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Bollettino U. M. I.
(8) 2-B (1999), 723-734

On 5-Tuples of Twin Practical Numbers.

GIUSEPPE MELFI

Sunto. – Un intero positivo m si dice pratico se ogni intero n con 1 EnEm può essere
espresso come una somma di divisori distinti positivi di m. In questo articolo è af-
frontato il problema dell’esistenza di infinite cinquine di numeri pratici della for-
ma (m26, m22, m , m12, m16).

1. – Introduction.

In this paper we deal with a recent topic in elementary number theory,
namely the theory of practical numbers. As extensively pointed out in [6],
some properties of practical numbers appear to be close to those of primes, al-
though practical numbers are defined in a completely different way. In partic-
ular, practical numbers apparently show some irregularities of distribution
which resemble those of primes.

DEFINITION 1. – A positive integer m is said to be practical if every n with
1 EnEm is a sum of distinct positive divisors of m .

This definition is due to Srinivasan [11], who also pointed out the first
properties of practical numbers in his short note. After him, several authors
dealt with various aspects of the theory of practical numbers. Stewart [12]
proved the following structure theorem: an integer mF2, m4q1

a 1 q2
a 2 Q Q Qqk

a k ,
with primes q1 Eq2 E Q Q QEqk and integers a i F1, is practical if and only if q1 4

2 and, for i42, 3 , R , k ,

qi Gs (q1
a 1 q2

a 2 Q Q Qqi21
a i21 )11 ,

where s (n) denotes the sum of the positive divisors of n .
Let P(x) be the counting function of practical numbers:

P(x) 4 !
mGx

m practical

1 .
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Erdös announced in [1] that practical numbers have zero asymptotic density,
i.e., P(x) 4o(x). Hausman and Shapiro [4] showed that

P(x) b
x

( log x)b

for any bE (1O2)(121Olog 2)2 C0.0979. On the other hand, Margenstern
([5], [6]) proved that

P(x) c
x

exp ]1O(2 log 2)( loglog x)2 13 loglog x(
.

Tenenbaum ([13], [14]) improved the above upper and lower bounds as
follows:

x

log x
( loglog x)25/32ebe P(x) b

x

log x
loglog x logloglog x .

Recently Saias [10] improved the above estimates by providing upper and
lower bounds of Chebishev’s type:

c1
x

log x
EP(x) Ec2

x

log x

for suitable effectively computable constants c1 and c2 . This is in accordance
with the asymptotic behaviour conjectured by Margenstern in [5]:

CONJECTURE 1. – There exists a constant l such that

P(x) Al
x

log x
.

Margenstern’s computations suggest lC1.341 for the above conjec-
ture.

Among other things, a Goldbach-type result holds for practical numbers:
every even positive integer is a sum of two practical numbers [7, Theo-
rem 1].

Here we are interested in finite sequences of consecutive practical num-
bers. There exist infinitely many pairs (m , m12) of twin practical numbers
(see also [6, Théorème 6] for a more general result), although it looks difficult
to estimate the asymptotic behaviour of their counting function. In [8, Theo-
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rem 6] the author constructed a sequence ]mn (nF1 of practical numbers such
that mn 12 is also practical for every n, and such that mn11 /mn E2. In [7,
Theorem 1] we get a slightly better estimate: mn11 /mn E3/2. Both estimates
give

!
mGx

m , m12 practical

1 c log x ,

but this estimate is very far from Margenstern’s conjecture:

CONJECTURE 2. – Let P2 (x) 4 !
mGx

m , m12 practical

1. For a suitable constant l 2

P2 (x) Al 2
x

( log x)2
.

As is well-known, there is an analogous celebrated conjecture of Hardy
and Littlewood [3, Section 22.20, p. 371–373] for p 2 (x), the counting function of
the pairs of twin primes.

The author proved in [7] that there exist infinitely many triplets of practi-
cal numbers of the form (m22, m , m12). As a consequence of that proof
one gets

!
mGx

m22, m , m12 practical

1 c loglog x ,

very far from the following conjecture of Erdös [2]:

CONJECTURE 3. – There exists a positive constant c such that

!
mGx

m22, m , m12 practical

1 c
x

( log x)c
.

