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Remark on the Null-Condition
for the Nonlinear Wave Equation.

NickoLAY TzZvETKOV (*)

Sunto. — Dimostriamo Uesistenza della soluzione globale per un sistema di equazioni
delle onde con nonlinearita quadratica dipendente dalle variabili spazio-tempo.
Come 1 [3] la tecnica ¢ basata sulla trasformazione di Penrose.

1. — Introduction.

In this note we shall consider the following system of nonlinear wave equa-
tions in Minkowski space-time R'*":

1) (- ul=Fit,x, u, Du), I=1,...,N,
with initial data:
@) w(0, x) =fo(x), (0, x)=fi(x).

Here xeR", A is the Laplace operator on R" and u = (u,, ..., uy) is RY-
valued function. D denotes the space-time gradient D = (9,, 9, ..., 9,,). The
nonlinear terms F! are supposed to be in the form:

(3) FI = E F{]K(M)BJIK(t7 €, DuJ7 DuK)7
J, K

where I'lx are smooth functions near to the origin of RY. B}« are quadratic
forms which are supposed to satisfy the null-condition. Similarly to [3] we in-
troduce the following notion of the null-condition.

DEFINITION 1. — The quadratic form Q(t, x, Du, Dv) satisfies the null-
condition if

(i) Q(t, x, Du, Dv) is homogeneous of order zero with respect to
(t, x).

(i) Q(t, x, Du, Dv) is homogeneous of order one with respect to Du
and Dv and a bilinear form of Du and Dwv.

(*) The author was partially supported by Contract MM-516 with the Bulgarian Mi-
nistry of Education, Science and Technology.
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(i) Q(t, x, —t, x, —t, x) =0 whenever (t, x) belongs to the null cone,
ie t2—a%=0

REMARK. — We can replace assumption (iii) in the above definition with a
stronger one:

(ili) Q 'Q(sinT, sinR, —sinT, sinR, —sinT, sinR)eC* (R x S"),

where S™ is the n-dimensional sphere, parametrized by (sinR-w, cosR), w e
S"~ 1 and Q is the conformal factor of Penrose compactification map (cf. (4)
below).

ExAMPLES. — It is easy to see that any of the following quadratic forms sat-
isfy the null-condition:

Q@ (Du’, Du®) = d,u’ dyu* — > 8, u’ 3, u*,
i=1
Q:(Du’, Du™) = 3, u’ 9, u* - 3, u’ 3, u”,

Qs(Du’, Du®) = ,u’ 3, u* — 8, u’ s,u*,

X; X;
J
Qq(x, Du’, Du%) = Su’ du* —3,u’ 9, ux,

Ly, Xy
JamuK— —— 0, Jax‘uK,
& 2 "X 0f
||

QS(QC, DuJy DuK) =

Qs(x, Du’, Du¥) = - 3,u’ 8, uk - %axiwatuf‘,
: x
where 1 <1,75,k,l<n.

When n = 4 one can prove global existence for the Cauchy problem (1)-(2)
for general smooth nonlinear terms and small initial data only by using the en-
ergy estimate and scaled versions of the usual Sobolev inequalities (cf. [6]).
This approach fails in the case n < 3 because logarithmic singularities appear
in the energy inequality. Global existence for nonlinear terms of type
®1, @, Qs in the case n =3 is proved by Klainerman [5]. The approach is
based on the invariance of the null forms @;, @., @; under the actions of the
Poincaré group. More precisely one can obtain decay inequalities for the non-
linear terms which give better decay of the nonlinear terms in the energy in-
equality than direct applying of the scaled version of Sobolev inequality. An-
other approach is using the conformal invariance of D’Alembertian (cf. [3]). By
means of using the Penrose map one can reduce the global Cauchy problem
(1)-(2) to a local one. The main difficulties are the singularities which appear in
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the nonlinear terms applying the Penrose map. The role of the null-condition
is to cancel these singularities. In both papers [3] and [5] are considered non-
linearities which do not depend on the space-time variables. If we consider a
system of wave and Klein-Gordon equations then the conformal invariance
fails and one is not able to use the Penrose map. The approach using the in-
variant vector fields meets an essential difficulty since the usage of the radial
vector field is not convenient. However, in [4] a stronger version of the null-
condition leading to global existence for nonlinear systems of wave and Klein-
Gordon equations is introduced.

