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Bollettino U. M. 1.
(8) 1-B (2000), 193-211

Global Existence and Regularity of Solutions
for Complex Ginzburg-Landau Equations

STEPHANE DESCOMBES - MOHAND MOUSSAOUI

Sunto. — St considerano equaziont di Ginzburg-Landau complesse del tipo u, — a Au +
P(|u|®)u =0 in RN dove P ¢ polinomio di grado K a coefficienti complessi e o. é
un nuwmero complesso con parte reale positiva Na. Nell’ipotesi che la parte reale
del coefficiente del termine di grado massimo P sia positiva, si dimostra Uesistenza
e la regolarita di una soluzione globale nel caso |a| < CRa, dove C dipende da
Ke N.

1. - Introduction.

Let K be an integer, K=1, a and u;,je {0, ..., K}, complex numbers with
NRa >0, and Nu g > 0. We consider the initial value problem

[au 3 .
— —adu+ JulPu=0, xzeRY, t>0,
(1.1) 1315 E‘o# i1l ©

w(0, ) = up(x), reRY,

Without loss of generality, we suppose that Hu,>0. For example, when
K =1, we obtain the well-known cubic Ginzburg-Landau equation, and when
K =2, the equation given by Fauve-Thual in [3] as a model of localized struc-
tures generated by subcritical instabilities. In [1], Doering, Gibbon and Lever-
more have considered a system of the same form but with periodic boundary
conditions:

3
a—';‘=Ru+(1+iv)4m—(1+w)|u|2”u, zeTV, t>0,

w(0, x) = up(x), reTV,

They obtained existence of global-weak solutions in all dimensions and for
all 0> 0 and parameter values R, v and 4. Under certain assumptions, they
also obtained global strong solutions. But their proofs use essentially the
boundedness of the domain TV. The case of the whole space is considered
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in [4], [5] by Ginibre and Velo, for the system

ot

L0, @) = u (), xeRY,

3
J_“ =yt (@tiys) du—(b+iyy) g(ul>u, weRY, t>0,

with ¢ >0, b>0 and g = 0 satisfying
2’ <glx)<C(1l+x°)

for some 0 (0 <0< ), some C =1 and all x = 0. They obtained existence and
uniqueness of solutions globally defined in time with initial data correspond-
ing to the spaces L? for p =2 or H' N L?*°*2. They also studied the case where
the nonlinear term is of the form (b + iy 3) f(u) with f belonging to C!(C, C)
and obtain local existence of solutions for initial data belonging to L?, p = 2.

In this article, under assumptions on a, we obtain for (1.1) existence and
regularity of strong global solutions when u, belongs to the space W2~ 244
with ¢ > 1 4+ N/2 (so the results are different from [4], [5]) and we deduce exis-
tence of global weak-solutions when u, belongs to L”, p=2 or H' N L? with
p > 2. The methods are different from [4], [5] and do not use a priori estimates
obtained by multiplying the first equation of (1.1) by Awu.

We use the notations:

L’ =L"RY, C),
WP =W P(RN, C).
Our purpose is to prove the following results:

THEOREM 1. — Assume that u, belongs to W?~%% 9 qwith ¢ > 1+ N/2 and
that a verifies

(2K+1)q—2K
Jia
(2K+1)q—2K -2

|la] <

and NRug>0. Then (1.1) has a unique global solution wu belonging to
C([0, t], W2~ 21)
for all t>0.

THEOREM 2. — Assume that u, belongs to H' N L with p =2+ 20 (6> 0)
and that o satisfies the condition
2K+1)N+2 1+0
QK+1)N-2" o

|a|<min( )ﬂta
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and Rug>0. Then (1.1) possesses at least a global weak-solution u of the
form w=v+w such that

veC(0, +o), H'), weC(0, +x), W2=249) gud w(0,) =0,
with
20+1
2K+1

g=1+

In particular if 0= K and

(2K+1)N +2
lal < 5 ¢
(2K+1)N -2

u belongs to C([0, + ), H').

ta,

Section 2 is devoted to some results on the LP” regularity of solutions of lin-
ear equations analogous to (1.1). In section 3, we prove the local existence of
solutions when uy,e L”. In section 4, we provide estimates on this local sol-
ution; then we prove, under assumptions on a, that when u, belongs to
W?2~2/44 with ¢ > 1 + N/2, the solution is global in time. Then we pass to the
limit to cover the case where u, belongs to L? or H' NLF with p =2+ 20
(0>0).

