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Proximal Set-Open Topologies (*).

ANNA DI CONCILIO - SOM NAIMPALLY

Sunto. – Introduciamo una nuova classe di topologie in spazi di funzioni derivanti da
prossimità sul rango, che denotiamo sinteticamente PSOTs, acronimo di proximal
set-open topologies. Le PSOTs sono una naturale generalizzazione delle classiche
topologie di tipo set-open quando l’ordinaria inclusione viene sostituita con l’in-
clusione stretta associata ad una prossimità. Molte e note topologie di tipo set-open
connesse a speciali networks sono esempi di PSOTs. Ogni PSOT è contraibile ad
un sottospazio chiuso che é copia omeomorfa del rango. Prossimità distinte deter-
minano in generale PSOTs distinte. Una PSOT indotta da un prossimità di Efre-
movic d e da un network chiuso ed ereditariamente chiuso a coincide con la topolo-
gia della convergenza uniforme sugli elementi di a generata dalla uniformità mi-
nimale compatibile con d. Quando specializziamo il network e la prossimità otte-
niamo una PSOT che ammette una struttura di gruppo topologico e verifica un
teorema di tipo Arens. Infine diamo semplici condizioni necessarie e sufficienti
per la metrizzabilità.

Introduction.

Let X and Y be T1 topological spaces. Let a be a closed network on X (see
[MN1]). We assume, without any loss of generality, that a is closed under finite
unions and finite intersections and includes all singletons. Set-open topologies
on function spaces have been widely studied. A typical one is Ca4Ca (X , Y)
which has a subbase:

][A , B]: A�a , B open in Y( ,

where:

[A , B] 4 ] f�C(X , Y): f (A) %B( .(1)

When a consists of all finite (compact) sets, Ca is called the point-open
(resp. compact-open) topology. To generalize the compact-open topology to
real-valued noncontinuous functions,to balance the disadvantage A is compact
but f (A) is not compact, McCoy and Ntantu ([MN2]) considered a modification

(*) Lavoro eseguito con fondi MURST 60%.
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of (1) by introducing as subbase the collection of all sets

[A , B] 4 ] f�Y X : f (A) %B( ,(2)

where A�a and B is open in R. Kundu and Raha ([KR]) also study the same
topology but on C(X , R) when members of a are bounded. A set E is bounded
or relatively pseudocompact iff for each f�C(X , R) f (E) is bounded in the
euclidean metric.

In this paper, we consider new function space topologies deriving from
proximity on the range space which generalize the above topology as well. Let
d be a compatible LO-proximity on Y. For A�a and B%Y, we use the
notation:

[A : B]d4 ] f�Y X : f (A) bB( ,(3)

where:

AbB iff A dO B c

and B c denotes the complement of B. The topology Ca , d generated by:

][A : B]d : A�a , B open in Y(

is called the proximal set-open topology [PSOT] induced on Y X by a and d.
Note that, in general, Y has several different proximities which induce differ-
ent PSOTs. We now list how several of the known set-open topologies are spe-
cial cases of PSOTs. When a consists of all finite subsets of X and d is any com-
patible LO-proximity on Y, then relative PSOT is the point-open topology
Cp 4Cp (X , Y). When a consists of all compact subsets of X and d is any com-
patible R (resp. EF)-proximity on regular (resp. completely regular) space Y,
we get the compact-open topology Ck 4Ck (X , Y). When a is the family of
all nonempty subsets of X and d is a compatible EF-proximity on Y, we get
the topology of Leader convergence or convergence in proximity ([L])
Cl 4Cl (X , Y).

When d4d 0 the finest compatible LO-proximity on Y, we get the general-
ized set-open topology (2) of McCoy-Ntantu, Ca , d 0

. Again when Y4R, but d is
a compatible EF-proximity on R, and a consists of all bounded subsets of X,
then we get the bounded-open topology of Buchwalter Cb 4Cb (X , Y). (See [B],
[KR]).

The choice of a as a network implies that any PSOT is finer than the point-
open topology, so that any PSOT contains a closed retract which is homeomor-
phic copy of the range space Y. Thus any continuous invariant property and
any topological property which is hereditary or closed hereditary of a PSOT
reflects on Y. We will prove also that some PSOTs absorb properties from Y.
When d is an EF-proximity, i.e. Y is uniformizable in the Weil sense, then
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Ca , d is uniformizable too. More precisely, when a is hereditarily closed, Ca , d

agrees with the topology of uniform convergence on members of a w.r.t. the
minimal uniformity compatible with d.

After pointing out properties of a general PSOT we dedicate our interest to
PSOTs deriving from R-proximities. For that we state relevant properties of R
and EF proximities. Then we focus our attention on general networks and
compare PSOTs generated by a same network but different proximities. A
PSOT can have good separation properties also when the proximity is LO but
nicely related to the network. We go on comparing PSOTs with set-open
topologies, uniform topologies, graph topology, Whitney and Krikorian topolo-
gies. Finally generalizing the concept of boundedness in the more general
ones of Y-total boundedness and Y-compactness we fix definitively our atten-
tion on Ca , d 0

, where a is done by Y-totally bounded closed subsets of X. We
show that Ca , d 0

satisfies an Arens-type theorem. Moreover it admits a topolog-
ical group structure when the range space Y is a topological group for which
the right and left uniformities agree. In conclusion we give necessary and suf-
ficient conditions for Ca , d 0

to be metrizable.

