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Superminimal Fibres in an Almost Hermitian Submersion.

BILL WATSON (*)

Sunto. – Se la varietà base, N , di una submersione quasi-Hermitiana, f : MKN , è
una G1-varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, M ,
è G1 . Se la varietà base, N , è Hermitiana e le fibre sono subvarietà bidimensionali
e superminimali, allora lo spazio totale, M , è Hermitiano.

It is natural question to ask what conditions on an almost Hermitian sub-
mersion, f : (M 2m , g , J) K (N 2n , g

S

, J
S

), are sufficient to induce a given almost
Hermitian structure from the Gray-Hervella list [Gr-He] onto the total space,
(M 2m , g , J). The first study of the induction of a given almost Hermitian
structure onto the total space of an almost Hermitian submersion was that of
L. Vanhecke and the author [Wa-Va2], in which we characterized almost semi-
Kähler submersions. Here we significantly extend the list of induced almost
Hermitian structures.

All manifolds considered herein are assumed to be smooth, complete, and
connected. All mappings, vector fields, sections, etc., are assumed to be
smooth.

1. – Almost Hermitian manifolds.

An almost complex structure on a smooth manifold M is a tensor field J of
type (1 , 1 ) such that J 2 42Id . If M is equipped with a chosen almost complex
structure, J , then the almost complex manifold, (M , J), is necessarily orien-
table and of even dimension, 2m . The Nijenhuis tensor of the almost complex
structure J on (M , J) is the tensor field N of type (1 , 2 ) given by

N(X , Y) 4 [X , Y]1J[JX , Y]1J[X , JY]2 [JX , JY] .(1.1)

The well-known Newlander-Nirenberg Theorem [Ko-No] states that J is
the almost complex structure associated to a complex manifold structure on M
if and only if the Nijenhuis tensor of J vanishes. If N is zero, we say that J is
integrable.

A Riemannian manifold (M 2m , g) equipped with an orthogonal almost com-

(*) E-mail: to watsonwHstjohns.edu
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plex structure, J, is called an almost Hermitian manifold. The Kähler 2-form
on the almost Hermitian manifold (M 2m , g , J) is given by v(X , Y) 4g(X , JY).
An almost Hermitian manifold, (M 2m , g , J), on which dv40 is called almost
Kähler. In the lattice of almost Hermitian structures defined by A. Gray and
L. Hervella [Gr-He], the class of almost Kähler structures corresponds to the
U(n)-invariant subspace 82 of the representation space 81 582 583 584 .
An almost Hermitian manifold, (M 2m , g , J) , with an integrable almost com-
plex structure, J , is called a Hermitian manifold. The Gray-Hervella class of
Hermitian structures is 83 584 . An almost Hermitian manifold with a coclo-
sed Kähler 2-form is called an almost semi-Kähler manifold (dv40 and
Gray-Hervella class 81 582 583 ). A Hermitian almost semi-Kähler mani-
fold is called semi-Kähler (Gray-Hervella class 83 ). Nearly Kähler manifolds
have (˜E J) E40, for all local vector fields, E , and Gray-Hervella class 81 .
Both almost Kähler manifolds and nearly Kähler manifolds are quasi-Kähler
((˜E J) F1 (˜JE J) JF40 for all local vector fields, E and F , and Gray-Her-

Almost Hermitian
(W1⊕W2⊕W3⊕W4⊕)

Almost semi-Kähler
(W1⊕W2⊕W3⊕)

G1

(W1⊕W3⊕W4)

(W1⊕W3)

Quasi-Kähler
(W1⊕W2)

Almost Kähler
(W2)

Nearly Kähler
(W1)

Hermitian
W3⊕W4⊕)

semi-Kähler
(W3)

Kähler
({0})

Almost Hermitian Hermitian

Figure 1. – Strict Inclusion Lattice of Almost Hermitian Structures.
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vella class 81 582 ) [Gr-He]. Recall that all holomorphically immersed sub-
manifolds of a quasi-Kähler manifold are minimal [Gr1]. If ˜J40, then
(M 2m , g , J) is Kähler and N40. The Gray-Hervella class of Kähler structu-
res is ]0(. These classes of almost Hermitian structures are related by the
strict inclusion lattice in fig. 1 in which Wi 4 Vi .

