
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Stéphane Descombes, Mohand Moussaoui

Global existence and regularity of solutions for
complex Ginzburg-Landau equations

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 3-B (2000),
n.1, p. 193–211.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2000_8_3B_1_193_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_2000_8_3B_1_193_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2000.



Bollettino U. M. I.
(8) 1-B (2000), 193-211

Global Existence and Regularity of Solutions
for Complex Ginzburg-Landau Equations

STÉPHANE DESCOMBES - MOHAND MOUSSAOUI

Sunto. – Si considerano equazioni di Ginzburg-Landau complesse del tipo ut2a Du1
P(NuN2 )u40 in RN dove P è polinomio di grado K a coefficienti complessi e a è
un numero complesso con parte reale positiva Da . Nell’ipotesi che la parte reale
del coefficiente del termine di grado massimo P sia positiva, si dimostra l’esistenza
e la regolarità di una soluzione globale nel caso NaNECDa , dove C dipende da
K e N.

1. – Introduction.

Let K be an integer, KF1, a and m j , j� ]0, R , K(, complex numbers with
DaD0, and Dm K D0. We consider the initial value problem

.
/
´

¯u

¯t
2a Du1!

j40

K

m j NuN2 j u40 ,

u(0 , x) 4u0 (x) ,

x�RN , tD0 ,

x�RN .

(1.1)

Without loss of generality, we suppose that Dm 0 D0. For example, when
K41, we obtain the well-known cubic Ginzburg-Landau equation, and when
K42, the equation given by Fauve-Thual in [3] as a model of localized struc-
tures generated by subcritical instabilities. In [1], Doering, Gibbon and Lever-
more have considered a system of the same form but with periodic boundary
conditions:

.
/
´

¯u

¯t
4Ru1 (11 in) Du2 (11 im) NuN2s u ,

u(0 , x) 4u0 (x) ,

x�TN , tD0 ,

x�TN .

They obtained existence of global-weak solutions in all dimensions and for
all sD0 and parameter values R , n and m . Under certain assumptions, they
also obtained global strong solutions. But their proofs use essentially the
boundedness of the domain TN . The case of the whole space is considered
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in [4], [5] by Ginibre and Velo, for the system

.
/
´

¯u

¯t
4g 1 u1 (a1 ig 2 ) Du2 (b1 ig 3 ) g(NuN2 )u ,

u(0 , x) 4u0 (x) ,

x�RN , tD0 ,

x�RN ,

with aD0, bD0 and gF0 satisfying

x sGg(x) GC(11x s )

for some s (0 EsEQ), some CF1 and all xF0. They obtained existence and
uniqueness of solutions globally defined in time with initial data correspond-
ing to the spaces Lp for pF2 or H 1 OL2s12 . They also studied the case where
the nonlinear term is of the form (b1 ig 3 ) f (u) with f belonging to C 1 (C , C)
and obtain local existence of solutions for initial data belonging to Lp , pF2.

In this article, under assumptions on a , we obtain for (1.1) existence and
regularity of strong global solutions when u0 belongs to the space W 222/q , q

with qD11N/2 (so the results are different from [4], [5]) and we deduce exis-
tence of global weak-solutions when u0 belongs to Lp , pF2 or H 1 OLp with
pD2. The methods are different from [4], [5] and do not use a priori estimates
obtained by multiplying the first equation of (1.1) by Du.

We use the notations:

Lp 4L p (RN , C) ,

W s , p 4W s , p (RN , C) .

Our purpose is to prove the following results:

THEOREM 1. – Assume that u0 belongs to W 222/q , q with qD11N/2 and
that a verifies

NaNE
(2K11) q22K

(2K11) q22K22
Da

and Dm K D0. Then (1.1) has a unique global solution u belonging to

C( [0 , t], W 222/q , q )

for all tD0.

THEOREM 2. – Assume that u0 belongs to H 1 OLp with p4212s (sD0)
and that a satisfies the condition

NaNEming (2K11) N12

(2K11) N22
,

11s

s
h Da
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and Dm K D0. Then (1.1) possesses at least a global weak-solution u of the
form u4v1w such that

v�C([0 , 1Q), H 1 ) , w�C([0 , 1Q), W 222/q , q ) and w(0 , Q) 40 ,

with

q411
2s11

2K11
.