1. – Preliminaries and generalities.

For definitions, notations and terminology we refer to [NW]. We only re-
mark that briefly speaking a Lodato proximity, LO-proximity in short, d, on a
set X is a symmetric nearness between pairs of non-empty subsets of X which
induces a topology on X with the property: two sets are near iff their closures
are near. Any T1 topological space has a finest compatible LO-proximity, d 0 ,
called the Wallmann proximity, defined by

AdO 0 B iff AOB 4¯(4)

and a weakest one, d f , defined by:

AdO f B iff AOB 4¯ and A or B is finite .(5)

Another interesting compatible LO-proximity d 1 , called the Alexandroff
proximity, is defined by:

AdO 1 B iff AOB 4¯ and A or B is compact .(6)

A regular proximity, R-proximity in short, is a LO-proximity with the fur-
ther property:

xdOA ¨ )Ec¯ such that xdOX2E and AdOE .(7)

Any regular proximity induces a regular topology and any regular space has
compatible regular proximities. An Efremovic proximity, EF-proximity in
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short, is a LO-proximity with the following additional property:

AdOB ¨ )Ec¯ such that AdOX2E and BdOE .(8)

An EF-proximity induces a completely regular topology and any completely
regular space admits compatible EF-proximities. There exists for any com-
pletely regular space X a finest compatible EF-proximity d F defined by: AdOF B
iff there exists a continuous function f : XKR such that f (A) 40 and f (B) 41.
The finest EF-proximity d F coincides with the finest compatible LO-proximity
d 0 iff the space X is normal. When a space X is Tychonoff any of its T2 compact-
ifications g(X) induces a compatible EF-proximity d defined by:

AdB ` Clg(X) (A)OClg(X) (B) c¯ .(9)

Any diagonal uniformity m induces a natural proximity d4d(m) defined
by:

AdB iff U [A]OBc¯ for each U�m .(10)

If m is a Weil uniformity, then d(m) is an EF-proximity. In the metric case two
sets are near in the natural proximity iff their distance is zero. We remind fur-
ther that there exists just one totally bounded uniformity, which is also the
minimal one,compatible with a fixed EF-proximity. More we remark that it
is enough agreeable to work with regular proximities, since every regular
proximity derives from a diagonal uniformity which has the same properties
of a Weil uniformity except for triangle inequality satisfied only pointwise,
see [W].

A function f between two proximal spaces (X , d), (Y , d 8 ) is proximally
continuous iff two sets which are d-near admit d 8-near images. Any uniformly
continuous function is proximally continuous. In the metric case uniform conti-
nuity and proximal continuity coincide.

PROPOSITION 1.1. – If d is an R-proximity, then any two disjoint closed
sets one of them is compact are far.

PROOF. – If a point x is far from a set B, then in R-proximity there is a nhbd
of x which is far from B. So if A is compact and B is a closed set disjoint from it,
then a standard argument shows that A is far from B. r

THEOREM 1.2. – Let X be Tychonoff. If two closed sets A and B are far w.r.t.
any EF-proximity, then necessarily one of them must be compact.

PROOF. – If both A and B were not compact, then both had to contain nets
]al(, ]bm( which don’t accumulate in X. Taken an arbitrary T2-compactifica-
tion of X, g(X), the nets ]al(, ]bm( must accumulate somewhere in it. Let a and
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b be two points in g(X) towards ]al(, ]bm( accumulate respectively. Collapse
the two points a and b to just one point, so obtaining a new T2-compactification
of X which induces an EF-proximity in which A and B are near since their clo-
sures in it intersect. A contradiction. r

COROLLARY 1.3. – When X is Tychonoff, inf ]d : d is EF( 4

inf ]d : d is R( 4d 1 , where d 1 is defined by (6).

PROOF. – It is very simple to deduce from Proposition 1.1 and (7), (8) that
when d 1 is R then it is EF too. The agreement between d 1 and infima comes
from Theorem 1.2. r

THEOREM 1.4. – If X is Tychonoff ,the proximity d 1 , see (6), is an R (equiv-
alently an EF)-proximity iff the space X is locally compact.

PROOF. – It comes out from Corollary1.3 and the following result: A Ty-
chonoff space X is locally compact iff the lattice of its T2-compactifications ad-
mits minimum. See (9). r

2. – PSOTs.

A collection a of subsets of a topological space X is a network iff for any
point x�X and any open set V with x�V there exists a member A�a which
contains the point x and is contained in the open set V. Given a network a on X
and a LO-proximity d on Y , the proximal set-open topology on Y X, briefly
PSOT, induced by a and d has as subbasic elements the sets introduced by (3).
If d is understood, we drop d writing instead of [A : B]d more simply [A : B].
When Y satisfies higher separation axioms, we’ll require d to satisfy stronger
proximity axioms. Mostly we deal with continuous functions.