A manifold mapping f : (M 2m , g , J) K (N 2n , g
S

, J
S

) from one almost Hermi-
tian manifold to another is called a holomorphic mapping if its differential
commutes with the two almost complex structures; i.e., df i J4 J

S

i df . Holo-
morphic mappings are sometimes called «(J , J

S

)-pseudoholomorphic,» or, sim-
ply, «pseudoholomorphic.»

2. – Almost Hermitian submersions.

We recall the definition of a Riemannian submersion [Gr2], [O’N], which is
a natural generalization of a Riemannian product projection mapping.

DEFINITION 2.1. – A surjective mapping f : (M , g) K (N , g
S

) between Rie-
mannian manifolds is called a Riemannian submersion if:

i) f has maximal rank, and

ii) df , restricted to (Ker (df ) )» , is a linear isometry.

We shall denote attributes of the base space of a Riemannian submersion
by an upside down caret; e.g., g

S

. The fibre submanifold, Fx , of the Riemannian
submersion f : (M , g) K (N , g

S

), over the point xeN is f 21 (x). Since M is assu-
med to be complete, the fibre submanifolds are closed and regularly embed-
ded. We let g× denote the induced metric on the fibre, F , and will denote attri-
butes of the fibres by a caret, ×. Vector fields on M which are in the kernel of
df are tangent to the fibres and are called vertical vector fields. The vertical
distribution V(M) on the tangent bundle of M induced by df is completely inte-
grable. We shall denote vertical vector fields by the letters U , V , W , etc. Vec-
tor fields on M which are g-orthogonal to the vertical distribution are said to
be horizontal. The horizontal distribution, which is not necessarily completely
integrable, is denoted H(M). We shall denote horizontal vector fields by the
letters X , Y , Z , etc. A horizontal vector field X on the total space M is said to
be basic if it is f-related to a vector field X * on the base space, N . We shall of-
ten use basic vector fields to establish tensorial relationships involving hori-
zontal vector fields. The projection mappings from the orthogonal decomposi-
tion of the tangent bundle T(M) 4V(M)5H(M) are denoted by V : T(M) K

V(M) and H : T(M) KH(M), respectively.
The O’Neill configuration tensors, T and A , of the Riemannian submer-

sion f : (M , g) K (N , g
S

) have been well-studied [Gr2], [O’N]. Let E and F be
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arbitrary vector fields on M . (The use of the symbol F for a general vector
field and for the fibre submanifolds should cause no confusion). Define

TE F4 H ˜V E V F1 V ˜V E H F(2.1)

AE F4 V ˜H E H F1 H ˜H E V F(2.2)

The properties of T and A have been developed extensively in the funda-
mental papers of A. Gray [Gr2] and B. O’Neill [O’N]. Essentially, T is the se-
cond fundamental form of the fibre submanifolds, and A is the complete inte-
grability tensor of the horizontal distribution.

A holomorphic Riemannian submersion f : (M 2m , g , J) K (N 2n , g
S

, J
S

) bet-
ween almost Hermitian manifolds is called an almost Hermitian submer-
sion [Wa1]. The vertical and horizontal distributions of an almost Hermitian
submersion are J-invariant. Therefore, the fibre submanifolds, (F 2(m2n) , g×, J×),
are closed, regularly embedded, almost Hermitian submanifolds of M 2m of di-
mension 2m22n . If the total space (M 2m , g , J) belongs to one of the classes:
quasi-Kähler, almost Kähler, Kähler, or Hermitian, then both the fibre subma-
nifolds,(F 2(m2n) , g×, J×), and the base space,(N 2n , g

S

, J
S

), inherit the same almo-
st Hermitian structure. For this reason, if f : (M 2m , g , J) K (N 2n , g

S

, J
S

) is an
almost Hermitian submersion with M belonging to the Gray-Hervella class B,
then we shall call f, a B-submersion.

3. – Almost semi-Kähler submersions.

We recall from [Wa-Va2] the main results on almost semi-Kähler submer-
sions which will be needed here. Unlike many other almost Hermitian structu-
res, the inheritance of the almost semi-Kähler property by the fibres and base
space of an almost Hermitian submersion whose total space is almost semi-
Kähler is not automatic.