In particular if sFK and

NaNE
(2K11) N12

(2K11) N22
Da ,

u belongs to C([0 , 1Q), H 1 ) .

Section 2 is devoted to some results on the L p regularity of solutions of lin-
ear equations analogous to (1.1). In section 3, we prove the local existence of
solutions when u0 �LQ . In section 4, we provide estimates on this local sol-
ution; then we prove, under assumptions on a , that when u0 belongs to
W 222/q , q , with qD11N/2 , the solution is global in time. Then we pass to the
limit to cover the case where u0 belongs to Lp or H 1 OLp with p4212s
(sD0).

REMARK 1. – The same results hold if we consider problem (1.1) in a
bounded regular domain of RN and add a Dirichlet or Neumann boundary
condition.

In this article, we denote:

F(u) 4 !
j40

K

m j NuN2 j u .

2. – L p regularity.

Consider the Cauchy problem:

.
/
´

¯u

¯t
2a Du1mu4 f ,

u(0 , x) 4u0 (x) ,

x�RN , tD0 ,

x�RN .

(2.1)

We assume that a and m are complex numbers with positive real parts a r

and m r , that p belongs to (1 , 1Q), f is given in L p (R1 ; Lp ) and u0 in W 222/p,p .
We are interested in the L p regularity of solutions of (2.1), we will prove that
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(2.1) has a unique solution u�W 1, p (R1 ; Lp )OL p (R1 ; W 2, p ) and that u , Du
and ¯u/¯t depend continuously on f .

To obtain this result, we will use the imaginary powers of the operators ap-
pearing in (2.1), according to an idea of Prüss and Sohr [9]. We refer to the
book of Triebel [12] for a definition of the imaginary powers of an operator.
Let us recall some definitions. Let A be a closed linear operator in
L p (R1 ; Lp ), with dense domain D(A); N(A) and R(A) denote the kernel and
the range of A , r(A) and s(A) the resolvent set and the spectrum of A . Final-
ly, B(L p ) is the space of bounded linear operators in L p (R1 ; Lp ).

DEFINITION 2 [9]. – Let u belong to [0 , p). A closed linear densely defined
operator A in L p (R1 ; Lp ) belongs to the class BIP(L p , u), if it satisfies:

(H1) The set (2Q , 0 ) is included in r(A), the kernel N(A) is reduced to
0, the range R(A) is dense in L p (R1 ; Lp ), and, there exists a MF1, such
that

N(t1A)21 NGM/t for all tD0 .(2.2)

(H2) For all s�R , A is belongs to B(L p ), and there exists a K0 such
that

NA is NGK0 exp (uNsN) .(2.3)

DEFINITION 3. – Let A , B two linear operators. We say that A , B are resol-
vent commuting if for all l (respectively n) in the resolvent set r(A) (respect-
ively r(B) ) (l2A)21 (n2B)21 4 (n2B)21 (l2A)21 .

Let us quote the main result of [9]:

THEOREM 4 [9]. – We are given kF2 elements Ai in BIP(L p , u i ), such that,
for each pair icj , Ai and Aj are resolvent commuting and satisfy u i1u jEp .
Let u4 max u i and assume that there is only one i with u4u i .

Then the operator A defined by

D(A) 41
1

k

D(Ai ) , A4 !
i41

k

Ai ,

is closed and belongs to the class BIP(L p , u). Moreover, there is a constant
CD0 such that

!
i41

k

NAi xNGCNAxN , (x�D(A) .

In particular, N(A) 40 and R(A) is dense in L p (R1 ; Lp ).
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In the following sequence of lemmas, we show that the operators appearing
in (2.1) belong to the class BIP(L p , u) and we characterize the relevant u .

LEMMA 5. – Define A1 and B1 respectively by

D(A1 ) 4W 1, p
0 (R1 ; Lp ) ,

D(B1 ) 4L P (R1 ; W 2, p ) ,

A1 4¯/¯t ,

B1 42D .

Then for all eD0:

A1 �BIP(L p , p/21e) and B1 �BIP(L p , e) .

PROOF. – The result for A1 is due to [2] [9]. In the scalar case the result for
B1 is due to [11] [10], the vector generalization is straightforward. r

LEMMA 6. – Let b be a complex number of positive real part b r . The opera-
tor Ib is the multiplication by b in L p (R1 ; Lp ). Then

Ib�BIP(L p , NArg bN) ,

where Arg is the principal determination of the argument.