As in [MN1], we have:

LEMMA 2.5.

( i ) [A : B1 OB2 ] 4 [A : B1 ]O [A : B2 ] .

( ii ) [A1 NA2 : B] 4 [A1 : B]O [A2 : B] .

LEMMA 2.6. – If d is a LO-proximity and a is a network containing all the
singletons, then Cp 4Cp ,d%Ca ,d .

PROOF. – It is trivial since a point x is d-near to a set A iff x belongs to the
closure of A. r

When Y is Hausdorff it follows very easily from Lemma 2.6 that by identi-
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fying any point y�Y with the constant function from X to Y, cy , naturally de-
termined from it, Y embeds in Y X equipped with any PSOT like a closed sub-
space e(Y). More any evaluation function is a retraction of Y X onto e(Y).

COROLLARY 2.7. – If d is an R-proximity and a a network containig all
compact sets, then Ck 4Ck ,d%Ca ,d .

PROOF. – It follows immediately from Proposition 1.1. r

The following example will prove that we cannot remove in Corollary 2.7 d
to be R.

EXAMPLE 1. – Ck cCk , d f
.

Let X4Y4Q be equipped with the natural topology, k the network of all
compact sets. More let Y have the coarsest LO-proximity introduced in (5).
Further let f be the identity map, A4 ]1/n : n�N 1(N ]0( and V a bounded
open set containing the compact set A. Then f� [A , V] �Ck but no basic open
set in the PSOT, Ck , d f

, can be contained in [A, V]. Suppose f�O][Ai : Vi ]d f
:

i41, 2 , R , n(, Ai finite, Vi bounded till k, 1 GkGn; more, from k on, Ai not
finite, consequently Vi with finite complement. Observe that there exists a
point y in O]Vi : i4k11, R , n( but not in V. Pick up 1 /n in A but outside
N]Ai : 1 , R , k( and choose a closed rational interval I centered in 1 /n and ir-
rational radius which excludes all points of N]Ai : i41, R , k(. Glueing the
constant function cy on I to the identity map on Q2I, we construct a continu-
ous function g which is in O][Ai : Vi ]d f

: i41, 2 , R , n( but not in
[A , V]. r

COROLLARY 2.8. – If Y is the real line R, d is an R-proximity on R and a is
a network containing all bounded sets of X, then Cb 4Cb , d%Ca , d .

PROOF. – It is enough to observe that if A is bounded f (A) is compact
in R. r

Again in this case too, the inclusion is strict.

PROPOSITION 2.9. – Let d be an EF-proximity compatible with R. If X is
normal and a contains an unbounded subset, then Ca , d + Cb .

PROOF. – Suppose A�a is unbounded and f� [A : V]d where V is a proper

open set in R. Suppose f� 1
i41

n

[Ai : Vi ]d 0
% [A : V]d where each Ai is bounded. We
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claim that A% 0
i41

n

Ai and so A is bounded. For if not, there is an a�A2 0
i41

n

Ai .
Set

g/Ai 4 f and g(a) �R2V .

Since g : 0
i41

n

Ai N ]a( KR is continuous, by Tietze’s extension theorem there is

a continuous extension g: XKR . Then g � 1
i41

n

[Ai : Vi ]d 0
but g � [A : V]d . A

contradiction. r

PROPOSITION 2.10. – If d and d 8 are LO-proximities, dEd 8 and further d
is EF, then Ca , d%Ca , d 8 , for any network a. In particular, if d is EF, then
Ca , d%Ca , d 0

.

PROOF. – Suppose f� [A : B]d , that is f (A) bd B. Since d is EF, there is an
open E%Y such that f (A) bd Ebd B. Thus f� [A : E]d 8% [A : B]d and so
Ca , d%Ca , d 8 r

We remark that it may happen dEd 8 and anyway get Ca , d4Ca , d 8. An
example of this situation is when each A�a is compact and d , d 8 are both R-
proximities. Later on we will be able to illustrate completely the relation-
ship.

PROPOSITION 2.11. – Let X, Y be Tychonoff spaces and d 1 the Alexandroff
proximity on Y given in (6). If d is an R-proximity on Y and a an arbitrary
network on X, then Ca , d 1

%Ca , d and when X is locally compact

Ca , d 1
4 inf ]Ca , d : d is R( 4 inf ]Ca , d : d is EF( .

PROOF. – It follows from Proposition 1.1, Theorem 1.2, Corollary 1.3 and
Theorem 1.4. r

For each EF-proximity d on Y and any closed network a on X which in-
cludes all compact sets a first comparison can be summarized in the following
picture:

Cp %Ck %Ca , d%Ca , d 0
%Cw , d 0

,

Cp %Ck %Ca , d%Ca%Cw ,

Cp %Ck %Ca , d%Cw , d%Cw , d 0
.