It is shown in [6] that for any even mD2, one at least of m , m12, m14,
m16 is not practical. In fact, at least one of them is g0 mod 3 and g0 mod 4,
hence of the form 2q1

a 1 Q Q Qqk
a k with odd primes q1 Eq2 E Q Q QEqk and q1 F5, in

contradiction with Stewart’s structure theorem.
On the other hand, explicit computations suggest the following conjecture,

first stated in [8]:

CONJECTURE 4. – There exist infinitely many 5-tuples of practical num-
bers of the form (m26, m22, m , m12, m16).
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In Table 1 a short table of the first m’s such that m26, m22, m , m1

2, m16 are practical numbers is shown.

TABLE 1. – The first m’s such that m26, m22, m , m12, m16 are practical
numbers.

No. m No. m No. m

1 18 13 52578 25 359658
2 30 14 67938 26 432822
3 198 15 88506 27 526878
4 306 16 92202 28 533370
5 462 17 96222 29 584166
6 1482 18 123006 30 659934
7 2550 19 131070 31 1032858
8 4422 20 219102 32 1051650
9 17298 21 226182 33 1140414

10 23322 22 237190 34 1142658
11 23550 23 277506 35 1243170
12 40350 24 312702 36 1255422

In this paper we discuss this conjecture and reduce it to a very reasonable,
although unproved, Diophantine property of a certain pair of integer
sequences.

2. – Arithmetical tools.

A reasonable attempt to attack Conjecture 4 might be to ask whether there
exist infinitely many n such that 2 Q3 Q (3n21 21), 2 Q (3n 21), 2 Q3n, 2 Q (3n 11),
2 Q3 Q (3n21 11) are practical numbers: in fact these 5-tuples are of the form of
our conjecture, and this approach is similar to the problem of the triplets that
the author solved in [7].

We begin with the study of some arithmetical questions related to our
approach for Conjecture 4.

LEMMA 1. – If m is a practical number, and n is a positive integer
not exceeding s (m)11, then mn is a practical number. In particular, for
1 GnG2m, mn is practical.

PROOF. – This lemma is a corollary of Stewart’s structure theorem. See also
[6, Corollaire 1]. QED

Let W be the Euler totient function, and let f n be the cyclotomic
polynomial for exp ]2pi/n(.
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LEMMA 2. – For every positive integer nD1, we have

W(n) log
4

k3
E log f n (3) EW(n) log

9

2
.

PROOF. – By [9, Satz], for every integer nD1 one has

g 16

27
h2n(n)22

3W(n) Ef n (3) Eg 3

2
h2n(n)21

3W(n) ,(1)

where n(n) is the number of distinct prime factors of n. Note that, for n4

q1
a 1 q2

a 2 Q Q Qqk
a k with primes q1 E Q Q QEqk and positive integers a 1 , R , a k, one

has

2n(n)21 4 2 Q2 Q Q Q2
˘×=k21 times

GW(q2
a 2 ) W(q3

a 3 ) Q Q QW(qk
a k ) GW(n) ,

hence, by (1), the statement easily follows. QED

DEFINITION 2. – Let (D , ]) be an ordered finite set of positive integers.
We say that d� D is admissible if

!
d T d

W(d) log
4

k3
DW(d) log

9

2
,

where, as usual, by dTd we mean d]d and dcd.

Note that this definition depends on the arrangement of the elements of D,
and, when it will be opportune, we shall indicate the set D and the
arrangement «]» for which d is admissible.

LEMMA 3. – Let (D , G) be a finite set of positive integers, ordered with the
usual increasing order of positive integers. Suppose that d� D is admissible
for (D , G). Let q be a positive integer. Let D(q) be the set of its divisors and
D84 D(q) Q D. Then qd is admissible for (D8 , G).

PROOF. – We can assume that q is a prime. Since d is admissible for (D , G),
there exist d1 , R , dl with max

1 G iG l
]di ( Ed such that

!
i41

l

W(di ) log
4

k3
DW(d) log

9

2
.

We can assume that (di , q) 41 for iGh , and that qNdi for iDh. Now we take
l1h terms of D8 smaller than dq as follows: for 1 G iGh we take di and qdi .
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Notice that

W(di )1W(qdi ) 4qW(di ) .

For iDh we take qdi . In this case

W(qdi ) 4qW(di ) .