PROOF. – It suffices to prove (2.3). Let s�R , then we have

Nb is N4Nexp (is LogNbN2s Arg b)N4exp (2s Arg b) ,

thus

Nb is NGexp (NsNNArg bN) . r

LEMMA 7. – Define an operator Ba by

D(Ba ) 4L P (R1 ; W 2, p ) , Ba42aD ,

then for all eD0

Ba�BIP(L p , NArg aN1e) .

PROOF. – Remark that Ba4Ia B1 , then thanks to the corollary 3 of [9],

Ba�BIP(L p , u B1
1u Ia

) . r

Now, we can prove the following theorem:

THEOREM 8. – Let a , m be complex numbers such that a r D0, m r D0; let u0

belong to W 222/p , p . Then for all f �L (R1 ; Lp ), 1 EpEQ , the Cauchy prob-
lem (2.1) has a unique solution u�W 1, p (R1 ; Lp )OL p (R1 ; W 2, p ). Moreover
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there exists a constant CD0, such that

N ¯u

¯t N
L p (R1 ; Lp )

1NuNL p (R1 ; W 2, p ) GC(N fNL p (R1 ; Lp ) 1Nu0 NW 222/p , p ) .(2.4)

PROOF. – Consider the problem

.
/
´

¯v

¯t
2Dv4 f ,

v(0 , x) 4u0 ,

x�RN , tD0 ,

x�RN .

(2.5)

where u0 is as in the statement of Theorem 8. It is a well known fact (see for
example [7]) that (2.5) possesses a unique solution v , which belongs to
W 1, p (R1 ; Lp )OL p (R1 ; W 2, p ). Moreover there exists a constant C1 such that
v verifies

(2.6) N ¯v

¯t N
L p (R1 ; Lp )

1NvNL p (R1 ; W 2, p ) GC1 (N fNL p (R1 ; Lp ) 1Nu0 NW 222/p , p ) .

Define

fv 4 f2
¯v

¯t
1a Dv2mv .

We observe that fv belongs to L p (R1 ; Lp ). The function w4u2v is solution
of

.
/
´

¯w

¯t
2a Dw1mw4 fv ,

w(0 , x) 40 ,

x�RN , tD0 ,

x�RN .

(2.7)

Let A be the operator defined by

D(A) 4W 1, p
0 (R1 ; Lp )OL P (R1 ; W 2, p ) , A4A1 1Ba1Im ,

we can rewrite the problem (2.7) under the form

Aw4 fv .

Thanks to Lemma 5, 7 for e sufficiently small, the hypotheses of Theorem 4 are
satisfied; therefore A is invertible in D(A) and there exists a constant CD0
such that

N ¯w

¯t N
L p (R1 ; Lp )

1NwNL p (R1 ; W 2, p ) GCN fv NL p (R1 ; Lp ) .(2.8)
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Now u4w1v and (2.4) comes from (2.6) and (2.8). This concludes the
proof of Theorem 8. r

REMARK 9. – The result of Theorem 8 can be also obtained using the results
of Hieber and Prüss [6].

3. – Local existence.

In this section, we prove the following existence result:

LEMMA 10. – Let u0 �LQ ; then there exists a positive number T0 , depend-
ing only on Nu0 NLQ and F , such that (1.1) has at least a solution
u�L Q (0 , T0 ; LQ ). Moreover u is infinitely differentiable over (0 , T0 )3

RN .

PROOF. – Let G be the Green function corresponding to the linear initial
value problem

.
/
´

¯u

¯t
2a Du40 ,

u(0 , x) 4u0 (x) ,

x�RN , tD0 ,

x�RN .

It is given explicitly by

G(t , x) 4 (4pat)2N/2 exp (2NxN2 O4pat) ,

where the fractional powers are defined as principal determination when
necessary.

Let t and r be positive real numbers and B(u0 , t , r) be the ball in
L Q (0 , t ; LQ ) of center u0 and radius r . Define an application R from
L Q (0 , t ; LQ ) into itself by

(Ru)(t , Q) 4G(t , Q) xu0 2s
0

t

G(t2s , Q)F(u(Q , s) ) ds .