REMARK 1. — The same results hold if we consider problem (1.1) i a
bounded regular domain of RY and add a Dirichlet or Newmann boundary
condition.

In this article, we denote:

K
F(u) = Zo,u]- ARETR
=

2. — L? regularity.

Consider the Cauchy problem:
[ u N
— —adutuu=f, xeRY, t>0,
2.1) T ot
w(0, ) = uy(x), reRY,
We assume that o and u are complex numbers with positive real parts o,

and u ., that p belongs to (1, + ), fis given in L?(R ; L) and u, in W2~2P»,
We are interested in the L? regularity of solutions of (2.1), we will prove that
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(2.1) has a unique solution ue Wh?(R, ; L?) N LP(R, ; W*?) and that u, du
and Ju/dt depend continuously on f.

To obtain this result, we will use the imaginary powers of the operators ap-
pearing in (2.1), according to an idea of Priiss and Sohr[9]. We refer to the
book of Triebel [12] for a definition of the imaginary powers of an operator.
Let us recall some definitions. Let A be a closed linear operator in
LP(R, ; L?), with dense domain D(A); N(A) and R(A) denote the kernel and
the range of A, o(A) and o(A) the resolvent set and the spectrum of A. Final-
ly, B(L”) is the space of bounded linear operators in L?”(R,; L”).

DEFINITION 2 [9]. — Let 0 belong to [0, 7). A closed linear densely defined
operator A i LP?(R,; LP) belongs to the class BIP(L?, 0), if it satisfies:

(H1) The set (— «, 0) is included in o(A), the kernel N(A) is reduced to
0, the range R(A) is dense in LP(R,; LP), and, there exists a M =1, such
that

2.2) |(t+A) | <M/t for all t>0.

(H2) For all seR, A® belongs to B(LP?), and there exists a K, such
that

(2.3) |A® | < Kyexp(0]s]).

DEFINITION 3. — Let A, B two linear operators. We say that A, B are resol-
vent commuting if for all A (respectively v) in the vesolvent set o(A) (respect-
wely o(B)) A—A) '(v—B) '=w-B)'(A-4)"".

Let us quote the main result of [9]:
THEOREM 4 [9]. - We are given k = 2 elements A; in BIP(L?, 0;), such that,
for each pair i#j, A; and A; are resolvent commuting and satisfy 6;+0;<m.

Let 6 = max 0; and assume that there is only one 1 with 6 =0,.
Then the opemtor A defined by

k k
D(A)=r1]D(Ai), A= A
i=1

18 closed and belongs to the class BIP(L?, 0). Moreover, there is a constant
C >0 such that

K
> |Aix|<C|Ax|, VxeD(A).
i=1

In particular, N(A) =0 and R(A) is dense in LP(R,; LP).
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In the following sequence of lemmas, we show that the operators appearing
in (2.1) belong to the class BIP(L”, #) and we characterize the relevant 6.

LEMMA 5. — Define A, and B respectively by
D(A) =W P(R,; L"), A, =0/,
D(B,) =LY(R,; W??), By=-4.
Then for all € >0:
A, eBIP(L?, m/2 + ¢) and B;e BIP(L?, ¢).

PRrOOF. — The result for A; is due to [2] [9]. In the scalar case the result for
B, is due to[11] [10], the vector generalization is straightforward. =

LEMMA 6. — Let 3 be a complex number of positive real part f5,. The opera-
tor Iy is the multiplication by B in L*(R.; L"). Then

I;e BIP(L?, | ArgfB)),

where Arg is the principal determination of the argument.

Proor. — It suffices to prove (2.3). Let se R, then we have
|B* | = |exp (is Log || — s ArgB) | = exp (—s Argf),
thus
8% | <exp(|s| [ArgB]). m

LEMMA 7. — Define an operator B, by
DB, =LY(R,; W»?), B,=—ad,
then for all € >0
B,eBIP(L?, |Argal +¢).

Proor. — Remark that B, =1,B;, then thanks to the corollary 3 of [9],
B,eBIP(L?, 05 +0;). ]
Now, we can prove the following theorem:

THEOREM 8. — Let a, u be complex numbers such that a,.> 0, u,>0; let u,
belong to W2~2%? Then for all fe L (R, ; L?), 1 <p < o, the Cauchy prob-
lem (2.1) has a unique solution we W»P(R, ; L) N LP(R, ; W*?). Moreover
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there exists a constant C >0, such that

2.4 o

ey +lul Lo, wery S CU florw, o+ [ [w2-200) .