Since q is a prime, d1 , d2 , R , dh , qd1 , qd2 , R , qdl are distinct and smaller
than qd. Further

g!
i41

l

W(qdi )1 !
i41

h

W(di )h log
4

k3
4q !

i41

l

W(di ) log
4

k3
D

qW(d) log
9

2
FW(dq) log

9

2
,

and this proves the admissibility of dq for (D8 , G). QED

LEMMA 4. – Let M be a positive integer and let (D , ]) be an ordered finite
set of positive integers. Suppose that M Q »

d T d
f d (3) is practical and that for

d(d, d is admissible. Then M Q »
d� D

f d (3) is practical.

PROOF. – We prove this lemma by finite induction. Let b(d and suppose
that M Q »

d T b
f d (3) is practical. Our aim is to show that M Q »

d ] b
f d (3) is

practical. We have

M Q »
d ] b

f d (3) 4M Q »
d T b

f d (3) Qf b (3) .

Since b is admissible, one has

log f b (3) EW(b) log
9

2
E !

d T b
W(d) log

4

k3
E

!
d T b

log f d (3) 4 log »
d T b

f d (3) G loggM »
d T b

f d (3)h ,

i.e., f b (3) G2M »
d T b

f d (3), and, by Lemma 1, this completes the
proof. QED

3. – Main result.

We now define two auxiliary sequences ]mn
(e) (nF1 and ]mn

(o) (nF1 of
increasing positive integers. Let ]pn (nF1 be the increasing sequence of
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primes, and let

.
`
/
`
´

m1
(e) 42

m2
(e) 410 (42 Q5)

m3
(e) 4110 (42 Q5 Q11)

mn
(e) 4

.
/
´

mn21
(e) Qp2n

mn21
(e) Qp2n21

if mn21
(e) Emn21

(o) and nF4

if mn21
(e) Dmn21

(o) and nF4

and

.
`
/
`
´

m1
(o) 43

m2
(o) 421 (43 Q7)

m3
(o) 4273 (43 Q7 Q13)

mn
(o) 4

.
/
´

mn21
(o) Qp2n

mn21
(o) Qp2n21

if mn21
(o) Emn21

(e) and nF4

if mn21
(o) Dmn21

(e) and nF4 .

Remark that lim
nKQ

mn
(e) Omn

(o) 41 and that (mn
(e) , mn

(o) ) 41 for every n. We can

now prove the following

PROPOSITION 1. – There exists an effectively computable constant c with
0 EcE1 such that for sufficiently large n and for every odd positive integer
rEcmin ]mn

(e) , mn
(o) (, the numbers

( i ) 6 Q (3rmn
(o)

21) (iii ) 2 Q (3rmn
(e)

11)

( ii ) 2 Q (3rmn
(e)

21) ( iv ) 6 Q (3rmn
(o)

11)

are all practical numbers.

PROOF. – We begin by proving the above proposition for r41. The proof is
similar for each of the above four cases. We shall prove that, for each number
(i), (ii), (iii), (iv) and for sufficiently large n, there exists an arrangement «]»
of divisors Dn (divisors of mn

(o), divisors of mn
(e), divisors of 2mn

(e) which are not
divisors of mn

(e), and divisors of 2mn
(o) which are not divisors of mn

(o)

respectively) and a finite set A ’ Dn, independent of n, and composed by
suitable terms at the beginning of the arrangement of Dn , such that every
term of Dn 2 A is admissible, and M Q »

d� A

f d (3) is practical (with M46 in case

(i) and (iv), and with M42 in case (ii) and (iii)). Since each number (i), (ii), (iii),
(iv) is of the form M Q »

d� Dn

f d (3) and M Q »
d� A

f d (3) is practical, by Lemma 4 we
achieve the proof.
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(i) We have

6 Q (3mn
(o)

21) 46 Q »
dNmn

(o)
f d (3) .

Let nD2 and

A1 (n)4 »
dNmn

(o)

dG23

f d (3) ; B1 (n) 4 »
dNmn

(o)

23 EdEmn
(o) /3

f d (3) ; C1 (n)4f mn
(o) /3 (3 ) Qf mn

(o) (3 ) .

We have 6(3mn
(o)

21) 46A1 (n) B1 (n) C1 (n). For sufficiently large n, A1 (n)
does not depend on n, since

A1 (n) 4f 1 (3) f 3 (3) f 7 (3) f 13 (3) f 17 (3) f 21 (3) f 23 (3) .