Here w denotes the family of all closed sets in X. r

Now to add some further results we focus our attention on general net-
works. Let a , b be networks. We say that a refines b iff any element in a can
be covered by a finite union of elements in b; a approximates b iff any element
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A in a and any open set V containing A there is an element of b which sits be-
tween A and V.

PROPOSITION 2.12. – If d is LO, Y contains a non trivial path and Ca , d%
Cb , d , then a refines b.

PROOF. – Analogous to Proposition 1-1.1 in [MN1 ]. r

PROPOSITION 2.13. – If d is EF, b is hereditarily closed network and a re-
fines b, or b is an arbitrary closed network approximated from a then
Ca , d%Cb , d .

PROOF. – Firstly suppose b is hereditarily closed network and a refines b.
Let f� [A : V]d . Then there exists in m*, the unique totally bounded uniformity
compatible with d, a diagonal nhbd U such that U[ f (A) ] %V. Pick up again in
m* an open diagonal nhbd W for which WoW%U and a closed one D%W.
Choose a1 , a2 , R , am �A so that f (A) %D[ f (a1 ) ]NRND[ f (am ) ]. On the
other hand A%B1 NRNBn , Bi �b , i41, R , n. Call N the set of all pairs
(i , j ) which determine a non empty intersection Bij 4Bi O f 21 (D[ f (aj ) ] ).
These last ones all stay in b. Then f�O][Bij : W[ f (A) ] ]d : (i , j ) �N( and
more any other function g in it is contained in [A : V]d. Secondly, if a approxi-
mates b between A and f 21 (W[ f (A) ] ) sits a member B�b such that
f� [B : W[ f (A) ] ]d% [A : V]d . r

COROLLARY 2.14. – Let X,Y be Tychonoff spaces and d EF on Y. Under the
conditions of the previous propositions it follows:

(i) X is compact iff Ck 4Cw , d iff Ck 4Cw .

(ii) Each compact set in X is finite iff Cp 4Ck.

(iii) a is a finite network iff Cp 4Ca , d 0
iff Cp 4Ca , d .

(iv) a is a compact network iff Ck 4Ca , d 0
iff Ck 4Ca , d .

(v) X is finite iff Cp 4Cw iff Cp 4Cw , d .

Here again w denotes the family of all closed sets. r

Let a be a network on X, (X , d), (Y , d 8 ) LO-proximity spaces. A function
f : XKY is called a-p-continuous iff for

A , B�a , f (A)dO8 f (B) implies AdOB .

Obviously:

p2continuity ¨ a2p2continuity ¨ continuity ¨ continuity on a .(11)

The following is a generalization of Leader’s result.
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THEOREM 2.15. – Suppose fl : (X , d) K (Y , d 8 ) is a net of a-p-continuous
functions converging to f in Ca , d 8 ; more d 8 is EF, then f is a-p-continu-
ous.

PROOF. – Suppose A , B�a , f (A)dO8 f (B). Then there is an E%Y such that
f (A)dO8 E , E c dO8 f (B). Since flK f in Ca , d 8, eventually fl (A)dO8 E and E c dO8 fl (B).
So eventually AdO fl

21 (E) and BdO f 21
l (E c ). Then AdOB and f is a-p-continu-

ous. r

COROLLARY 2.16.

(a) C(X , Y) is closed in Y X equipped with any PSOT deriving from a4

CL(X) and an R-proximity.

(b) Convergence in Ca ,d preserves a-continuity when d is an R-proximity
and a is hereditarily closed; in particular continuity when a4

CL(X). r

We are now able to give examples of strict inclusions relatively to Proposi-
tion 2.10. Let X4Y4R with the usual topology. Let d 1 be the EF-proximity
induced by the Alexandroff one-point compactification, d 2 the EF-proximity
induced by the two-points compactification and d 3 the usual metric proximity.
The finest EF-proximity on R is d 0 . We now give examples to show that
Ca , d 1

, %
c

Ca , d 2
%
c

Ca , d 3
%
c

Ca , d 0
, where a4CL(X), following two different

schemes of demonstrantion.
All inclusions follow from Proposition 2.10 since d 1 Ed 2 Ed 3 Ed 0 and each

of them is EF.

EXAMPLE 2. – Ca , d 1
%
c

Ca , d 2
.

Remind that d 1 , d 2-p-continuity for bounded functions is simply equiva-
lent to continuous extendability to the Alexandroff one-point compactification
and to the two-points compactification of R respectively.

Let f�C(R , R) be the function whose graph consists of segments joining
(2n , 22n) to (2n11, 2n11), (2n11, 2n11) to (2n12, 22n22) for
n�NN ]0( and their symmetric ones w.r.t. y-axis. Consider A4 ]2n11:
n�NN ]0((, B4 ]2n : n�NN ]0((. Here Ad 2 B but f (A)dO 2 f (B). So f,
which is p-continuous from (R , d 1 ) in itself, is not p-continuous from (R , d 2 )
in itself. By (11) the set F of all d 2-p-continuous functions is closed in Ca , d 2

. We
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show that F is not closed in Ca , d 1
, by constructing a sequence of functions in F

which converges to f in Ca , d 1
. Set fn : RKR by:

when n is odd when n is even

fn (x) 4
.
/
´

f (x) ,

n ,

if x� [2n , n] ,

otherwise .
fn (x) 4

.
/
´

f (x) ,

2n ,

if x� [2n , n] ,

otherwise .