LP(R4; LP)

Proor. — Consider the problem

3

(Y sv=f, weRY, t>0,
(2.5) Tat

v(0,x)=u,, xRV,

where u, is as in the statement of Theorem 8. It is a well known fact (see for
example [7]) that (2.5) possesses a unique solution v, which belongs to
WL P(R,; LP) N LP(R, ; W®?). Moreover there exists a constant C; such that
v verifies

v

(2.6) %

0], wery S Co(| floeg, o + [t |wez-2m0) .

LP(R; LP)

Define
v
=f—— tadv—uv.
fo=f 5 I
We observe that f, belongs to L?(R, ; L”). The function w =« — v is solution

of

9
oW —adw+uw=f, xeRY¥, t>0,
2.7 ot

w(0, x) =0, reRY.
Let A be the operator defined by
DA) =W PR,; L)NLY(R,; W2P), A=A +B,+1,,
we can rewrite the problem (2.7) under the form
Aw=f,.

Thanks to Lemma 5, 7 for ¢ sufficiently small, the hypotheses of Theorem 4 are
satisfied; therefore A is invertible in D(A) and there exists a constant C >0
such that

ow

2.8 —
(2.8) Y

+|w|eow, s werny S C|fy Lo, ;o) -
LP(Ry; LP)
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Now u=w+v and (2.4) comes from (2.6) and (2.8). This concludes the
proof of Theorem 8. =

REMARK 9. — The result of Theorem 8 can be also obtained using the results
of Hieber and Priiss [6].

3. — Local existence.
In this section, we prove the following existence result:

LEMMA 10. — Let uge L™ ; then there exists a positive number T,, depend-
mg only on |uy|pL- and F, such that (1.1) has at least a solution
uelL *(0, Ty; L™). Moreover w 1s infinitely differentiable over (0, T,) X
RY,

Proor. — Let G be the Green function corresponding to the linear initial
value problem

5
a_?_aAuzo’ 2eRY, t>0,

(0, x) =up(x), xeRY.
It is given explicitly by
G(t, ) = (4dmat) M exp (— || /Anat)

where the fractional powers are defined as principal determination when
necessary.

Let 7 and o be positive real numbers and B(u,, 7, ¢) be the ball in
L~(0,7; L”) of center u, and radius . Define an application G from
L0, 7; L”) into itself by

t
(Bu)t, ) = G(t, ) *uy — | Gt — s, VFuC-, $))ds .
0

For ue B(uy, 7, 0) and ¢t < 7; we have

| (Bu)(t, ) — ug(-) | L= < |ug = + |G(E, ) *ug | L=

i
+ f |G(t —s, ) *F(u(-, 5))|.= ds,
0



200 STEPHANE DESCOMBES - MOHAND MOUSSAOUI

and by Young’s inequality, we obtain

[(Bu)Et, ) —uo() = < A+ |G(E, ) o) |uo |-

t
+f|G(t—s, ) |[Ful:, ) |- ds,
0
but

|G(t, ) | = |(dmat) 2| f lexp (—|x|* /A7at) | di

RY

= (4n|a|t)‘N/2fexp(—a,r |¢|? Az |a|?t) du

RN
— o] [ exp(~ a, g /1o ) dy
RY
:kN'
Thus, we have

13

B.1)  |(Bu)(E, ) —ug() > < (1 + ky) |ug |- + ka |F(u(-, s))|p= ds .
0

The function F is Lipschitz continuous on the set
Vi, o=1{veC; |v—a| <o},
with Lipschitz constant L(a, 0); set

A = ess sup {L(uy(x), 0)} < + o .

veRN
We deduce from (3.1) that
[(Bu)(E, ) —uo() |L= < (1 + k) |uo [ + knT(do + | Fug) |L-) -
Choose 0 >2(1 +ky) |ug |1~ and 7 sufficiently small such that
[(Bu)(t, ) = ug() [~ <0
we deduce that

G(B(uy, 7, 0))CcB(uy, 7, 0).
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For w and v in B(u,, 7, 0) and ¢t <7, we have

t
(B, ) — (Bo)E, ) |- <hwd [ [uC, $)— o, 8) |- ds
0

SkyAt|u—v|L=0, 1% -
Thus
| Bu — G| =0, t;L=) S ENAT|U = V|1 =(0, t; L7) »
and therefore
| Bu —Bv|L=0,t;0%) S ko |w—v|=(0, ;%)

with &£y < 1. We can deduce that G is a contraction from B(u,, 7, o) to itself. By
Banach’s fixed point theorem, we conclude that © has a fixed point in
B(uy, 7, 0), which is a solution of (1.1). The proof that « is infinitely differen-
tiable over (0, T') x RY is identical to the proof of Proposition 2.1 of[8], to
which the reader is referred. This concludes the proof of Lemma 10. =

4. — Global estimates and global existence.