For u�B(u0 , t , r) and tGt ; we have

N(Ru)(t , Q)2u0 (Q)NLQ GNu0 NLQ 1NG(t , Q) xu0 NLQ

1s
0

t

NG(t2s , Q) xF(u(Q , s) )NLQ ds ,
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and by Young’s inequality, we obtain

N(Ru)(t , Q)2u0 (Q)NLQ G (11NG(t , Q)NL1 )Nu0 NLQ

1s
0

t

NG(t2s , Q)NL1 NF(u(Q , s) )NLQ ds ,

but

NG(t , Q)NL1 4N(4pat)2N/2 Ns
RN

Nexp (2NxN2 O4pat)N dx

4 (4pNaNt)2N/2 s
RN

exp (2a r NxN2 O4pNaN2 t) dx

4NaN2N/2 s
RN

exp (2a r NyN2 ONaN2 ) dy

4kN .

Thus, we have

N(Ru)(t , Q)2u0 (Q)NLQ G (11kN )Nu0 NLQ 1kNs
0

t

NF(u(Q , s) )NLQ ds .(3.1)

The function F is Lipschitz continuous on the set

Va , r4 ]v�C ; Nv2aNGr( ,

with Lipschitz constant L(a , r); set

l4 ess sup
x�RN

]L(u0 (x), r)( E1Q .

We deduce from (3.1) that

N(Ru)(t , Q)2u0 (Q)NLQ G (11kN )Nu0 NLQ 1kN t(lr1NF(u0 )NLQ ) .

Choose rD2(11kN )Nu0 NLQ and t sufficiently small such that

N(Ru)(t , Q)2u0 (Q)NLQ Gr ;

we deduce that

R(B(u0 , t , r) )%B(u0 , t , r) .
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For u and v in B(u0 , t , r) and tGt , we have

N(Ru)(t , Q)2 (Rv)(t , Q)NLQ GkN ls
0

t

Nu(Q , s)2v(Q , s)NLQ ds

GkN ltNu2vNL Q (0 , t ; LQ ) .

Thus

NRu2RvNL Q (0 , t ; LQ ) GkN ltNu2vNL Q (0 , t ; LQ ) ,

and therefore

NRu2RvNL Q (0 , t ; LQ ) Gk0 Nu2vNL Q (0 , t ; LQ ) ,

with k0 E1. We can deduce that R is a contraction from B(u0 , t , r) to itself. By
Banach’s fixed point theorem, we conclude that R has a fixed point in
B(u0 , t , r), which is a solution of (1.1). The proof that u is infinitely differen-
tiable over (0 , T)3RN is identical to the proof of Proposition 2.1 of [8], to
which the reader is referred. This concludes the proof of Lemma 10. r

4. – Global estimates and global existence.

Let s� (0 , 1Q), in this section, we denote K42K12, s42s12, and
m42K12s12.

THEOREM 11. – Assume that u0 belongs to LQOL2 . Let u be the local
solution obtained at Lemma 10 and T less than the maximal existence
time. Then there exists two positive constants CK , C 8K such that for all
t� [0 , T],

Nu(t , Q)NL2 Gexp (CK t)Nu0 NL2(4.1)

and

NuNK
L K (0 , T ; LK ) G

exp (2CK T)

2C 8K
Nu0 N2

L2(4.2)

and for a such that NaNE (11s) a r /s , we have

Nu(t , Q)NLs Gexp (CK t)Nu0 NLs(4.3)

and

NuNm
L m (0 , T ; Lm ) G

exp (2(s11) CK T)
2(s11) C 8K

Nu0 Ns
s .(4.4)
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PROOF. – Multiplying the first equation of (1.1) by NuN2s u and integrating
the result by parts in space, we obtain

(4.5) s
RN

¯u

¯t
NuN2s u dx1as

RN

˜u ˜(NuN2s u) dx1s
RN

F(u)NuN2s u dx40 .

An elementary calculation shows that

as
RN

˜u ˜(NuN2s u) dx4 (s11) as
RN

N˜uN2 NuN2s dx

1sa !
k41

n

s
RN

g ¯u

¯xk

uh2

NuN2s22 dx .

Let Q be the polynominal

Q(y) 4 !
j40

K

Dm j y 2 j for all y�R .

