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Global Attractors for Problems with Monotone Operators.

ALEXANDRE N. CARVALHO (*)(**) - JAN W. CHOLEWA (*) - TOMASZ DLOTKO (*)

Sunto. – L’esistenza di attrattori globali per equazioni paraboliche semilineari è stata
estensivamente studiata da molti autori mentre il caso quasilineare è stato meno
considerato e ancora esistono molti problemi aperti. L’obiettivo di questo lavoro è
di studiare, da un punto di vista astratto, l’esistenza di attrattori globali per equa-
zioni paraboliche quasilineari con parte principale monotona. I risultati ottenuti
vengono applicati a problemi parabolici degeneri del secondo ordine e di ordine
superiore.

1. – Introduction.

In this paper we consider the existence of global attractors (see [HA,
p. 39]) for problems of the form

.
/
´

du

dt
(t)1A(u(t) )1B(u(t) )40 , tD0 ,

u(0) 4u0 �H ,

(1)

where A is a maximal monotone operator and B is a globally Lipschitz map on
a Hilbert space H .

To motivate the study done here we point out a few features of semilinear
parabolic problems which will be different for the quasilinear problems under
consideration in this paper. For simplicity of presentation we do this using the
easiest possible examples.

Let V%R n be a bounded smooth domain in R n . Assuming that A4D D de-
notes the Laplace operator with homogeneous Dirichlet boundary condition
and that B(u) 4lu , l�R , g�L 2 (V), we obtain the problem:

.
/
´

ut 4Du1lu1g , tD0 , x�V ,

u40 , x�¯V ,

u(0) 4u0 �L 2 (V) .

(2)
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It is obvious that, if l 1 denotes the first eigenvalue of 2D D , the problem
(2) with lEl 1 has a trivial compact global attractor consisting of the only solu-
tion of stationary problem:

.
/
´

Du1lu1g40 , x�V ,

u40 , x�¯V ,
(3)

whereas for lFl 1 (2) no longer has a compact global attractor.
In contrast to this we will prove that the problem

.
/
´

ut 4div (N˜uNp22 ˜u)1lu1g , tD0 , x�V ,

u40 , x�¯V ,

u(0) 4u0 �L 2 (V) ,

(4)

with pD2, has a compact global attractor for all values of l .
This examples show that the dissipation properties of the p-Laplacian, for

pD2, are much stronger than the corresponding properties of the linear
Laplacian. Such properties are related to the fact that the main part of (4) ex-
hibits a nonlinear diffusion which is very large for large values of the gradient
of the solution. Also for small gradients of the solution the diffusion is small
and this may produce interesting and complicated dynamics.

In fact we prove existence of global attractors for a class of abstract prob-
lems of the form (1) which includes (4) as well as many other second and high-
er order examples of more complicated nature.

2. – Abstract results.

In this section we prove the abstract theorem concerning existence of the
global attractor for the semigroup associated with (1) in clH (D(AH ) ) (with the
metric inherited from H) under some extra hypotheses on the monotone oper-
ator A .

The following hypotheses are known in the literature (cf. [BR], [BA], [LI],
[TE]) and will be used to obtain existence and smoothness of solutions to (1).

H1. – (i) Let V be a reflexive Banach space such that

V%H%V * ,

with continuous inclusions and with V * denoting the topological dual of V .
Assume in addition that V is dense in H .

(ii) Let A be a nonlinear, monotone, coercive and hemicontinuous op-
erator such that A : VKV * (defined on all of V).

(iii) Let B : HKH be a globally Lipschitz map.
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Define the set

D(AH ) »4 ]v�V ; A(v) �H(

and consider the operator AH : D(AH ) %HKH given by

AH (u) 4A(u) for u�D(AH ) .

We denote by aQ , Qb the inner product in H and by aQ , QbV *, V the duality be-
tween V * and V .

Recall the definitions of strong and weak solutions to (1).

DEFINITION 1.