Then fn � F and we show that fn converges to f in Ca , d 1 .
Let f� [C : V]d 1

where C is closed and V is open in R. It follows that f (C)O
X2V4¯ and f (C) or X2V is bounded. If f (C) is bounded, C is bounded too.
Put Nsup CNGn0 �N Then fn (C) 4 f (C) for any nDn0 . So fn � [C : V]d 1

for any
nDn0 . If, on the other hand, X2V is bounded and Nsup (X2V)NGn0 �N,
then fn (C)OX2V4¯ for each nDn0 and again fn � [C : V]d 1

when nDn0 .

EXAMPLE 3. – Ca , d 2
, %

c

Ca , d 3
.

Let now F denote the set of all p-continuous functions from (R , d 3 ) in it-
self. Then F is closed in Ca , d 3

. We show instead, by using the same argument of
the previous example, that F is not closed in Ca , d 2

. It is well known that the
square function f, f (x) 4x 2, doesn’t belong to F. Set for each n�N :

fn (x) 4
.
/
´

x 2 ,

n 2 ,

if x� [2n , n] ,

otherwise .

Suppose f� [A : V]d 2
. Since f (A) is bounded below by zero, it is clear that

f (A)OX2V4¯ and f (A) or X2V must be bounded above. Firstly, f (A) is
bounded above implies A is bounded and there exists n0 �N such that for each
a�A , NaNEn0 . For nDn0 , fn (A) 4 f (A) and so fn (A)OX2V4¯ . Secondly,
X2V is bounded above, and Nsup (X2V)NGn1 �N , implies for nF

n1 , fn (A) % f (AO [2n , n] )N]n 2 ( and n 2 �X2V. So again fn (A)OX2V4¯ .
Thus fn K f in Ca , d 2

but clearly fn doesn’t converge to f in Ca , d 3
.

EXAMPLE 4. – Ca , d 3
, %

c

Ca , d 0
.

Suppose f is the identity map on R, A4N][n21/2n , n11/2n ]: nF2(,
V4N]]n21/2n21 , n11/2n21 [: nF2(. Then f� [A : V]d 0

�Ca , d 0
but no

O][Ai : Vi ]d 3
: i41, R , n( �Ca , d 3

containing f can be contained in it. There
will be eD0 such that the e-collar of any Ai is contained in Vi . Perturbing f by
e/2 we determine a continuous function g4f2e/2 which is in O][Ai : Vi ]d 3

:
i41, R , n( but not in [A : V]d 0

, since g(n21/2n ) is outside V when
3/2n Ee/2. Thus Ca , d 3

%
c

Ca , d 0
. r

We now give compactness conditions in a PSOT when d is EF on Y.
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Since Cp %Ca , d , Ca , d is proper. A compact subset F % Ca , d must be closed
and pointwise bounded, ([MN1]). Since Ca ,d is conjoining, it is weakly conjoin-
ing and so it is hyper-Ascoli. Hence a compact subset F % Ca , d is closed, point-
wise bounded and evenly continuous.

Suppose F % Ca , d is closed, pointwise bounded and evenly continuous. Then
F is equicontinuous w.r.t. the unique totally bounded uniformity m* compatible
with d ([MN1 ]. It follows:

THEOREM 2.17. – Let X be pseudocompact and Y metrizable, more d EF on
Y. Then F %Ca , d is compact if and only if F is closed, pointwise bounded and
evenly continuous (or equicontinuous w.r.t. m*).

3. – Comparison.

In the previous paragraph we compared PSOTs among themselves varying
the network or proximity or both. Now we go on with comparison of PSOTs
with set-open topologies, uniform topologies, graph topology, Whitney and
Krikorian topologies.

We start with set-open topologies:

PROPOSITION 3.18. – If d ia an EF-proximity, a is a closed and hereditari-
ly closed network, then Ca , d%Ca .

PROOF. – Suppose f� [A : V]d . That means there exists a diagonal nhbd U
in the minimal uniformity m* compatible with d with U[ f (A) ] %V. Pick in m* an
open symmetric diagonal nhbd W such that WoW%U and more, always in m* a
closed diagonal nhbd D contained in W. Since m* is totally bounded for some
a1 , a2 , R , an in A

f (A) %D[ f (a1 ) ]ND[ f (a2 ) ]NRND[ f (an ) ] %D[ f (A) ] %W[ f (A) ] .

For each i41, R , n , Ai 4AO f 21 (D[ f (ai ) ] is in a. Then

f� ]OAi , W[ f (ai ) ]: i41, R , n( ,

which is easily seen to be a basic element in Ca contained in
[A : V]d . r

But usually the inclusion is strict.