We take the real part of (4.5) and we obtain

(4.6)
1

2

d

dt
s

RN

NuN2s12 dx1 (s11)2 a r s
RN

N˜uN2 NuN2s dx1

(s11) s
RN

Q(NuN)NuN2s12 dx42 s(s11) Dua !
k41

n

s
RN

g ¯u

¯xk

uh2

NuN2s22 dxv .

Since Dm K D0, there exists two positive constants CK , C 8K such that

Q(y) FC 8K y 2K 2CK for all y�R .

It follows from (4.6) that

(4.7)
1

2

d

dt
s

RN

NuN2s12 dx1

(s11)2 a r s
RN

N˜uN2 NuN2s dx1C 8K (s11) s
RN

NuN2K12s12 dxG

CK (s11) s
RN

NuN2s12 dx2s(s11) Dua !
k41

n

s
RN

g ¯u

¯xk

uh2

NuN2s22 dxv .



GLOBAL EXISTENCE AND REGULARITY OF SOLUTIONS ETC. 203

When s40, (4.7) gives

1

2

d

dt
s

RN

NuN2 dxGCK s
RN

NuN2 dx .

Hence, by integrating, we find (4.1). We return to (4.7) with s40, which we
now integrate between 0 and T ; this yields

C 8Ks
0

T

s
RN

NuN2K12 ds dxGCKs
0

T

s
RN

NuN2 ds dx1
1

2
s

RN

Nu0 N2 dx .

It follows from (4.1) that

s
0

T

s
RN

NuN2 ds dxG
1

2CK

(exp (2CK T)21)s
RN

Nu0 N2 dx ,(4.8)

and we deduce that

C 8Ks
0

T

s
RN

NuN2K12 dxG
exp (2CK T)

2
s

RN

Nu0 N2 dx ,

i.e. (4.2). When s is different from 0, we notice that

2Dua !
k41

n

s
RN

g ¯u

¯xk

uh2

NuN2s22 dxvGNaNs
RN

N˜uN2 NuN2s dx ,

and we obtain

1

2

d

dt
s

RN

NuN2s12 dx1 (s11)2 a 8s
RN

N˜uN2 NuN2s dx1

C 8K (s11) s
RN

NuN2K12s12 dxGCK (s11) s
RN

NuN2s12 dx ,

where

a 84a r 2
NaNs

s11
.

If we suppose

NaNE
11s

s
a r ,
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then a 8 is positive and by the above argument we obtain (4.3), (4.4). This con-
cludes the proof of Theorem 11. r

In the next two theorems, we suppose now that u0 belongs to W 222/q , q ,
with the condition

qD11
N

2
.

In this case, the space W 222/q , q is included in LQ , and the local existence of a
solution u is also a consequence of Lemma 10.

Define

H(u) 4F(u)2m 0 u4 !
j41

K

m j NuN2 j u .

THEOREM 12. – Assume that u0 belongs to W 222/q , q with qD11N/2 and
that a verifies

NaNE
(2K11) q22K

(2K11) q22K22
Da(4.9)

and Dm K D0. Let u be the local solution obtained at Lemma 10 and T less
than the maximal existence time. Then we have

H(u) �L q (0 , T ; Lq ) .(4.10)

PROOF. – Since

qD11
N

2
D11

1

2K11
,

there exists sD0 such that

q411
2s11

2K11
.

Moreover, since

2s12 D
2s

2K11
12 D11

2s11

2K11
,

the initial condition u0 belongs to L2s12 and we deduce from (4.4) that u be-
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longs to L m (0 , T ; Lm ) provided that

NaNE
11s

s
Da .(4.11)

Since

s4 (2K11)
q

2
2K21 ,

we notice that the condition (4.11) is exactly (4.9). Let us show now that H(u)
belongs to L q (0 , T ; Lq ), we already have

s
0

T

s
RN

(NuN2K11 )q Gs
0

T

s
RN

NuNm E1Q .(4.12)

On the other hand, for all j , j� ]1, R , K21(, we have

qE3qG (2 j11) qEm .(4.13)

If qG2, it follows from (4.8), (4.12) and by interpolation that for all j ,
j� ]1, R , K21(,

NuN2 j u�L q (0 , T ; Lq ) .