THEOREM 3.1. – [Wa1] Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Her-
mitian submersion whose total space, (M 2m , g , J), is almost semi-Kähler.
Then the base space, (N 2n , g

S

, J
S

), is almost semi-Kähler if and only if the fi-
bres, (F 2m22n , g×, J×), are minimally embedded.

In order to examine the inheritance of the almost semi-Kähler property
onto the fibre submanifolds, (F , g×, J×), we defined [Wa-Va2] the B tensor
of an almost Hermitian submersion to be:

B(E , F) 4 V ˜H E H JF2 V ˜H JE H F1 H ˜H E V JF2 H ˜H JE V F .

Then B(X , Y) 4AX JY2AJX Y on horizontal vector fields, X and Y , on
M. On quasi-Kähler submersions, B vanishes. However, the trace of B
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does give important information about almost semi-Kähler submersions.

THEOREM 3.2 [Wa-Va2]. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost
Hermitian submersion whose total space, (M 2m , g , J), is almost semi-
Kähler. Then the fibres, (F 2m22n , g×, J×), are almost semi-Kähler if and only if
trB40.

In [Wa-Va2], we were concerned with what additional hypotheses allow the
induction of the Gray-Hervella structure 81 582 583 onto the total space of
an almost Hermitian submersion from the same structure on the fibres and on
the base space.

THEOREM 3.3. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion with both the fibres, (F 2m22n , g×, J×), and the base space,
(N 2n , g

S

, J
S

), almost semi-Kähler. Then the total space, (M 2m , g , J), is almost
semi-Kähler if and only if the fibres are minimally embedded and trB40.

4. – Superminimal fibres.

Superminimal submanifolds of an almost Hermitian manifold are a specia-
lization of minimal submanifolds. They are variously called negatively orien-
ted-isoclinic by T. Friedrich [Fr1], isotropic harmonic by M. J. Micallef and
J. D. Moore [Mi-Mo], and superminimal by R. Bryant [Br]. They were known
to E. Calabi [Ca], but were not explicitly so named in his 1967 article. Friedri-
ch [Fr2] traces the concept to St. Kwietniewski [Kw] in 1902 and O. Borüv-
ka [Bo] in 1928. Superminimal submanifolds have enjoyed a recent resurgence
in the work of S. Gudmundsson and J. C. Wood (see, e.g., [Gu-Wo]).

DEFINITION 4.1 [Gu-Wo]. – An almost Hermitian submanifold (F , g×, J×) of
an almost Hermitian manifold (M 2m , g , J) is superminimally immersed (or
F is superminimal) if ˜V J40 for all vector fields, V, tangent to F .

Let us now consider superminimal fibres in an almost Hermitian submer-
sion, f : (M 2m , g , J)K(N 2n , g

S

, J
S

). There are four components of g((˜V J) E , F)
on an almost Hermitian submersion. We easily find:

SM-1) g((˜V J) U , W)4 g×(˜×V JU2J˜
×

V U , W),

SM-2) g((˜V J) U , X)4g(JTV U2TV JU , X),

SM-3) g((˜V J) X , U)42 g((˜V J) U , X) ,

SM-4)) g((˜U J) X , Y)42 g(AJX Y1AX JY , U), for X, basic.

PROPOSITION 4.2. – Superminimal fibres of an almost Hermitian submer-
sion are minimal.
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PROOF. – The vanishing of the calculation SM-2 is equivalent to JTV U4

TV JU . Therefore, TU U1TJU JU40, and the mean curvature vector field, H ,
of the fibre submanifolds is zero. q.e.d.

In fact, superminimal submanifolds are always minimal [Gu-Wo]. The vani-
shing of calculation SM-1 ensures that superminimal fibres are Kähler.

LEMMA 4.3. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion such that AX JX40 for all horizontal local vector fields X. If the
fibres, (F 2(m2n) , g×, J×), of f are superminimally embedded, then the horizontal
distribution is completely integrable (A40).

PROOF. – AX JY2AJX Y40, by the standard polarization trick. Combining
this with the vanishing of SM-4 yields the desired result. q.e.d.

5. – G1-submersions.

DEFINITION 5.1. – An almost Hermitian manifold (M 2m , g , J) is a G1 ma-
nifold if g(N(E , F), E)40 for all vector fields, E , F , on M .