In this paper we prove global existence for nonlinearities with variable co-
efficients. More precisely, when n =2, 3 we prove global existence for the
Cauchy problem (1)-(2) with small initial data and nonlinearities in the form
(3). If we go back to the examples we see that in fact the forms @, @, Qs
could be obtained from @, @5, Q; respectively. If we consider @, for i =j then
after summing from 1 up to » we obtain @;. For ¢ =k and j = [ the term Q; is
almost @,. For ¢ =j the term @) is almost ;. Therefore we can obtain the null-
forms with constant coefficients as a particular case of these with nonconstant
ones. Our approach is also based on the Penrose map. We split the derivatives
in the standard framework into radial and angular components. We show that
the angular components cancel easily the singularity. Then we compute the ra-
dial components and cancel the singularities due to the properties of the non-
linearities satisfying the null-condition. Using the energy estimate and
Sobolev inequalities with standard local existence arguments we obtain local
solution of the transformed problem. To this solution corresponds global sol-
ution to the original problem (1)-(2).

The initial data (fy, f;) are small with respect to suitable weighted Sobolev
norms. More precisely we shall suppose:

(for f) € HO*“HR™) x H* 710 "2(R™),

where the norm in H*?° is:
S . .
2.0= 310+ PPV e
)=

If 6 > s —n then the Penrose map transforms H* °(R") into H*(S") (cf. [1],
p- 396).
We have the following Theorem:

THEOREM 1. — Let n=2,3. We suppose the nitial data (2) are such
that:

|ﬁ)|s,s—1+ |f1 |s—1,s—2se5

for s >1+n/2 and the quadratic forms Blx(t, x, Du’, Du”’) satisfy the null-
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condition. In the case when n =2 we also suppose that I'lx are zero near to
the origin.

Then there exists €, > 0 such that for 0 < e < ¢, the Cauchy problem (1)-(2)
admits global solution with the following decay property:

C

wt, x)| < .
| | (I+t+ e D2A+ |t — || )" D2

REMARK. — The assumption for n = 2 about I'}x is essential. In this case the
logarithmic singularities in the energy estimate applying the scaled version of
Sobolev inequality appear when considering cubic nonlinearities.

2. — Proof of the Theorem.

We shall consider the Penrose map (cf. [7]):
P: R1+n|_>E1+n

which maps conformally R!*" with the flat metric 5 =dt?— dx? into a
bounded diamond-like region of the Einstein cylinder E**", where E'*" =
(Rx8S", g),g=dT?—dw?, T stands for the time in E'*" and »? is the line-
element of S™".

If (¢, 7, w), weS" ! are the polar coordinates of R'*" and (7, sinR-w,
cos R) are the local coordinates of E'*" the Penrose map is given by:

P:t,r,0)—(T,R, w),

T = arctan (¢ + r) + arctan (¢ — r),
R = arctan (t + ») — arctan (t — 7),
w=aw.

We have 0 =R <x and —7<T =+ R <, which determines the image
P(R'*™) of the Penrose map. On P(R'*") we can write the inverse of P
as:

sinT sin R
t= R r= . w=w,
Q Q
where:
2
4) Q=cosT +cosR=

I+ E+rP)2A+ @t —r)P)”

We also have ¢g= Q%y. Therefore using the conformal invariance of
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D’Alembertian and according to the general conformal theory (cf. [1], p. 260
for example) if we pose u = Q" Y2y then we have:

& & & w-143 1
——A u = ———_——_—A n-1| U=
(at2 ) (aﬁ orz r or g "0 )

Qn+3)2 ¥ & _n—li_'_ (o171 Agi-1|v=
oT? OR? tanR AR 4 sin’ R
& (n—1)7
Q(n+3)/2 _AS"’+— v
oT?

where Ag. is Laplace-Beltrami operator on S". The term (n —1)*/4 corre-
sponds to the scalar curvature of E'*" (cf. [1], p. 260 for example). We have
the following parametrization of S":

Y,=sinR-w,;, k=1, ..., n,
Y, 1=cosR,

where v = (wq, ..., w,)eS" L
We introduce the generators of the group SO(n):

=Y, — -,

, 1<i,)sn+1.
() ¢ /

Then the Sobolev norms of S" are defined by:

k
|u|Hk(Sn) = |u|L2(S") + lgl <i <szsn+l |Zi1j1 Zimu|L2<Sw)_

The following representation of Laplace-Beltrami operator holds:

Asn = E ZZ?'

