L}^{2}\right) \cap L^{2}\left(0, \boldsymbol{t} ; \boldsymbol{H}^{1}\right)$.
It follows from (4.1) that the term $H\left(u_{m}\right)$ is bounded in the space $L^{q}\left(0, \boldsymbol{t}, \boldsymbol{L}^{q}\right)$ with $q=(2 K+2) /(2 K+1)$ and we infer from Theorem 8 that the sequence $\left(w_{m}\right)$ is bounded in $W^{1, q}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{q}\right) \cap L^{q}\left(0, \boldsymbol{t} ; \boldsymbol{W}^{2, q}\right)$. This estimate ensures the existence of an element w and a subsequence still denoted $\left(w_{m}\right)$ such that $\left(w_{m}\right)$ tends weakly to w in $W^{1, q}\left(0, \boldsymbol{t} ; \boldsymbol{L}^{q}\right) \cap L^{q}\left(0, \boldsymbol{t} ; \boldsymbol{W}^{2, q}\right)$. We can now deduce that the subsequence (u_{m}) converges to $u=v+w$ in $L_{\text {loc }}^{1}\left(0, \boldsymbol{t} ; \boldsymbol{L}_{\text {loc }}^{1}\right)$ and almost everywhere. As a consequence, the sequence $\left(H\left(u_{m}\right)\right)$ tends to $H(u)$ in $L^{1}\left(0, \boldsymbol{t} ; \boldsymbol{L}_{\mathrm{loc}}^{1}\right)$ and for all ψ in $\boldsymbol{C}_{0}^{\infty}\left((0,+\infty) \times \mathbb{R}^{n}\right)$, as m tends to infinity

$$
\begin{equation*}
\left\langle H\left(u_{m}\right), \psi\right\rangle \text { tends to }\langle H(u), \psi\rangle . \tag{4.17}
\end{equation*}
$$

It is also clear that when m tends to infinity

$$
\begin{equation*}
\left\langle\frac{\partial u_{m}}{\partial t}-\alpha \Delta u_{m}+\mu_{0} u_{m}, \psi\right\rangle \text { tends to }\left\langle\frac{\partial u}{\partial t}-\alpha \Delta u+\mu_{0} u, \psi\right\rangle . \tag{4.18}
\end{equation*}
$$

It follows from (4.17) and (4.18) that u satisfies

$$
\frac{\partial u}{\partial t}-\alpha \Delta u+F(u)=0
$$

in the distribution sense.
Since $v \in C\left([0, \boldsymbol{t}), \boldsymbol{L}^{2}\right), w \in C\left([0, \boldsymbol{t}), \boldsymbol{W}^{2-2 / q, q}\right)$ and $u=v+w$, the initial condition $u(0, x)=u_{0}(x), x \in \mathbb{R}^{n}$ make sense. This concludes the proof of Theorem 16.

Using the previous decomposition, estimates (4.3), (4.4) and Theorem 8, we can also prove the following results:

Theorem 17. - Assume that u_{0} belongs to $\boldsymbol{L}^{2} \cap \boldsymbol{L}^{p}$, with $p=2+2 \sigma(\sigma>0)$ and that α satisfies the condition

$$
|\alpha|<\min \left(\frac{(2 K+1) N+2}{(2 K+1) N-2}, \frac{1+\sigma}{\sigma}\right) \Re \operatorname{R} \alpha
$$

and $\mathfrak{\Re} \mu_{K}>0$. Then (1.1) possesses at least a global weak-solution of the form $u=v+w$ with

$$
v \in C\left([0,+\infty), \boldsymbol{L}^{p}\right), \quad w \in C\left([0,+\infty), \boldsymbol{W}^{2-2 / q, q}\right) \text { and } w(0, \cdot)=0
$$

with

$$
q=1+\frac{2 \sigma+1}{2 K+1} .
$$

In particular if $p \geqslant K N$,

$$
u \in C\left([0,+\infty), \boldsymbol{L}^{p}\right) .
$$

Remark 18. - In fact, the assumption u_{0} belongs to \boldsymbol{L}^{2} is not really necessary if we change the definition of a weak-global solution.

Theorem 19. - Assume that u_{0} belongs to $\boldsymbol{H}^{1} \cap \boldsymbol{L}^{p}$ with $p=2+2 s(\sigma>0)$ and that α satisfies the condition

$$
|\alpha|<\min \left(\frac{(2 K+1) N+2}{(2 K+1) N-2}, \frac{1+\sigma}{\sigma}\right) \Re \alpha
$$

and $\mathfrak{R} \mu_{K}>0$. Then (1.1) possesses at least a global weak-solution u of the form $u=v+w$ with

$$
v \in C\left([0,+\infty), \boldsymbol{H}^{1}\right), \quad w \in C\left([0,+\infty), \boldsymbol{W}^{2-2 / q, q}\right) \text { and } w(0, \cdot)=0,
$$

with

$$
q=1+\frac{2 \sigma+1}{2 K+1}
$$

In particular if $\sigma \geqslant K$ and

$$
|\alpha|<\frac{(2 K+1) N+2}{(2 K+1) N-2} \mathfrak{R} \alpha
$$

u belongs to $C\left([0,+\infty), \boldsymbol{H}^{1}\right)$.
Remark 20. - In the second part of this Theorem, we can take u_{0} in \boldsymbol{H}^{1} for $N \leqslant 2$ and for $N=3$ if $K \leqslant 2$, which covers the case of the Fauve-Thual equation.

REFERENCES

[1] C. R. Doering - J. D. Gibbon - C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318.
[2] G. Dore - A. Venni, On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286.
[3] S. Fauve - O. Thual, Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833.
[4] J. Ginibre - G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228.
[5] J. Ginibre - G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79.
[6] M. Hiber - J. Prüss, Heat kernels and maximal $L^{p}-L^{q}$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669.
[7] O. A. Ladyzhenskaya - V. A. Solonnikov - N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc. Providence, RI (1968).
[8] P. de Mottoni - M. Schatzman, Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589.
[9] J. Prüss - H. Sohr, On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452.
[10] J. Prüss - H. Sohr, Imaginary powers of elliptic second order differential operators in L^{p}-spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192.
[11] R. Seeley, Norms and domains of the complex powers A_{B}^{z}, Am. Jour. Math., 93 (1971), 299-309.
[12] H. Tribel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978).
S. Descombes: Université Lyon 1, Analyse Numérique

Bât. 101, 69622 Villeurbanne Cedex, France
M. Moussaoui: Ecole Centrale de Lyon, Département Math-Info.

BP 163, 69131 Ecully Cedex, France

Pervenuta in Redazione
il 31 luglio 1998