G1 manifolds were studied by L. Hervella and E. Vidal [He-Vid]. The Gray-
Hervella class of G1 structures is 81 583 584 . If the total space of an almost
Hermitian submersion f : (M 2m , g , J) K (N 2n , g

S

, J
S

) is G1, then it is easy to ve-
rify that both the base space and the fibres, (F 2(m2n) , g×, J×), are G1 .

THEOREM 5.2. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion whose base space is a G1 manifold. If the fibres are supermini-
mally embedded, then the total space, (M 2m , g , J), is G1 .

PROOF. – Let X be basic and U , V be vertical vector fields. In order to veri-
fy the G1 property on M , we need only consider the following four calcula-
tions:

G1-1) g(N(U , V), U)4 g× (N×(U , V), U) ,

G1-2) g(N(X , U), X)4,

G1-3) g(N(U , X), U)4,

G1-4) g(N(X , Y), X)4 g
S

(N
S

(X *, Y *), X * ) .

The fibres are Kähler, so G1-1 is zero. The second calculation, G1-2, vani-
shes on any almost Hermitian submersion because [X , U] is vertical and the J-
invariant vertical distribution of f is completely integrable. Only the third cal-
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culation, G1-3, requires analysis. Consider

g(N(U , X), U)42g((˜U J) JX , U)1g((˜JX J) U , U)2

2g((˜JU J) X , U)1g((˜X J) JU , U)4g((˜JX J) U , U)1g((˜X J) JU , U) ,

because ˜U J40. But g((˜JX J) U , U)1g((˜X J) JU , U)40 from eqn. (4.10)
of [Gr1]. q.e.d.

6. – Hermitian submersions.

There are six calculations which must vanish in order to establish the inte-
grability (N40) of the almost complex structure, J, on the total space of an al-
most Hermitian submersion (see [Gr1]):

N-1) g(N(U , V), W)4 g× (N×(U , V), W) ,

N-2) g(N(U , V), X)40,

N-3) g(N(X , U), V)4g((˜JU J)X , V)1g((˜U J)(JX), V)2

g((˜X J)(JU), V)2g((˜JX J)U , V) ,

N-4) g(N(X , U), Y)40,

N-5) g(N(X , Y), U)4 (1 /2) g(AX Y1JAJX Y1JAX JY2AJX JY , U),

N-6) g(N(X , Y), Z)4 g
S

(N
S

(X *, Y *), Z * ) .

For N-2 40, note that the vertical distribution of an almost Hermitian sub-
mersion is J-invariant and completely integrable. For N-4 40, we may assume
that X is basic. Then the Lie bracket [X , U] is vertical.

THEOREM 6.1. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion whose base space is a Hermitian manifold. If the fibres are su-
perminimally embedded and the vertical projection, V (˜X J)U , of (˜X J) U is
0 for all horizontal X and for all vertical U, then the total space, (M 2m , g , J),
is Hermitian.

PROOF. – The definition of superminimal fibres (˜U J40) and V (˜X J) U4

0 imply that N-3 vanishes. Calculation SM-4 implies that AJX Y1AX JY40, for
X, basic, which yields AJX JY4AX Y. Thus, N-5 is zero. q.e.d.

7. – 81 583-submersions.

The Gray-Hervella class 81 583 is the intersection of the classes G1

(81 583 584 ) and the almost semi-Kähler class (81 582 583 ). The G1

property is inherited by the base space of a G1-submersion from the total spa-
ce. Therefore, by Thm. 3.1, the base space, (N 2n , g

S

, J
S

), of an almost Hermi-
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tian submersion f : (M 2m , g , J) K (N 2n , g
S

, J
S

) whose total space is 81 583 is
a 81 583 manifold if and only if the fibres, (F 2(m2n) , g×, J×) , are minimally em-
bedded. By Thm. 3.3, the fibres of a 81 583-submersion are 81 583 if and
only if trB40. The induction of the 81 583 property onto the total space of
an almost Hermitian submersion follows from Thms. 3.3 and 5.2:

THEOREM 7.1. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion whose base space is a 81 583 manifold. If the fibres are super-
minimally embedded and trB40, then the total space, (M 2m , g , J), is
81 583 .

8. – Quasi-Kähler submersions.

We begin by observing that superminimal fibres in a quasi-Kähler submer-
sion produce strong geometric restrictions on the horizontal distribution.