1<i<jsn+1

In the next Proposition we state the energy estimate:

ProrosiTION 1. — If:

RS
(a;-AWM)

v=G_G,
4
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then we have:

|’UT(T, .) |L2<Sn) + |’U(T, .) |H1<Su) <

T
const (|’I)T(O, ) |L2(S"') + |7)(O, ) |H1(S”) + f |G(8, ) |L2(S”)d8) .
0

In order to cancel the singularities of the angular derivatives we need the
next Proposition:

PROPOSITION 2. — The following decomposition of the vector fields 9/9x), of
angular and radial component holds:

0 ) LW,
— =0, —+Q22> —Z,, k=1,...,n.
ov, “or iSisinR "
Proor. — We have that:
n w ; n a a a a
ji=1sinR 7 j—l( !y, 7k ox; ox;, " or

This completes the proof of Proposition 2.

In the next Proposition we express the derivatives in R”*! in the terms of
derivation on E"*1,

PROPOSITION 3. — If u = Q" Y2y then we have:

(5) ou I ou + QO+ i i L,
oy, r or j=1sinR
0 t o 1 -1
(6) 8_7; = __a_u .—R-Q(’”Wz(—n—sinTsinR-v+
r Jr  sin

d )
cos TsinR- v + sin TcosR'—v )
oT )
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PRrOOF. — In order to prove (5) we use that  does not depend on the angu-
lar variables and Proposition 2. Using the definition of the Penrose map we ob-
tain easily:
0 5} 0
— =(1+cosTcosR)— —sinT sinR— ,
ot orT oR

2 o 3
— = —sinTsinR— + (1 +cosT cosR) — .
or orT oR

If u=Q" Y2y then the above relations yield

u _ QD2 eog T@ +
ot or
-1 9 J
Q(”l)/z( ~  SinT cosR-w+sin?T- 2> —sinT sinR- _v) ,
2 orT oR
w_ QD2 eog Tﬂ +
or oRr

-1 0 0
Q("'_l)/z( _ T sT sinR-v—sinT sinR- —~ + sin?T- — ) .
2 oT oR

Now it is sufficient to compute tu, + ru; to arrive at (6). This completes the
proof of Proposition 3.

If we consider again the null-forms @, ..., Q¢ using Proposition 3 we
obtain:

Q(Du’, Du®) = g,u’ u* - o, u’ 3, u* + Q" Q,

Q:(Du’, Du®) = Q" Q,,

Qs(Du’, Du®) = w;(3u? 3, u* - 8,u” du™) + Q" Qs,
Qu(x, Du’, Du®) = w;0;(8,u’ d,u - 3,u’ 3, u’) + Q" Q,,
Qs(x, Du’, Du®) = Q" Qs,

Qs(x, Du’, Du®) = w;0;(8,u’ 8,u™ — 8,u’ d,u’) + Q" Qs,
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where @, ..., Qs are smooth functions over R x " x RN~ D2+1 Hence we
have to examine the following forms:

P,(Du’, Du®) = 3,u’ 3, u® — 8, u’ 3,uX,
Py(Du’, Du®) = 8,u’ d,u® — 3,u’ 8, uX.

A straightforward computation shows that the next presentation of P; and P,
holds:

P,(Du’, Du®) = .Q”{Q(@Tv"aRvK — pv&apv’) +

sin T(3gp v’ v& — v/ v %) — n- sin R(3,v7 v — v"&TvK)},

PZ(DMJ, D?/LK) = Q”{Q(@TU‘]@TUK - angagvK) +

sin R(3p v’ v& — v’/ 9pv k) — "=

1
sin T(3pv” v & — vJaTvK)} .