If qD2, we deduce from (4.13) that is sufficient to see that u belongs to
L q (0 , T ; Lq ) under the assumptions (4.9). But if qD2, there exists s0 D0 such
that q42s0 12 and we deduce (4.3) that u belongs to L q (0 , T ; Lq ) provided
that

NaNE
11s0

s0

Da .

Finally, there remains to show that

11s

s
E

11s0

s0

.(4.14)

But since

s0 4
q

2
21 and s4 (2K11)

q

2
2K21 ,

we deduce that sDs0 and as a consequence (4.14). This concludes the proof of
Theorem 12. r

THEOREM 13. – Assume that u0 belongs to W 222/q , q with qD11N/2 and
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that a verifies

NaNE
(2K11) q22K

(2K11) q22K22
Da

and Dm K D0. Then (1.1) has a unique global solution u belonging to

C( [0 , t], W 222/q , q )

for all tD0.

PROOF. – Let Tm be the maximum existence time. It follows from Theorem
12 that H(u) �L q (0 , Tm ; Lq ) and we infer from Theorem 8 that

u�W 1, q (0 , Tm ; Lq )OL q (0 , Tm ; W 2, q ) .

The Sobolev embedding theorem gives

u�C( [0 , Tm ], W 222q/q , q ) .

Therefore Tm is not the maximal existence time, which proves that u is a global
solution of (1.1).

In order to obtain the uniqueness, we consider two solutions u and v of
(1.1), the function w4u2v verifies

¯w

¯t
2aDw1F(u)2F(v) 40 .(4.15)

Multiplying (4.15) by w and integrating by parts in space, this yields

s
RN

¯w

¯t
w dx1as

RN

N˜wN2 dx1s
RN

(F(u)2F(v) ) w dx40 .(4.16)

Since u and v belong to C ( [0 , Tm ], LQ ), there exists a positive constant C such
that over [0 , Tm ]

NF(u)2F(v)NL2 GCNu2vNL2 .

It follows from (4.16) that

1

2

d

dt
s

RN

NwN2 dx1a r s
RN

N˜wN2 dxGCs
RN

NwN2 dx ,

so that Gronwall’s inequality gives the desired result. This completes the proof
of Theorem 13. r

Denote C 0
Q the space of functions infinitely differentiable with compact

support; a consequence of Theorem 13 is the following:
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COROLLARY 14. – Assume that u0 belongs to C0
Q and that a verifies

NaNE
(2K11) N12

(2K11) N22
Da

and Dm K D0. Then (1.1) has a unique global solution u belonging to
C( [0 , t], LQ ) for all tD0.

PROOF. – We just need to prove that u belongs to C( [0 , t], LQ ) for all tD0.
Let eD0 and define

r(e) 4
(2K11)(11N/21e)22K

(2K11)(11N/21e)22K22
.

u0 belongs to W 222/q , q with q411N/21e and since

lim
eK0

r(e) 4
(2K11) N12

(2K11) N22

and

r(e) E
(2K11) N12

(2K11) N22
,

we can choose e sufficiently small such that

NaNEr(e) Da .

Thanks to Theorem 13, u belongs to C( [0 , t], LQ ) for all tD0. r

We now define notion of global weak-solution of (1.1):

DEFINITION 15. – A function u is a global weak solution of (1.1) if it be-
longs to

L Q
loc (R1 : L2 )OL 2

loc (R1 : H 1 )OL 2K12
loc (R1 ; L2K12 ) ,

and for any c�CQ
0 ([0 , 1Q)3RN ) , it verifies

s
R13RN

g2u
¯c

¯t
1a ˜u ˜c1F(u) ch ds dx4 s

RN

u0 (x) c(Q , x) dx .

THEOREM 16. – Assume that a satisfies the condition

NaNE
(2K11) N12

(2K11) N22
Da
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and Dm K D0. Then for all u0 �L2 , (1.1) possesses at least a global weak-sol-
ution.

PROOF. – Let tD0, introduce a sequence (u0m ) in CQ
0 such that (u0m ) tends

to u0 in L2 and let um be a solution of (1.1) over (0 , t) with initial condition
(u0m ). It follows from (4.1) that the sequence (um ) remains in a bounded set of
L Q (0 , t ; L2 ), from (4.2) that the sequence (um ) remains in a bounded set of
L 2K12 (0 , t ; L2K12 ). With the help of (4.7), we can see that the sequence (um )
remains in a bounded set of L 2 (0 , t ; W 1, 2 ).