EXAMPLE 5. – Ca , dcCa .

Let X4R2 and Y4R. Y is supposed to be equipped with the natural prox-
imity, a the network of all closed subsets of R2. The first projection p x of R2

onto R is in [C , R1 ] �Ca , where C4 ](x , y): y41/x , xD0(. But no basic
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open set in Ca , d which contains p x can be contained in [C , R1 ]. When
p x �O][Ai : Vi ]d : i41, R , n(, where any Ai is closed in R2 and Vi is open in
R we can find eD0 with the e-collar of any p x (Ai ) contained in Vi . Consider
the composition g of p x with the continuous function f : (x , y) �R2 K

(x2e/2 , y) �R2. Then g�O][Ai : Vi ]d : i41, R , n(, but g� [C , R1 ]. r

We continue with uniform topologies.
When Y is completely regular, m is a compatible Weil uniformity on Y and a

is a network on X, Ca , m denotes the topology of uniform convergence on mem-
bers of a. Ca , m is uniformized by the Weil uniformity which admits as subbase
the collection

]U×[A]: U�m , A�a( ,

where:

U×[A] 4 ]( f , g) �C(X , Y): ( f (x), g(x) )�U , (x�A( .

THEOREM 3.19. – If d is EF, m is any diagonal uniformity compatible with
d, a an arbitrary network on X, then Ca , d%Ca , m .

PROOF. – Suppose f� [A : V]d. Then f (A) bd V. Then there exists an U�m
such that U[ f (A) ] %V . It is then easy to show that U×(A)( f ) %
[A : V]d . r

THEOREM 3.20. – If d is EF and a is a closed, hereditarily closed network,
then Ca , d4Ca , m*.

PROOF. – We have to show that if a net flK f in Ca , d , then it converges in
Ca , m* too. Consider U , W , D�m*, W is open symmetric and WoW%U, more D
closed and contained in W. Pick up a1 , R , an �A such that:

f (A) %D[ f (a1 ) ]NRND[ f (an ) ] .

Set Ai 4AO f 21 (D[ f (ai ) ] ). Then f�O][Ai : W[ f (ai ) ]d : i41, R , n(. So for
some l 0 , fl is in it if lFl 0 . It follows that, when lFl 0 , fl� U×[A]( f ). For each
a�A and lFl 0 , fl (a) �W[ f (ai ) ] for some i41, R , n but f (a) �W[ f (ai ) ] as
well. Thus ( fl (a), f (a) )�WoW%U. r

Theorem 3.20 jointly a result in [N] gives us the opportunity of introducing
a special function space for which any two distinct EF-proximities on the
range space induce different PSOTs.

EXAMPLE 6. – dG
c

d 8 and Ca ,d , %
c

Ca ,d 8 .
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Suppose X and Y are both non empty, X is equipped with the discrete topol-
ogy and Y is completely regular.More NXNFNYN, i.e there exists a function g
from X onto Y obviously continuous. If dG

c

d 8 are two EF-proximities on Y
then m*G

c

m*8, where m*, m*8 are the totally bounded uniformities compatible
with them respectively. Thus there exists in m*8 a diagonal nhbd U such that
for any diagonal nhbd W in m* it is possible to find two points xW , yW in Y with
(xW , yW ) �W but outside U. Define for any W�m* the function fW : YKY in
the following way:

fW (y) 4y , when ycyW and fW (yW ) 4xW .

By discreteness of X any gW 4 fW og is continuous. It is easy to show that the
net ]gW ( converges to g in Ca , d but not in Ca ,d 8 where W runs in m* ordered by
the reverse inclusion. r

Let Cg denote the graph topology [Na]. Following summarizes our
knowledge.

THEOREM 3.21. – Let a4CL(X), and d EF on Y. Then

Ca , d%Cg .

More, X is countably compact iff Ca , d4Cg . r

Let (Y , r) be a metric space. For each f�C(X , Y) and f�C(X , R1 )
define:

Br ( f , f) 4 ]g�C(X , Y): r( f (x), g(x) ) Ef(x), (x�X( .

The family ]Br ( f , f): f�C(X , Y), f�C(X , R1 )( is a base for a topology
CW (X , Y), called the fine (Whitney or Morse) topology. From [MN1] we
get:

THEOREM 3.22. – If d is EF on Y, a is a closed network on X, then

Ca , d%CW .

Moreover, X is pseudocompact if and only if Ca , d4CW .

See also [DHHM], [DDR]. r

The Krikorian topology Ckr
introduced by Krikorian [K] and also studied in

[DMN], [DHHM], has a base consisting of sets of the form

U((Aa ), (Vb ), W)4 ] f�C(X , Y): f (Aa ) %VW(a) (

where (Aa ) is a locally finite closed cover of X , (Vb ) is an open cover of Y and W
maps a’s into b’s.
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If we suppose that X and Y are Tychonoff and d is EF on Y, from [DHHM],
with no pseudocompactness condition on X, we get:

THEOREM 3.23. – The following are equivalent:

(i) X countably compact, Y first countable and paracompact implies
Ckr

%Ca , d .