Using the above relations and:

a n
B :Eflezmnj
we obtain:
Qj = Q" /Q\]v
for j=1, ..., 6, where Qi(T’ R, w, 9rv, Z;;v) are smooth functions over

R x 8" x RN =D2+1) Hence the Cauchy problem (1)-(2) is transformed into
the following:

2 (n—1) I _ 71
(7) aT—AS'n+T v'=F (T,R,(l),?), 3T1),Zi_7-1)), I:].,...,N,
with initial data:
®) w0, R, w)=Fy, u(0,R,w)=F,

where u=Q® Y2y F! are smooth functions over R xS"X B x
RN =D2+D "B is an open set containing the origin of RY where I'lx are
smooth, f, f1 (defined over S") are the images of f;, f; after the Penrose com-
pactification map (cf. [3] for details). When 7 = 2 an additional factor Q1"
appears in the right hand side of the equation which is due to the assumption
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for I'lx in this case. Hence we reduce the problem of finding global solutions of
(1)-(2) to the problem of finding solutions of (7)-(8) in the time interval
[0, x].

In the case of general nonlinearity using Proposition 3 we obtain the fol-
lowing decomposition of Bjx:

t ou’ ou’ t ouX ou’
B;K@,x,DMJ,DMK):BfK(t,m,__L,fi,__L,EL)+
r o 1 Or r or r Or

QnCJIK(T5 R’ w, aT,U7 Zijv))

where Clx are smooth functions. Next we use that B/x satisfy the null-condi-
tion and obtain:

t
BJIK(tyx5__ y y T T y T

S A T (t,ﬂC, _trx; _t,.%' =
3 Q )

Q oul ou¥
sinR or or

‘Q(sinT, sinR, —sinT, sinR, —sinT, sinR) =

‘QnDJIK(T7 R7 w, aTv7 Z’ij/v)5

where Dy are smooth functions. Hence we have to solve locally a problem of
type (7)-(8).
Further we set:

S

E, (T):= {v: e;(v, T):= 2, sup

J=00st<T

Rl
?v(t, )

sa;.
Hsfj(SN)

For v, R"-valued function we consider the map:
M:v—w,
where w = Mv is the solution of the linear equation:

132
(-0 1)

w! =F (T, R, w,v, 3v, Zyv), I=1,..,N,
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with initial data:

w(0, R, w) =fy, w0, R, 0) =f.
We have the following relations:

(n—1)

n—1)>
T’ZW]:O’ I:a%'_ASn‘i‘( )

[a%'_ASn,JF T,aT]:O,

where [.,.] is the usual commutator. Therefore using Proposition 1 and
Sobolev embedding we can obtain for s> n/2 + 1:

es(Mv, T) < c(| fo |aswn + |1 |ae-1sn + Tles(, T))?) .
We consider the iteration v, ,; = Mv,, where v, =0. Hence we have:
e,(v, .1, T) <o+ cT(e,(v,, T))?,

where 0 = |f0 s + |f1 ge-1sm. 1f we choose T' and J such that: cd +
¢-Ta® < a then we obtain v, ,,€E, ,(T), provided v, € E, ,(T). In a similar
way we can obtain that v, is a Cauchy sequence in E; ,(T). Hence v, converge
to the unique solution of:

(n—1)

(aZT—AS,,+ )1)[=FI(T,R,w,v,aTv,Zijv), I=1,..,N,

with initial data:

w0, R, w)=Ff,, u(0,R, ) =7,

for the time [0, 7). For verifying ¢d + ¢-Ta? < a it is sufficient to choose T and
0 such that 76 < 1/4¢2. Therefore if 6 is small enough then 7 is greater than 7.
Due to [3] (cf. also [1], p. 396), we can estimate the weighted Sobolev norms on
R" with the usual Sobolev norms on S™. More precisely we have:

|f()|s,sfl+ |f1|sfl,sf2S06 .

Hence if we take the initial data (2) of the original problem small enough then
we can obtain solution of (7)-(8) for time greater than . To this solution will
correspond global solution of the Cauchy problem (1)-(2). The decay property
follows from the relation » = Q™ V29 and the fact v € L * which is due to the
Sobolev embedding.

This completes the proof of the Theorem.
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