PROPOSITION 8.1. – The horizontal distribution of a quasi-Kähler submer-
sion with superminimal fibres is completely integrable (A40).

PROOF. – AX JX40 on a quasi-Kähler submersion [Wa1]. Lemma 4.3 yields
A40. q.e.d.

There are six calculations which must vanish in order to conclude that the
total space of an almost Hermitian submersion is quasi-Kähler:

QK-1) g((˜U J) V1 (˜JU J) JV , W)4 g× ((˜×U J×) V1 (˜×JU J×) J×V , W) ,

QK-2) g((˜U J) V1 (˜JU J) JV , X)4g(TU JV2JTU V2JTU V2

JTJU JV , X),

QK-3) g((˜X J) U1 (˜JX J) JU , V)4,

QK-4) g((˜X J) U1 (˜JX J) JU , Y)42g(AX JY2JAX Y2JAX U2

JAJX JU , Y),

QK-5) g((˜X J) Y1 (˜JX J) JY , U)42g((˜X J) U , Y)2g((˜JX J) JU , Y) ,

QK-6) g((˜X J) Y1 (˜JX J) JY , Z)4 g
S

((˜
S

X
*

J
S

) Y *1 (˜
S

J
S

X
*

J
S

) J
S

Y *, Z * ) .

THEOREM 8.2. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion whose base space is quasi-Kähler. Assume that AX JX40, for all
horizontal local vector fields X. If the fibres are superminimal and
V (˜X J) U4 0, for all horizontal X and for all vertical U, then the total space,
(M 2m , g , J), is quasi-Kähler.

PROOF. – V (˜X J)U4 0 implies that calculation QK-3 vanishes. The J-com-
plex bilinearity of T from the assumed superminimality of the fibres gives QK-
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2 40. From Lemma 4.3, AX JX40 and SM-4 40 imply that A40, which then
implies that the calculations QK-4 and QK-5 are zero. q.e.d.

9. – Almost Kähler submersions.

We know that the fibres of an almost Kähler submersion are minimal be-
cause they are holomorphically embedded submanifolds of the almost Kähler
total space. It is well known [Wa1] that the horizontal distribution of a Kähler
submersion is completely integrable. This is also true for the weaker class of
almost Kähler submersions.

THEOREM 9.1. – The horizontal distribution of an almost Kähler submer-
sion, f : (M 2m , g , J) K (N 2n , g

S

, J
S

), is completely integrable (Af0).

PROOF. – Let U be vertical, and let X and Y be horizontal vector fields on M
with X , basic. Because M is almost Kähler,

0 4dv(U , X , Y) 4g((˜U J) X , Y)1g((˜Y J) U , X)1g((˜X J) Y , U)4

4g(˜U JX2J˜U X , Y)1g(˜Y JU2J˜Y U , X)1g(˜X JY2J˜X Y , U) 4

4g(AJX U2JAX U , Y)1g(AY JU2JAY U , X)1g(AX JY2JAX Y , U).

On a quasi-Kähler submersion [Wa1], we have AX JY4AJX Y42AX JY and
AX JU4AJX U42JAX U . Therefore, 0 423g(AX JY , U)2g(AX Y , JU) 4

g(4AX U , JY). Hence, Af0. q.e.d.

There are four types of components of the exterior differential, dv , of the
fundamental Kähler 2-form, v, on M to be considered when studying almost
Kähler submersions:

AK-1) dv(U , V , W) 4 d×v×(U , V , W),

AK-2) dv(U , V , X) 4,

AK-3) dv(U , X , Y) 4,

AK-4) dv(X , Y , Z) 4 d
S

v
S

(X *, Y *, Z *).

We shall use the vanishing of the vertical projection of (˜X J) U to help
establish the existence of many Gray-Hervella structures. This is a natural
condition to consider in view of (see also Prop. 10.2):

THEOREM 9.2. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Kähler sub-
mersion. Then,

V (˜X J) U40 .
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PROOF. – dv(U , V , X) 4g((˜U J) V , X)1g((˜V J) X , U)1g((˜X J) U , V) .
The first two terms on the right sum to g(TJV U2JTV U1JTV U2TV JU , X).
But TJV U4TV JU on a quasi-Kähler submersion [Wa1]. Therefore, 0 4

dv(U , V , X) 4g((˜X J) U , V) . q.e.d.