– A function u�C( [0 , T]; H) is a strong solution to (1) if u is absolutely
continuous in any compact subinterval of (0 , T), u(t) �D(AH ) for a.a .
t� (0 , T), and

du

dt
(t)1A(u(t) )1B(u(t) )40 for a.a. t� (0 , T) .

– A function u�C( [0 , T]; H) is called a weak solution to (1) if there is a
sequence ]un ( of strong solutions convergent to u in C( [0 , T]; H).

We have:

PROPOSITION 1. – If H1 holds, then the equation (1) defines a semigroup of
nonlinear operators T(t): clH (D(AH ) )KclH (D(AH ) ) , tF0, where for each
u0 �clH (D(AH ) )

tKT(t) u0(5)

is the global weak solution of (1) starting at u0 . This semigroup is such
that

R 13clH (D(AH ) )� (t , u0 ) KT(t) u0 �clH (D(AH ) )

is a continuous map. Additionally, if u0 �D(AH ), then u(Q) 4T(Q)u0 is a Lips-
chitz continuous strong solution of (1).

PROOF. – Observe that under the assumption H1 the operator A will
be maximal monotone (see [BR, Ex. 2.3.7, p. 26]). Also, as a result of [BR,
Remark 3.14, p. 106] we have immediately the existence and regularity
of global solutions to (1). For the joint continuity one observes that:

sup
t� [0 , T]

VT(t) u0 2T(t) v0 VH GC(T) Vu0 2v0 VH ,
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which follows from the usual estimates using the equation (1) and mono-
tonicity of A . The proof is completed. r

For further results we will need additional assumptions on A . The follow-
ing hypothesis can be used to obtain the density of the domain of A , even
though this is sometimes a trivial problem. It is also helpful to show that the
semigroup is compact and dissipative in the topology of H .

H2. – There are constants v 1 , v 2 D0, c1 �R and pF2 such that for all v�
V the following two conditions hold:

aAv , vbV *, V Fv 1 VvV

p
V 1c1 ,(6)

VAvVV * Gv 2 (11VvV

p21
V ) .(7)

LEMMA 1. – If H1 (i), (ii) and H2 hold, then the domain D(AH ) is dense
in H .

PROOF. – Let u be an arbitrary element of H and e� (0 , 1 ). Let ue4

(11eAH )21 (u). Since

ue1eAH (ue ) 4u ,(8)

then

Vue V

2
H 1eaAH (ue ), ue b 4 au , ue b

and using the condition (6) we find that

Vue V

2
H 1ev 1 Vue V

p
V GVuVH Vue VH 2ec1 .(9)

Hence the norm Vue VH is bounded and also

eVue VV
p Gconst ,(10)

where const is independent of e� (0 , 1 ). From (8) and (7), (10) we get
further

Vue2uVV * 4eVAH (ue )VV * Gv 2 e(11Vue V

p21
V ) G

v 2 eg11g const

e
h(p21)OphGv 2 (e1e 1Op const(p21)Op ) .

This ensures that ueKu in V *. Since H is a Hilbert space and ]ue( is bounded
in H , any sequence ]ue n

( has a subsequence weakly convergent in H . As a
consequence ue converges to u weakly in H when eK0. Using (9) we observe
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that ye »4Vue VH satisfies quadratic inequality

y 2
e 2VuVH ye1ec1 G0 .

This shows that lim sup
eK0

Vue VH GVuVH and therefore ue converges to u strongly

in H (cf. [BR, Proposition 1.4, p.14]). The proof is completed. r

LEMMA 2. – Let K be a continuous map in a metric space X and W be a
dense subset of X. Then the following two conditions are equivalent:

(i) for each open ball BX (r) the image K(BX (r)OW) is precompact in X,

(ii) for each bounded subset B of X, the image K(B) is precompact in X.

PROOF. – Implication (ii)K(i) is obvious. To prove (i)K(ii) denote by d(B)
the diameter of B and take v0 � B . We have:

B % ]v�X ; r(v0 , v) Ed(B)11( 4» B
A

and also

B %clX (B
A

OW) .