Let se (0, + «), in this section, we denote K=2K + 2, s =2s+ 2, and
m=2K+2s+2.

THEOREM 11. — Assume that u, belongs to L* NL%. Let u be the local
solution obtained at Lemma 10 and T less than the maximal existence
time. Then there exists two positive constants Cyx, Cg such that for all
tel0, T},

4.1) |u(t, *) |12 < exp (Ckt) |ug | 2
and
exp (2CxT)
4.2) || Kxo, 7, 1) S ——— 2 |y | 22
2Cx

and for a such that |a|<(1+s)a,/s, we have

4.3) |ult, -) | s < exp (Ckt) |uo | s
and

. exp@2(s+1)CxT) X
(4.4) || Pmo, 7 1y < g |2

2(s+1)Cxg
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PRrOOF. — Multiplying the first equation of (1.1) by |« |**% and integrating
the result by parts in space, we obtain

(4.5) f E|u|25udoc+afVuV(|u|29u)dx+fF(u)|u|2'°’udx 0.

RN RN RN

An elementary calculation shows that

fVuV(|u|2“‘u)dac— (s+1) af | V| |u|? da
RY

+sa2 f( ) || 2 de.
Let @ be the polynominal
K .
Qy) = > Nu;y¥ for all yeR.
=0
We take the real part of (4.5) and we obtain

(4.6) f|u|2*+2 de+ (s+1)%a f|Vu|2|u|2* da +
2 d RN

2
(s+1)fQ(|u|)|u|2s+2 dae = — s(s+1)2ﬁ( f(— u) |u|? 2 dm).
RY Ui

Since Nu x>0, there exists two positive constants Cx, Cx such that
Qy) = Chy*—Cx  for all yeR.

It follows from (4.6) that

1
4.7 f|u|2*+2 da +
2 dt

(s+17a f|Vu|2 |u|? da + Ck(s + l)f || 2K+ 2 dyp <
RY RY

n 2
CK(s+l)f|u|28+2dx—s(s+1)iﬁ a f(ﬁu) |22 da ).
RN F=1.% \ O
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When s =0, (4.7) gives

> dt f|u| doc<CKf|u|2d9c

Hence, by integrating, we find (4.1). We return to (4.7) with s =0, which we
now integrate between 0 and T'; this yields

CKff|u|2K+2dsdx<CKff|u| dsdm+— f|u0|2dx

0 RN 0 RN

It follows from (4.1) that

(4.8) ff|u| dsdm<—(exp(ZCKT)—l)f|u0|2dx

0 RN RN

and we deduce that

20, T
CKff|u|2K+2d eXp( K )fl Uy |? dae

0 RV RN
ie. (4.2). When s is different from 0, we notice that
2
—0 Z f( ) |22 dw S|a|f|Vu|2|u|23dac,
RN RN
and we obtain

> dt f|u|2*+2 de+ (s +1)7a f|Vu|2|u|2*dﬂc+

RN
CI’((3+1)f|u|2K+28+2deCK(s+l)f|u|28+2 dx
RN RN
where

|a|s
s+1°

If we suppose
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then ' is positive and by the above argument we obtain (4.3), (4.4). This con-
cludes the proof of Theorem 11. =

In the next two theorems, we suppose now that u, belongs to W2~ %44,
with the condition

>1+N
q 5

In this case, the space W2~2/% 4 is included in L*, and the local existence of a
solution u is also a consequence of Lemma 10.
Define

K
Hwu)=F(u) —uou= Zlyj |u|%u .
)=

THEOREM 12. — Assume that u, belongs to W~ 24 9 with ¢ >1+ N/2 and
that a verifies

2K +1)q—2K
(4.9) o] < — )4 Ra
2K+1)q-2K—-2

and Rug>0. Let u be the local solution obtained at Lemma 10 and T less
than the maximal existence time. Then we have

(4.10) H(uw)eL%0, T; LY).