(ii) Y Tychonoff with a countable base at a nonisolated point and
Ckr

%Ca , d implies X is countably compact [DHHM].

(iii) Ca , d%Ckr
. r

Some more results are contained in:

THEOREM 3.24. – The following are equivalent:

(a) X is countably compact.

(b) Y first countable paracompact space and d EF on Y implies

Ca , d4Ckr
. r

4. – Separation axioms.

We have seen that Cp %Ca , d for all compatible proximities d on Y. Conse-
quently, if Y is T1 or T2 , then so is Ca , d . We now give a sufficient condition for
Ca , d to be regular. Let a be a network on X and d a compatible LO-proximity
on Y. Then d is said to be regular w.r.t. a iff for each A�a , f�C(X , Y) and V
open in Y, f (A) bV implies there is an open set U in Y such that

f (A) bU% U bV .

Naturally any EF-proximity is regular w.r.t. all networks while any R-proxim-
ity is regular w.r.t. any compact network.

THEOREM 4.25. – If a compatible LO-proximity d on Y is regular w.r.t. a,
then Ca , d is regular.

PROOF. – Suppose A�a , V open in Y and f� [A : V]d . Then f (A) bV. Hence
there is an open set U%Y such that f (A) bU% U bV. So:

f� [A : U]d%Cl [A : U]d% [A , U] % [A : V]d

equivalently Ca , d is regular. If g� [A , U] , then there exists an a�A such
that g(a) � Uc, or equivalently g� [a , Uc ], but [a , Uc ]O [A : U]d4f. r
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THEOREM 4.26. – If d is a compatible EF-proximity on Y and a any
network on X, then Ca , d is Tychonoff.

PROOF. – If f� [A : V]d, then f (A) bV. There exists a proximally continuous
function c : YK [0 , 1 ] such that c( f (A) )40, c(V c ) 41. For h�C(X , Y), we
define f(h) 4 sup ]c(h(a) ) : a�A(. Clearly f( f ) 40. If g� [A : V]d, then
g(A) dV c. Since c is p-continuous, c(g(A) ) d]1( and so f(g) 41. Thus
f( [A : V]d

c ) 41. We now show that f is continuous. Suppose f(h) 4r� [0 , 1 ].
For each eD0, there is an a�A such that c(h(a) � [0 , 1 ]O (r2e , r1e) 4U.
So h(a) �W4c21 (U) which is open in Y. Thus h� [a , W] and h� [A : W 8 ]d

since h(A) bW 84c21 ([0 , 1 ]O [0 , r1e) ). So h� [a , W]O [A : W 8 ]d which
is open in Ca , d and if g� [a , W]O [A : W 8 ]d , then f(g) �W. Hence f is
continuous. r

5. – Ca , d 0
.

The concept of boundedness or relatively pseudocompactness can be natu-
rally generalized in two different ways.

Let X and Y be topological spaces. A subset A of X is said to be Y-compact
provided f (A) for any f�C(X , Y) is relatively compact, i.e. f (A) is compact. If Y
is uniformized by a uniformity m, a subset A of X is said Y-totally bounded
when f (A) is totally bounded for any f�C(X , Y). Trivially when Y4R the
three notions coincide. More when Y4R and X is realcompact boundedness is
just compactness. In T4 boundedness agrees with pseudocompactness which in
that case is countable compactness. Of course Y-compactness implies Y-total
boundedness but generally the three notions are distinct. Y-compactness flats
in boundedness when Y contains a closed uniformly isomorphic copy of R with
the standard uniformity.

Now suppose Y to be regular.

PROPOSITION 5.27. – If a is a Y-compact network in X and d is a regular
proximity on Y, then Ca , d4Ca , d 0

.

PROOF. – Note that two disjoint closed sets one of which is compact are d-
far, see Proposition 1.1. So when A is Y-compact and V is open in Y, then
[A : V]d4 [A : V]d 0

. r

More, when Y is completely regular:

PROPOSITION 5.28. – Let d be an EF-proximity on Y and m a uniformity
compatible with d . If the network a is hereditarily closed and Y-totally
bounded, then Ca , m4Ca , d .
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PROOF. – From Theorem 3.20 it is enough to show that Ca , m%Ca , d . Consid-
er a function f, a diagonal nhbd U�m and A�a. Pick W�m open symmetric
and with WoW%U, more D�m closed and DoD%W. Since f (A) is totally
bounded, for some a1 , R , an �A it follows

f (A) %D[ f (a1 ) ]NRND[ f (an ) ] .