Since K is continuous, then

K(B) %K(clX (B
A

OW) )%clX K(B
A

OW) .(11)

From (i) the set clX K(B
A

OW) is compact in X and hence clX K(B) is compact as
the result of (11). The proof is completed. r

REMARK 1. – This lemma shows that it suffices to check compactness of the
semigroup ]T(t)( associated with (1) considering initial data u0 from dense
subset of the phase space clH (D(AH ); in particular from D(AH ). This observa-
tion will be used in the proof of Lemma 4.

LEMMA 3. – If H1, H2 hold and pD2, then for any u0 �D(AH ) and all TD0
we have that:

s
0

T

Vu(s)V

p
V dsG C1 (Vu0 VH , T) ,(12)

s
0

T

NN du

dt
(s)NN

u

V *
dsG C2 (Vu0 VH , T) ,(13)

where C1 , C2 are locally bounded functions and u4pO(p21).
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PROOF. – According to Proposition 1 we have a weak solution u(t) of the
problem (1). Consider u0 �D(AH ). By [BR, Theorem 2.17] the corresponding
to u0 weak solution satisfies:

u(t) �C( [0 , T]; H) for all TD0 .

Therefore, for any B Lipschitz from H into H , we have:

f (t) »4B(u(t) )�C( [0 , T]; H) %L u (0 , T ; V *) .

Applying [BA, Theorem 2.6, p. 140] we verify that

u�C( [0 , T]; H)OL p (0 , T ; V) ,
du

dt
�L u (0 , T ; V *) .

We are now able to prove (12), (13).
From equation (1) and inequality (6) it follows that

1

2

d

dt
VuVH

2 42aA(u), ubV *, V 2 aB(u), ubH G

2v 1 VuV

p
V 2c1 1LVuVH

2 1const VuVH G2
v 1

2
VuV

p
V 1const1 ,

where L is the Lipschitz constant for B : HKH and pD2. Integrating over
(0 , T) we find:

Vu(T)VH
2 1v 1s

0

T

Vu(s)VV
p dsGVu0 VH

2 1const1 T .(14)

This shows that (12) is satisfied. Also

VuVL Q (0 , T ; H) Gconst2 (Vu0 VH , T) .(15)

It follows further from equation (1) and inequality (7) that

NN du

dt NN
u

V *
Gconst3 (VA(u)VV *

u 1VB(u)VV *
u )Gconst4 (11VuVV

p 1VuVH
u ) .

Integrating over (0 , T) and using (12), (15) we come to (13). The proof is
completed.

LEMMA 4. – Let ]T(t)( be a semigroup associated with (1) on clH (D(AH ) ) .
Assume H1 (i), (12) and (13), for some TD0, pD1, uD1, and the compactness
of the embedding V%H . Then T(t): clH (D(AH ) )KclH (D(AH ) ) is a compact
map for each tD0.
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PROOF. – To prove compactness of the semigroup ]T(t)( it suffices, accord-
ing to Lemma 2, to consider bounded subsets of H having the form B 4

BH (r)OD(AH ) (BH (r) being the ball in H with radius r centered at zero). Fix
TD0 according to our assumptions and define the subset B

A
%C( [0 , T]; H):

B
A

»4 ]T(Q) u0 ; u0 � B( ,

where u(Q) 4T(Q)u0 �C( [0 , Q); H) denotes a weak solution (5) of (1) resulting
from Proposition 1.

Let us introduce further a Banach space

W»4mv�L p (0 , T ; V);
dv

dt
�L u (0 , T ; V *)n

(with p as in H2) endowed with the norm

VvVW »4VvVL p (0 , T ; V) 1NN dv

dt NN
L u (0 , T ; V *)

.