These estimates ensure the existence of an element u and a subsequence
still denoted (um) such that as m tends to infinity, (um) tends weakly to u in
L 2 (0, t ; W1, 2 ), weakly to u in L 2K12 (0, t ; L2K12 ) and tends weakly-star to u in
L Q(0, t ; L2 ) We also introduce vm and wm solutions of the following problems:

.
/
´

¯vm

¯t
2a Dvm 1m 0 vm 40 ,

vm (0 , x) 4u0m (x) ,

x�RN , t� (0 , t) ,

x�RN

and

.
/
´

¯wm

¯t
2a Dwm 1m 0 wm 1H(um ) 40 ,

wm (0 , x) 40 ,

x�RN , t� (0 , t) ,

x�RN .

We recall that H4F2m 0 Id ; it is clear that um 4vm 1wm . The sequence (vm )
converges to v , solution of the problem

.
/
´

¯v

¯t
2a Dv1m 0 v40 ,

v(0 , x) 4u0 (x) ,

x�RN , t� (0 , t) ,

x�RN ,

in C([0 , t), L2 )OL 2 (0 , t ; H1 ).
It follows from (4.1) that the term H(um ) is bounded in the space

L q (0 , t , Lq ) with q4 (2K12)O(2K11) and we infer from Theorem 8 that
the sequence (wm ) is bounded in W 1, q (0 , t ; Lq )OL q (0 , t ; W 2, q ). This esti-
mate ensures the existence of an element w and a subsequence still denoted
(wm ) such that (wm ) tends weakly to w in W 1, q (0 , t ; Lq )OL q (0 , t ; W 2, q ). We
can now deduce that the subsequence (um ) converges to u4v1w in
L 1

loc (0 , t ; L1
loc ) and almost everywhere. As a consequence, the sequence

(H(um ) ) tends to H(u) in L 1 (0 , t ; L1
loc ) and for all c in CQ

0 ((0 , 1Q)3Rn ) , as
m tends to infinity

aH(um ), cb tends to aH(u), cb .(4.17)
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It is also clear that when m tends to infinity

(4.18) o ¯um

¯t
2a Dum 1m 0 um , cp tends to o ¯u

¯t
2a Du1m 0 u , cp .

It follows from (4.17) and (4.18) that u satisfies

¯u

¯t
2a Du1F(u) 40 ,

in the distribution sense.
Since v�C([0 , t), L2 ) , w�C([0 , t), W 222/q , q ) and u4v1w , the initial

condition u(0 , x) 4u0 (x), x�Rn make sense. This concludes the proof of The-
orem 16. r

Using the previous decomposition, estimates (4.3), (4.4) and Theorem 8, we
can also prove the following results:

THEOREM 17. – Assume that u0 belongs to L2 OLp , with p4212s (sD0)
and that a satisfies the condition

NaNEming (2K11) N12

(2K11) N22
,

11s

s
h Da

and Dm K D0. Then (1.1) possesses at least a global weak-solution of the form
u4v1w with

v�C([0 , 1Q), Lp ) , w�C([0 , 1Q), W 222/q , q ) and w(0 , Q) 40 ,

with

q411
2s11

2K11
.

In particular if pFKN ,

u�C([0 , 1Q), Lp ) .

REMARK 18. – In fact, the assumption u0 belongs to L2 is not really necess-
ary if we change the definition of a weak-global solution.

THEOREM 19. – Assume that u0 belongs to H 1 OLp with p4212s (sD0)
and that a satisfies the condition

NaNEming (2K11) N12

(2K11) N22
,

11s

s
h Da
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and Dm K D0. Then (1.1) possesses at least a global weak-solution u of the
form u4v1w with

v�C([0 , 1Q), H 1 ) , w�C([0 , 1Q), W 222/q , q ) and w(0 , Q) 40 ,

with

q411
2s11

2K11
.

In particular if sFK and

NaNE
(2K11) N12

(2K11) N22
Da ,

u belongs to C([0 , 1Q), H 1 ) .

REMARK 20. – In the second part of this Theorem, we can take u0 in H 1 for
NG2 and for N43 if KG2, which covers the case of the Fauve-Thual
equation.
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