Hence, for sufficiently large n

6A1 (n) 422 Q3 Q13 Q47 Q1093 Q1871 Q34511 Q368089 Q797161 Q1001523179 ,

which is a practical number by the structure theorem. The next step is to prove
that 6A1 (n) B1 (n) is practical.

For n45, 6 , 7 , 8 one can directly check that every divisor d of mn
(o) with

17 EdEmn
(o) /3 is admissible for the increasing arrangement of the divisors of

mn
(o) , hence, by Lemma 4, 6A1 (n) B1 (n) is practical. Let nF8, and assume

that there exists an arrangement «]» of the divisors Dn of mn
(o) such that

every divisor d with 17 EdEmn
(o) /3 is admissible for (Dn , ]). Let p4

mn11
(o) /mn

(o), and define the following arrangement, again denoted by «]», of
the divisors Dn11 of mn11

(o) . Note that Dn11 & Dn . First, we arrange the
ordered finite sequence Dn excluding mn

(o) /3 and mn
(o) ; then we arrange pDn

again excluding mn11
(o) /3 and mn11

(o) ; finally, we arrange the ordered set of the
four numbers mn

(o) /3, mn
(o), mn11

(o) /3 and mn11
(o) .

For the first set of divisors d of mn11
(o) it is obvious that every dD17

is admissible for (Dn11 , ]) since d is admissible for (Dn , ]). By Lemma
3, this implies that, for the second set of divisors, every divisor of mn11

(o)

of the form dp with dNmn
(o) and dD17 (in this set dEmn

(o) /3 Emn11
(o) /3)

is admissible. If a divisor of this set is of the form dp with dNmn
(o) and

d41, 3 , 7 , 13 or 17 and nF8, we have

W(dp) log
9

2
G16 Q (p21) log

9

2
Egmn

(o) 2W(mn
(o) )2Wg mn

(o)

3
hh log

4

k3
4

4 !
d 8 Nmn

(o)

d 8Emn
(o) /3

W(d 8 ) log
4

k3
,
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and in our arrangement every d 8 such that d 8 Nmn
(o), d 8Emn

(o) /3 precedes
dp, hence dp is admissible.

In order to prove the admissibility of every divisor d of mn11
(o) with 17 EdE

mn11
(o) /3 we need to prove that mn

(o) /3 and mn
(o) are admissible for (Dn11 , ]).

Since nF8 we have pF61, hence p21 D6 log
9

2
/log

4

k3
. This implies

that

Wg mn
(o)

3
h log

9

2
EW(mn

(o) ) log
9

2
EWg mn

(o)

7
ph log

4

k3
,

i.e., both mn
(o) /3 and mn

(o) are admissible for (Dn11 , ]).
To complete the proof of (i) we now prove that for sufficiently large n,

mn11
(o) /3 and mn11

(o) are admissible for (Dn11 , ]), so by Lemma 4, 6 Q (3mn11
(o)

21)
is practical. In fact, since W(mn

(o) p) 4o(mn
(o) p), for sufficiently large n we

have

!
dNmn11

(o)

dEmn11
(o) /3

W(d) log
4

k3
4gmn

(o) p2W(mn
(o) p)2Wg mn

(o) p

3
hh log

4

k3
D

W(mn
(o) p) log

9

2
4 maxmWg mn

(o) p

3
h, W(mn

(o) p)n log
9

2
,

as required.

(ii) We have

2 Q (3mn
(e)

21) 42 Q »
dNmn

(e)
f d (3) .

Let nD2 and

A2 (n)4 »
dNmn

(e)

dG29

f d (3) ; B2 (n)4 »
dNmn

(e)

29 EdEmn
(e) /2

f d (3) ; C2 (n)4f mn
(e) /2 (3 ) Qf mn

(e) (3 ) ,

hence 2(3mn
(e)

21) 42A2 (n) B2 (n) C2 (n). For sufficiently large n, A2 (n) does
not depend on n, since

A2 (n) 4f 1 (3) f 2 (3) f 5 (3) f 10 (3) f 11 (3) f 19 (3) f 22 (3) f 29 (3) .