As a consequence of (12), (13) the set B
A is bounded in the norm of W . There-

fore, from [LI, Theorem 5.1, Chapt. 1]

B
A is precompact in L p (0 , T ; H) .(16)

Take any sequence ]un ( % B and consider the sequence ]T(Q) un ( % B
A. From

(16) there is a subsequence ]T(Q) unk
( of ]T(Q) un ( and v0 �L p (0 , T ; H) such

that

us
0

T

VT(s) unk
2v0 (s)VH

p dsv
1Op

K0 when kKQ .(17)

Hence the sequence ]VT(Q) unk
2v0 (Q)VH ( of real functions VT(Q)unk

2v0 (Q)VH :
(0 , T) KR converges to zero in L p (0 , T ; R) and, in particular, there is a sub-
sequence ]VT(Q) unkl

2v0 (Q)VH ( such that

VT(Q) unkl
2v0 (Q)VH K0 a.e. on (0 , T) .(18)

Now for any tD0 using (18) we have

)t� (0 , t) T(t) unkl
Kv0 (t) in H .

Therefore

T(t) unkl
4T(t2t) T(t) unkl

KT(t2t) v0 (t) ,

which proves that the sequence ]T(t)un ( has a convergent subse-
quence. r
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LEMMA 5. – Let H1, (6) be satisfied. If pD2, then the semigroup ]T(t)(
associated with (1) is bounded dissipative (as in [HA, p. 38]) in
clH (D(AH ) ) .

PROOF. – It suffices to consider initial data u0 �D(AH ). From equation (1),
assumption (6) and Lipschitz continuity of B it follows that:

1

2

d

dt
VuVH

2 42aA(u), ubV *, V2 aB(u), ubHG2v 1 VuVV
p2c11const (VuV

2
H11) G

2
v 1

2
VuVV

p 1const8G2
v 1

2
e 2p

VuVH
p 1const8 .

Hence the function y(t) »4Vu(t)VH
2 satisfies the differential inequality

y 8 (t) G2v 1 e 2p y pO2 (t)12 const8 .

Therefore, from [TE, Lemma 5.1, p. 163], we get

y(t) 4VuVH
2 Gg 2 const8

v 1 e 2p h2Op

1gv 1g p

2
21h th22O(p22)

.

This shows that the set ]u0 �clH (D(AH ) ) : Vu0 VH Gr( attracts (see [HA,
p. 36]) bounded subsets of clH (D(AH ) ) in the H2norm for each rF

(2 const8 Ov 1 e 2p )2Op . The proof is completed. r

As a consequence of Proposition 1, Lemmas 2-5 and Hale’s theory of dissi-
pative systems [HA, Theorem 3.4.8] we conclude immediately that:

THEOREM 1. – Let H1, (6), (13) be satisfied, pD2 and V be compactly em-
bedded in H. Then the semigroup ]T(t)( associated with (1) has a global at-
tractor in clH (D(AH ) ).

REMARK 2. – Note that the above result is also true for p42 provided that
Le 2 Ev 1 is satisfied, where e is the embedding constant for V%H.

3. – Applications.

3.1. EXAMPLE 1. – Let V be an open, bounded domain in R n with smooth
boundary ¯V and let H4L 2 (V). Consider the following nonlinear second or-
der partial differential equation

ut 4div (N˜uNp22 ˜u)2NuNr21 u1 f (u)(19)

with homogeneous Dirichlet boundary condition, where pD2 and rD1.
Next we rewrite the above problem in the abstract setting. Let A1 and A2
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be the nonlinear operators defined by

D(A1 ) 4 ]u�W 1, p
0 (V); div (N˜uNp22 ˜u) �L 2 (V)( ,

A1 (u) 42div (N˜uNp22 ˜u)

and

D(A2 ) 4 ]u�L r11 (V); NuNr21 u�L 2 (V)( ,

A2 (u) 4NuNr21 u .

Define the operator A in D(A1 )OD(A2 ) as

A(u) 4A1 (u)1A2 (u) .