Proor. — Since

N

2K+1"’
there exists s >0 such that
2s+1
q= .
2K+1
Moreover, since
2 2s+1
254+2> =0 4o9s14 0T
2K+1 2K+1

the initial condition %, belongs to L?***2 and we deduce from (4.4) that « be-
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longs to L™ (0, T'; L™) provided that

1+s

(4.11) la| < Ra

Since
_ q
S_(2K+1)§_K_1’

we notice that the condition (4.11) is exactly (4.9). Let us show now that H(u)
belongs to L%(0, T; L?), we already have

(4.12) fo(|u|2K+1)qszf|u|m< +oo

0 Ry 0 RN
On the other hand, for all j, je {1, ..., K—1}, we have
(4.13) g<3¢<(2j+1)g<m.

If ¢<2, it follows from (4.8), (4.12) and by interpolation that for all j,
je{l, ..., K—-1},

lu|¥ueL(0, T; LY).

If ¢>2, we deduce from (4.13) that is sufficient to see that u belongs to
L0, T; L?) under the assumptions (4.9). But if ¢ > 2, there exists s, > 0 such
that ¢ =2s, + 2 and we deduce (4.3) that » belongs to L%(0, T'; L?) provided
that

1+80

|a| < Na

So
Finally, there remains to show that

1+s 1+s
< .

S So

(4.14)

But since

So =

Do |

~1 and s=(2K+1)%—K—1,

we deduce that s > s, and as a consequence (4.14). This concludes the proof of
Theorem 12. =

THEOREM 13. — Assume that u, belongs to W2~ 249 with ¢>1+ N/2 and



206 STEPHANE DESCOMBES - MOHAND MOUSSAOUI

that a verifies

2K+1)g—2K
|a| < ( )4 Na

(2K+1)g—2K-2

and Nug>0. Then (1.1) has a unique global solution u belonging to
C([0, t], W?~2/9)
for all t>0.

Proor. — Let T,, be the maximum existence time. It follows from Theorem
12 that H(u) e L(0, T,,; L?) and we infer from Theorem 8 that

ue W40, T,,; LY NLIYO0, T,,; W»9).
The Sobolev embedding theorem gives
ueC([0, T,1, W22 7).

Therefore T,, is not the maximal existence time, which proves that « is a global
solution of (1.1).

In order to obtain the uniqueness, we consider two solutions » and v of
(1.1), the function w = u — v verifies

0
(4.15) a_@t” — adw + F(u) — F(v) =
Multiplying (4.15) by w and integrating by parts in space, this yields

(4.16) faa—@:@dac—kaf|Vw|2dac+f(F(u)—F(v))%dx=0.

g

RZ\, RN RN

Since u and v belong to C ([0, T,,], L™ ), there exists a positive constant C such
that over [0, T,]

|F(u) = F(v) |2 < Clu —v| 2.
It follows from (4.16) that

f|w| de +a f|Vw| dac<Cf|w| dx ,
2dt

so that Gronwall’s inequality gives the desired result. This completes the proof
of Theorem 13. =

Denote Cj the space of functions infinitely differentiable with compact
support; a consequence of Theorem 13 is the following:
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COROLLARY 14. — Assume that u, belongs to Cy and that a verifies

(2K+1)N +2
ol < S5
(2K+1)N -2

and Rug>0. Then (1.1) has a unique global solution wu belonging to
C([0, t], L”) for all t > 0.

ProoF. — We just need to prove that u belongs to C([0, £], L™) for all £ > 0.
Let € >0 and define
CK+1)(1+N2+e)—-2K

re) = .
C2K+1)(1+N2+e)—2K—-2

uo belongs to W2~ %44 with ¢ =1+ N/2 + ¢ and since

(2K+1)N+2

lim m(eg) = —8MMM—
£—0 2K+1)N-2
and

2K+1)N+2

"e) < ———,
(2K+1)N -2
we can choose ¢ sufficiently small such that

|a| <7(e) Ra .

Thanks to Theorem 13, u belongs to C([0, t], L*) for all t>0. =
We now define notion of global weak-solution of (1.1):

DEFINITION 15. — A function u is a global weak solution of (1.1) if it be-
longs to

LR, :LA)NLER,: HYNLEET2(R, ; L2E+2),
and for any v e Cy ([0, + o) x RY), it verifies

f (—u 88_1,;) +aVuVy + F(u) 1/)) dsdx = fuo(x) Y(-, x) de .