LEMMA 9.3. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion. If A40, then

dv(U , X , Y) 40 .

PROOF. – Consider dv(U , X , Y) 4g((˜U J) X , Y)1g((˜X J) Y , U)1

g((˜Y J) U , X) . Now g((˜X J) Y , U)4g(AX JY , U)1g(AX Y , JU) 40. Similar-
ly, g((˜Y J) U , X)40. Assume now that X is basic. Then, g((˜U J) X , Y)4

g(AJX U , Y)1g(AX U , JY) 40. q.e.d.

THEOREM 9.4. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion whose base space is almost Kähler. Assume that AX JX40, for
all horizontal local vector fields X. If the fibres are superminimal and
V (˜X J) U40, for all horizontal X and for all vertical U, then the total space,
(M 2m , g , J), is almost Kähler.

PROOF. – Superminimal fibres are Kähler, so calculation AK-1 is 0.
For calculation AK-2, consider dv(U , V , X) 4g((˜U J) V , X)1

g((˜V J) X , U)1g((˜X J) U , V) . Then, dv(U , V , X) 40 because ˜U J40 and
V (˜X J) U40. Lemma 4.3 yields A40. Thus, for (AK-3), dv(U , X , Y) 40, by
Lemma 9.3. By hypothesis, AK-4 is 0. Therefore, M is almost
Kähler. q.e.d.

THEOREM 9.5. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be a quasi-Kähler sub-
mersion whose fibres and base space are almost Kähler. Assume that the ho-
rizontal distribution is completely integrable. If V (˜X J)U40, for all hori-
zontal X and for all vertical U , then the total space, (M 2m , g , J), is almost
Kähler.

PROOF. – By Lemma 9.3, we need only consider calculation AK-2. In
dv(U , V , X) 4g((˜U J) V , X)1g((˜V J) X , U)1g((˜X J) U , V) ,
g((˜V J) X , U)4g(JTV U2TV JU , X). Similarly, g((˜U J) V , X)4g(TU JV2

JTU U , X). Hence, g((˜V J) X , U)1g((˜U J) V , X)4g(TU JV2TV JU , X)
which vanishes on the quasi-Kähler manifold, M . Thus, AK-2 is 0.
q.e.d.
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10. – Nearly Kähler submersions.

The O’Neill configuration tensor T is J-complex bilinear on a nearly Kähler
submersion [Wa1]. In [Wa-Va1], L. Vanhecke and the author showed that the
horizontal distribution of a nearly Kähler submersion is completely integrable
(A40).

PROPOSITION 10.1. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be a nearly Kähler
submersion with Kähler fibres, (F 2m22n , g×, J×). Then the fibres are supermi-
nimally embedded.

PROOF. – Only calculation SM-1 must be checked because T is J-complex bi-
linear and A40. But the assumption of Kähler fibres yields SM-1=0. q.e.d.

PROPOSITION 10.2. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be a nearly Kähler
submersion. Then,

(˜X J) U40 and

(˜U J) X40

for all horizontal X and for all vertical U .

PROOF. – g((˜X J) U , Y)4g(AX JU2JAX U , Y) 40. Use the standard
polarization trick on 0 4 (˜(X1U) J)(X1U) to obtain g((˜X J) U , V)4

g((˜U J) X , V)4g(TU JX2JTU X , V) 40 on a nearly Kähler submersion
[Wa1]. g((˜X J) U , Y)4g(AX JU2JAX U , Y) 40. Let X by basic. Then,
g((˜U J) X , Y)4g(AX JU2JAX U , Y) 40. q.e.d.

There are four relevant calculations for confirming the existence of the
nearly Kähler property on the total space of an almost Hermitian submer-
sion:

NK-1) g((˜U J) U , V)4 g× ((˜×U J×) U , V) ,

NK-2) g((˜U J) U , X)4g(TU JU2JTU U , X),

NK-3) g((˜X J) X , U)4g(AX JX , U),

NK-4) g((˜X J) X , Y)4 g
S

((˜
S

X
*

J
S

) X *, Y * ) .

THEOREM 10.3. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion with the fibres, (F 2m22n , g×, J×), and the base space both nearly
Kähler, and with AX JX40. Suppose that the O’Neill configuration tensor, T,
is J-complex bilinear. Then the total space, (M 2m , g , J), is nearly Kähler.
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PROOF. – Each of the calculations, NK-1 through NK-4, vanishes. q.e.d.