Let f : RKR be a globally Lipschitz function and B be the Nemitskii operator
defined by 2f on L 2 (V). For the above defined operators consider below the
problem (1) in H .

Let V4W 1, p
0 (V)OL r11 (V). We then have

LEMMA 6. – The Banach space V normed by V Q VV 4V Q VW 1, p
0 (V) 1V Q VL r11 (V)

is reflexive.

PROOF. – The proof follows from the Eberlein-Shmulyan theorem and the
characterization of V * given in [G-Z]. r

To apply the abstract results we first need to verify condition H1. It is clear
that condition H1 (i) is satisfied. Now define A : VKV * by

aA(u), vbV *, V 4s
V

N˜uNp22 ˜u ˜v dx1s
V

NuNr21 uv dx for all v�V .(20)

It is a standard result from monotone operator theory that A is a monotone,
coercive and hemicontinuous nonlinear operator defined on V with D(AH )
dense in H, where

D(AH ) 4 ]v�V ; 2div (N˜vNp22 ˜v)1NvNr21 v�H( .

Also B is trivially seen to be a Lipschitz map from H into itself.
To apply Theorem 1 we need also to verify (6). It follows from (20) and the

Young inequality that

aA(u), ubV *, V 4V˜uVL p (V)
p 1VuVL r11 (V)

r11 Fv 1 VuV

h
V 1c1 for all u�V ,
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with h4min ]p , r11(. Finally to verify (13) observe that for u0 �D(AH ) we
have

1

2

d

dt
VuVH

2 G2V˜uVL p (V)
p 2VuVL r11 (V)

r11 1LVuVL 2 (V)
2 1cG

2v(V˜uVL p (V)
p 1VuVL r11 (V)

r11 )1c 8 .

Integrating from 0 to T we obtain that

(21)
1

2
Vu(T)VH

2 1vs
0

T

(V˜u(s)VL p (V)
p 1Vu(s)VL r11 (V)

r11 ) dsG C1 (Vu0 VH , T) .

Also, using Hölder inequality, we have

.
/
´

VA1 (u)VW 21, p 8 (V) GV˜uVL p (V)
p21 ,

VA2 (u)VL (r11)Or (V) GVuVL r11 (V)
r .

(22)

Now, from equation (19), estimates (22), and [G-Z, Chapt. I, § 5] it follows
that

NN du

dt NN
V *

GVA1 (u)1A2 (u)VV * 1VB(u)VV * G

VA1 (u)VW 21, p 8 (V) 1VA2 (u)VL (r11)Or (V) 1LVuVH 1constG

c(VuVW 1, p
0 (V)

p21 1VuVL r11 (V)
r 11) .

Therefore, for u4min ]pO(p21), (r11)Or( condition (13) holds:

s
0

T

NN du

dt NN
V *

u

dtGc 8s
0

T

(VuVW 1, p
0 (V)

(p21) u 1VuVL r11 (V)
ru 11) dtG C2 (Vu0 VH , T) .

THEOREM 2. – The problem (19) has a global attractor in L 2 (V).

REMARK 3. – The case of (2m)th-order nonlinear operators as in [BA,
p. 144] can be treated similarly with minor changes in the proofs.

3.2. EXAMPLE 2. – Let V be as in Example 1 and D D as in the introduction.
Consider the following nonlinear second order partial differential equa-
tion

ut 4div (NuNp22 ˜u)1 f (u)(23)
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with homogeneous Dirichlet boundary condition, pD2 and f : R 1KR 1 glob-
ally Lipschitz continuous.

Next we write an abstract week formulation of the above problem (see [LI,
Ex. 3.2, p. 191]). Consider H4H 21 (V) endowed with the inner product given
by the extension to H3H of the bilinear form

au , vb 4 (u , (2D D )21 v)L 2 (V) , u , v�L 2 (V) .