Hence, for sufficiently large n

2A2 (n) 424 Q112 Q23 Q59 Q61 Q67 Q661 Q1597 Q3851 Q28537 Q363889 Q20381027,

which is a practical number by the structure theorem. The remaining part of
(ii) is similar to (i).
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(iii) We have

2 Q (3mn
(e)

11) 42 Q »
dN2mn

(e)

d=mn
(e)

f d (3) .

Let nD3 and

A3 (n)4 »
dN2mn

(e)

d=mn
(e)

dG148

f d (3) ; B3 (n)4 »
dN2mn

(e)

d=mn
(e)

148EdE2mn
(e)/5

f d (3) ; C3 (n)4f 2mn
(e) /5 (3 ) Qf 2mn

(e) (3 ) ,

hence 2(3mn
(e)

11) 42A3 (n) B3 (n) C3 (n). For sufficiently large n, A3 (n) does
not depend on n, since A3 (n) 4f 4 (3) f 20 (3) f 44 (3) f 76 (3) f 116 (3) f 148 (3).
Hence, for sufficiently large n

2A3 (n) 422 Q52 Q149 Q1181 Q5501 Q12413 Q570461 Q953861 Q5301533 Q

25480398173 Q37945127666529000523013 Q142659759801404920771391593 ,

which is a practical number by the structure theorem. The remaining part of
(iii) is similar to the preceding cases.

(iv) We have

6 Q (3mn
(o)

11) 46 Q »
dN2mn

(o)

d=mn
(o)

f d (3) .

Let nD2 and

A4 (n)4 »
dN2mn

(o)

d=mn
(o)

dG34

f d (3) ; B4 (n)4»
dN2mn

(o)

d=mn
(o)

34EdE2mn
(o)/3

f d (3) ; C4 (n)4f 2mn
(o) /3 (3 ) Qf 2mn

(o) (3 ) ,

hence 6(3mn
(o)

11) 46A4 (n) B4 (n) C4 (n). For sufficiently large n, A4 (n) does
not depend on n, since A4 (n) 4f 2 (3) f 6 (3) f 14 (3) f 26 (3) f 34 (3). Hence, for
sufficiently large n

6A4 (n) 423 Q3 Q7 Q103 Q307 Q547 Q1021 Q398581 ,

which is a practical number by the structure theorem. The remaining part of
(iv) is similar to the preceding cases.

We incidentally provided a second proof of the existence of infinitely many
triplets of practical numbers of the form (m22, m , m12) with m42 Q3mn

(e)
.

The above arguments are suitable to complete the proof. Whenever rD1 is
odd, the divisors of 2rmn

(e) [2rmn
(o) ] which are not divisors of rmn

(e) [rmn
(o) ]

contain the divisors of 2mn
(e) [2mn

(o) ] which are not divisors of mn
(e) [mn

(o) ].
Further, if max ]pNr( /mn

(e) is sufficiently small, we can prove that (i), (ii), (iii),



ON 5-TUPLES OF TWIN PRACTICAL NUMBERS 733

(iv) are practical numbers. The computation of the constant c which suffices
for our aims is not much important in our opinion, and we omit
it. QED

We are ready to prove the following

THEOREM 1. – At least one of the two following statements holds:

(a) There exist only finitely many pairs (mn
(e) , mn

(o) ) such that the
Diophantine equation

xmn
(e) 2ymn

(o) 41

has a solution in odd integers x , y and 0 Ex , yEc min ]mn
(e) , mn

(o) (, where c
is defined as above.

(b) There exist infinitely many 5-tuples of practical numbers of the
form (m26, m22, m , m12, m16).

PROOF. – Suppose that for infinitely many n there exist odd integers xn , yn

such that 0 Exn , yn Ec min ]mn
(e) , mn

(o) ( and xn mn
(e) 2yn mn

(o) 41. Then, for
sufficiently large n, the numbers 6(3yn mn

(o)
21), 2(3xn mn

(e)
21), 2(3xn mn

(e)
11),

6(3yn mn
(o)

11) are practical numbers by Proposition 1. Hence, for m42 Q3xn mn
(e)

,
the numbers m26 46(3yn mn

(o)
21), m22 42(3xn mn

(e)
21), m, m12 4

2(3xn mn
(e)

11) and m16 46(3yn mn
(o)

11) are practical numbers. QED

We remark that statistical arguments suggest that (a) should be false,
although a proof appears to be difficult at first sight.
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