R, xRY RY

THEOREM 16. — Assume that a satisfies the condition

QCK+1)N+2

el < =
(2K+1)N -2
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and Ru x> 0. Then for all uyeL?, (1.1) possesses at least a global weak-sol-
ution.

ProOF. — Let ¢ > 0, introduce a sequence (uy,,) in Cy° such that (u,,,) tends
to uy in L? and let u,, be a solution of (1.1) over (0, ¢) with initial condition
(%gy,)- It follows from (4.1) that the sequence (u,,) remains in a bounded set of
L~=(0, t; L?), from (4.2) that the sequence (u,,) remains in a bounded set of
L2K+2(0, t; L% *2). With the help of (4.7), we can see that the sequence (u,,)
remains in a bounded set of L2(0, t; W' 2).

These estimates ensure the existence of an element % and a subsequence
still denoted (u,,) such that as m tends to infinity, (u,,) tends weakly to « in
L2(0, t; W"2), weakly to w in L2872(0, t; L?**2) and tends weakly-star to u in
L~(0, t; L*) We also introduce v,, and w,, solutions of the following problems:

aaltm—azlvanuovmzo, xeRY, te(0,t),
0,,(0, ) = u,,(2), veRY
and
ow,, I
p —adw,, +uyw,, + Hu,) =0, xeR", te(0,1),
w,, (0, ) =0, reRY.

We recall that H = F' — u(Id; it is clear that u,, = v,, + w,,. The sequence (v,,)
converges to v, solution of the problem

3
a—;’ —aMvtuw=0, weRY, te(0,t),

7)(0,90)=u0(90), xERN5

in C([0, t), L*) N L2(0, t; H").

It follows from (4.1) that the term H(u,,) is bounded in the space
L0, ¢, L") with ¢=(2K+2) /(2K + 1) and we infer from Theorem 8 that
the sequence (w,,) is bounded in W' (0, t; L) N L%(0, t; W* %), This esti-
mate ensures the existence of an element w and a subsequence still denoted
(w,,) such that (w,,) tends weakly to w in W (0, ¢; LY) N L9(0, t; W» 7). We
can now deduce that the subsequence (u,,) converges to u=v+w in
L. (0,¢t; LL.) and almost everywhere. As a consequence, the sequence
(H(u,,)) tends to H(u) in L1(0, t; Li,.) and for all y in Cy ((0, + ©) X R"), as
m tends to infinity

4.17) (H(u,,), ¥) tends to (H(u), ¥).
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It is also clear that when m tends to infinity

ou
4.18 i
(%

)
—adu,, + oy, 1/)> tends to <?7: —adu+uyu, 1/}>.
It follows from (4.17) and (4.18) that u satisfies
0
2 adu+Fu) =0,
ot

in the distribution sense.

Since ve C([0, t), L?), weC(0, t), W?~2/4:7) and u=v +w, the initial
condition u#(0, x) = uy(x), x € R* make sense. This concludes the proof of The-
orem 16. =

Using the previous decomposition, estimates (4.3), (4.4) and Theorem 8, we
can also prove the following results:

THEOREM 17. — Assume that u, belongs to L>* N LP, with p =2+ 20 (¢>0)
and that o satisfies the condition
R2K+1)N+2 140
QK+1)N-2" o

|a| <min(

) Na
and Nu g > 0. Then (1.1) possesses at least a global weak-solution of the form
u =0+ w with

veC(0, + ), L"), weC(0, +x), W?=2%9) and w(0,) =0,
with

20+1
2K+1

g=1+

In particular if p = KN,
uweC(0, + o), L") .

REMARK 18. — In fact, the assumption u, belongs to L* is not really necess-
ary if we change the definition of a weak-global solution.

THEOREM 19. — Assume that u, belongs to H* N L with p =2+ 2s (¢>0)
and that o satisfies the condition
2K+1)N+2 140
QK+1)N-2" o

|a|<min( )Eﬁa
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and Rug>0. Then (1.1) possesses at least a global weak-solution u of the
form u=v+w with

veC(0, +x), H'), weC(0, +x), W2=249) gnd w(0, ) =0,

with
20+1
g=1+ .
2K+1
In particular if 0= K and
2K+1)N+2
|a| < ———— Na,
2K+1)N-2

u belongs to C([0, + o), H').

REMARK 20. — In the second part of this Theovem, we can take w, in H' for
N <2 and for N=3 if K<2, which covers the case of the Fauve-Thual
equation.
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