For V4L p (V) and pD2 we have that

V%H%V *

with continuous and dense inclusions (here H is identified with its dual).
If, naively, we try to obtain the estimates needed in Section 2 we proceed as

follows:

adiv (NuNp22 ˜u), vb 4s
V

div (NuNp22 ˜u)[ (2D D )21 v] dx4

1

p21
s

V

D(NuNp22 u)[ (2D D )21 v] dx4

2
1

p21
s

V

˜(NuNp22 u)˜[ (2D D )21 v] dx1

1

p21
s

¯V

¯

¯n
[NuNp22 u][ (2D D )21 v] ds4

2
1

p21
s

V

˜(NuNp22 u) ˜[ (2D D )21 v] dx4

2
1

p21
s

V

NuNp22 uv dx2
1

p21
s

¯V

NuNp22 u
¯

¯n
[ (2D D )21 v] ds .

Then the form

a(u , v) 4
1

p21
s

V

NuNp22 uv dx

satisfies

a(u , u2v)2a(v , u2v) F0
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and

a(u , u) 4
1

p21
VuVL p (V)

p .

Therefore, the operator A : VKV * defined by a(Q , Q) is monotone and
satisfies

aA(u), ubV *, V 4
1

p21
VuVL p (V)

p , VA(u)VV * G
1

p21
VuVL p (V)

p21 .

If A1 : VKV * is the operator defined by the extension of the form

a1 (u , v) 4
1

p21
s

¯V

NuNp22 u
¯

¯n
[ (2D D )21 v] ds ,

then

VA1 (u)VV * GcVuVL p (V)
p21 .

However we are not able to prove monotonicity.
Since we are interested in solving the Dirichlet boundary value problem we

disregard the operator A1 and consider the problem:

.
/
´

du

dt
(t)1A(u(t) )1B(u(t) )40 , tD0 ,

u(0) 4u0 �H

(24)

with B being the extension to H of the Nemitskii operator given by 2f in
L 2 (V).

Now the problem (24) with A given by the form a(Q , Q) defines a semigroup
on clH (D(AH ) ) . Since conditions H1 and H2 are also satisfied we have, by
Lemma 1, that clH (D(AH ) )4H and by Theorem 1 that:

THEOREM 3. – The problem (24) has a global attractor in H 21 (V).

Next, we briefly describe why a sufficiently regular solution must satisfy
(23) and the boundary condition.

If v�D D (C0
Q (V) ) it follows from (24) that

s
V

du

dt
[ (2D D )21 v] dx42

1

p21
s

V

NuNp22 uv dx1s
V

f (u) [ (2D)21 v] dx4

1

p21
s

V

D(NuNp22 u) [ (2D D )21 v] dx1s
V

f (u) [ (2D D )21 v] dx
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so that

ut 4
1

p21
D(NuNp22 u)1 f (u)

almost everywhere in V . To verify that the boundary condition is also satisfied
we shall use the following (cf. [K, Chapter 2] for general version of the trace
theorem below):

LEMMA 7. – For given f 1 �C Q
0 (¯V) there exists a function v�L p (V) such

that

¯

¯n
[ (2D D )21 v] 4f 1 in ¯V .

PROOF. – Note that for any g�L p (V), f , f 1 �C Q
0 (¯V) the unique solution

of the elliptic boundary value problem

.
/
´

D 2 w4g

w4f

¯w

¯n
4f 1

in V ,

in ¯V ,

in ¯V ,

belongs to W 4, p (V). Then v42D D w is a required function. r

If we now assume that v�L p (V) we have

s
V

du

dt
[ (2D D )21 v] dx42

1

p21
s

V

NuNp22 uv dx2

1

p21
s

¯V

NuNp22 u
¯

¯n
[ (2D D )21 v] ds1s

V

f (u) [ (2D D )21 v] dx .

Since the solution satisfies (23) almost everywhere in V we have that

s
¯V

NuNp22 u
¯

¯n
[ (2D D )21 v] ds40 .

Therefore from Lemma 7, u40 in ¯V .
These computations justify the choice of A .
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