Set Ai 4AO f 21 (D[ f (ai ) ] ), i41, R , n . Then O[Ai : W[ f (ai ) ]]d�Ca , d con-
tains f and it is contained in U×[A]( f ). r

The following theorem synthezizes the previous results:

GENERALIZED ARENS THEOREM 5.29. – If Y is completely regular, m is any
diagonal uniformity consistent with Y and a is a hereditarily closed, Y-com-
pact network in X, then Ca , m4Ca , d 0

. r

When X is completely regular, Y is metric and a is the network of all Y-to-
tally bounded subsets of X, Ca , d 0

can be an interesting object attached to X
and Y. Suppose the continuous functions from X to Y generate a unifomity m
consistent with X, which characterizes, as it is well known, as the weakest one
for which any of them is uniformly continuous. Any subset A of the uniform
completion X× of X w.r.t. m which is relatively compact has a trace on X which
naturally is m-totally bounded. On the other hand the collection a of all those
traces, that is of all subsets of X whose closure in X× is compact, is a hereditari-
ly closed network which is stable under finite unions. Thus the topology of uni-
form convergence on the members of a coincides with Ca , d 0

. We obtain partic-
ular cases by putting Y4R or Y4RI, where RI is the set of all continuous
functions from I4 [0 , 1 ] to the reals equipped with the supmetric. In the for-
mer case X× is the Nachbin-Hewitt realcompactification of X; in the latter one X×

is the completion of the Tukey-Shirota uniformity of X.

6. – Topological group structure.

When Y is a topological group, C(X , Y) can be equipped with a natural al-
gebraic structure. We give conditions for Ca , d 0

to be a topological group and
then a homogeneous space. Any topological group can be uniformized by two
natural diagonal uniformities, the left uniformity and the right one. Generally
they are distinct, but they coincide when the group is abelian or compact and
then, of course, when it is a (subgroup of a) product of an abelian group and a
compact one.

THEOREM 6.30. – If Y is a multiplicative topological group for which the
left uniformity agrees with the right one and a is a hereditarily closed Y-
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compact network in X, then Ca , d 0
is a topological group w.r.t. the usual

product.

PROOF. – When the left uniformity of a topological group agrees with the
right one the passage to inverse in Y is uniformly continuous w.r.t. the left uni-
formity on both sides.This implies that for any nhbd U of the unity e, it is pos-
sible to find two nhbds of e, V , W , such that

VoV%U and VxW%Ux for each x�Y .

So choosing x 8�Vx and y 8�Wy, since naturally VxWy%Uxy, then x 8 y 8�
Uxy. Thus the product

(Y , left)3 (Y , left) K (Y , left)

is uniformly continuous too. Now it is possible to show that

( f , g) �Ca , left 3Ca , left K fg�Ca , left

is continuous. Fixed any nhbd U of the unity e and any member of A�a, after
choosing V and W as above, it is easy to show that

if h� V×[A]( f ), k� W×[A](g), then hk� U×[A]( fg) .

Continuity of the passage to inverse in Ca , left derives in a same way from uni-
form continuity of the passage to inverse in Y. The final result follows from the
agreement of Ca , left with Ca , d 0

due to generalized Arens theorem 5.29. r

7. – Metrization theorem.

Let X be completely regular, (Y, d) a bounded metric space containing an
arc, and a a Y-totally bounded network in X closed under finite unions and
hereditarily closed.

THEOREM 7.31. – The following properties are equivalent:

(1) Ca , d 0
is metrizable.

(2) Ca , d 0
is first countable.

(3) a contains a countable subcollection b4 ]A1 , R , An , R( such that
any A�a is contained in some An .

PROOF. – (1) ¨ (2) is trivial. (2 ) ¨ (3). Let be g(0) the origin of an arc in
Y and cg (0) the constant function determined from it. Put V4Y2 ]g(1)(.
Then, for each A�a, cg(0) � [A : V]d 0

. But cg(0) has a countable family of basic
nhbds ]Un : n�N( of the type Un 4 ]O[Ai

n , Vi
n ]d 0

: i�Fn (. So for some inte-
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ger n

cg(0) �O][Ai
n , Vi

n ]d 0
: i�Fn ( % [A , V]d 0

.

Observe g(0) �O]Vi
n : i�Fn (. The set A must be contained in ]NAi

n : i�Fn (.
If it wasn’t so, we should find a�A , a� ]NAi

n : i�Fn ( and by complete
regularity of X a continuous function f : XK [0 , 1 ] such that f (a) 41 and
f (NAi

n ) 40 . The composition g i f : XKY is in O][Ai
n Vi

n ]d 0
: i�Fn (, infact

g i f (Ai
n ) 4g(0) �Vi

n . But since g i f (a) 4g(1) �V , g i f� [A , V]d 0
. A contra-

diction. The subcollection b we look for is done from all finite unions of “Ai
n”,

where i runs Fn and n runs the integers.
(3) ¨ (1). From Prop. 5.28 Ca , d 0

agrees with the topology of uniform on-
vergence on members of a and then it is just the topology of uniform conver-
gence on members of b which is metrized, as well-known, by:

r( f , g) 4!
n

1

2n
r n ( f , g)

where r n is the pseudometric defined by:

r n ( f , g) 4 sup ]d( f (a), g(a) ) : a�An ( . r
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