THEOREM 10.4. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion with the base space nearly Kähler, and with AX JX40 . If the fi-
bres, (F 2m22n , g×, J×), are superminimal, then the total space, (M 2m , g , J), is
nearly Kähler.

PROOF. – Superminimal fibres are Kähler and the O’Neill configuration
tensor, T, is then J-complex bilinear. By Thm. 10.3, (M 2m , g , J), is nearly
Kähler. q.e.d.

COROLLARY 10.5. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be a quasi-Kähler
submersion with the base space nearly Kähler. If the fibres, (F 2m22n , g×, J×),
are superminimal, then the total space, (M 2m , g , J), is nearly Kähler.

PROOF. – From Prop. 8.1, A40 on a quasi-Kähler submersion with super-
minimal fibres. Thm. 10.4 then yields the stated result. q.e.d.

While this article was in preparation, we became aware of a manuscript, «A
note on almost Kähler and nearly Kähler submersions,» by M. Falcitelli and A.
M. Pastore [Fa-Pa]. Some of these conclusions regarding nearly Kähler sub-
mersions and related results on almost Kähler submersions are proved
therein.

11. – Kähler submersions.

Kähler submersions were originally defined in [Wa1], and were extensively
studied by D. L. Johnson [Jo]. Obviously, T is J-complex bilinear and A40 on
a Kähler submersion. Moreover, the fibres of a Kähler submersion are super-
minimal. In order to prove that the total space of an almost Hermitian submer-
sion is Kähler, we must establish the vanishing of the following six calcula-
tions:

K-1) g((˜U J) V , W)4 g× ((˜×U J×) V , W) ,

K-2) g((˜U J) V , X)4g(TU JV2JTU V , X),

K-3) g((˜X J) U , V)4,

K-4) g((˜X J) U , Y)42g(AX JY2JAX Y , U),

K-5) g((˜X J) Y , U)4g(AX JY2JAX Y , U) 42g((˜X J) U , Y) ,

K-6) g((˜X J) Y , Z)4 g
S

((˜
S

X
*

J
S

) Y *, Z * ) .

THEOREM 11.1. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Hermitian
submersion with Kähler fibres and Kähler base space, (N 2n , g

S

, J
S

). If the
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O’Neill configuration tensors, T and A, are J-complex bilinear, and
V (˜X J)U40, then (M 2m , g , J) is Kähler.

PROOF. – The vanishing of calculation K-2 is equivalent to the J -complex
bilinearity of the O’Neill configuration tensor, T. The J -complex bilinearity of
A implies that K-4 and K-5 are zero. K-1 and K-6 are zero because the fibres
and base space are assumed to be Kähler. V (˜X J) U40 gives calculation K-
3 40. Therefore, (M 2m , g , J) is Kähler. q.e.d.

THEOREM 11.2. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be an almost Kähler
submersion with superminimal fibres onto a Kähler base manifold,
(N 2n , g

S

, J
S

) . Then (M 2m , g , J) is Kähler.

PROOF. – The Kähler base space is G1 , so (M 2m , g , J) is G1 by Thm. 5.2. An
almost Kähler G1 manifold is Kähler. q.e.d.

Thm. 11.2 leads to the affirmative resolution of the four-dimensional Gold-
berg Conjecture on the total space of an almost Kähler submersion [Wa2] by
establishing that the fibres of an almost Kähler submersion f : (M 4 , g , J) K

(N 2 , g
S

, J
S

) with M, Einstein, are superminimal. This result also follows from
the superminimal fibre conclusion using Thm. 6.1 along with the fact that
V (˜X J) U40 on an almost Kähler submersion (Thm. 9.2).

THEOREM 11.3. – Let f : (M 2m , g , J) K (N 2n , g
S

, J
S

) be a nearly Kähler sub-
mersion with Kähler fibres and Kähler base space, (N 2n , g

S

, J
S

). Then,
(M 2m , g , J) is Kähler.

PROOF. – Prop. 10.2 gives V (˜X J) U40, and A40 from [Wa-Va2]. Thm.
9.5 now implies that M is almost Kähler, and, therefore, Kähler (81 O82 4

]0(). q.e.d.
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