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Bollettino U. M. I.
(8) 2-B (1999), 673-691

Polynomial Identities of Nil Algebras of Bounded Index.

FRANCESCA BENANTI (*) - VESSELIN DRENSKY (**)

Sunto. – Lo scopo di questo lavoro è di dare una nuova descrizione del T-ideale genera-
to dalla nil-identità x n40 come immagine omeomorfa della n-esima potenza ten-
soriale simmetrica dell’algebra associativa libera KaXb su un campo K di caratte-
ristica 0. Come applicazione calcoliamo il carattere delle conseguenze multilineari
di grado Gn12 dell’identità x n40.

Introduction.

Let K be a field of characteristic 0. The classical Nagata-Higman theorem
[10, 14] states that the polynomial identity x n 40 implies the identity of nilpo-
tency x1 R xp(n) 40. In the 40’s this theorem was also established by Dubnov
and Ivanov [7] but completely overlooked by the mathematical community.
The proofs of many results on the structure of PI-algebras involve essentially
the Dubnov-Ivanov-Nagata-Higman theorem and these results would have
quantitative character if one knows the exact value of the class of nilpotency
p(n). The best known bounds for p(n)

n(n11)

2
Gp(n) Gn 2

are due respectively to Kuz8min [13] and Razmyslov [18]. The only exact values
of p(n) are known for nG3 (Dubnov [6]) and n44 (Vaughan-Lee [21]):

p(1) 41 , p(2) 43 , p(3) 46 , p(4) 410 .

Hence for nG4 the class of nilpotency reaches the bound of Kuz’min and
there is a conjecture that the same holds for any n.

There is a nice relation between the Dubnov-Ivanov-Nagata-Higman theo-
rem and classical invariant theory (we refer to the book by Formanek [9] for
details). Let Rn be the algebra generated by the generic n3n matrices

yr 4 !
i , j41

n

j ij
(r) eij, r41, 2 , R, where j ij

(r) are commuting variables and eij are
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the matrix units. The general linear group GLn (K) acts by conjugation on the
generic matrices which induces an action on the polynomial algebra

V n 4K[j ij
(r) Ni , j41, R , n , r41, 2 , R] .

By the Razmyslov-Procesi theory (see Razmyslov [18, Final remark], Procesi
[16, Theorem 3.3], [17, Theorem 4.3] and Formanek [8, Theorem 6]), the alge-
bra of invariants V n

GLn (K) is generated by the set of traces tr(yr1
R yrk

) of de-
gree k bounded by the class of nilpotency p(n) of the nil algebras of index n.
The bound kGp(n) is exact. Minimal sets of generators for the invariants of
n3n matrices are known for small n only. The case n42 has been handled by
Siberskii [19]. Abeasis and Pittaluga [1] have suggested an algorithm for find-
ing a minimal set of generators for V n

GLn (K). Combining computers with calcu-
lations by hand they have successfully applied this algorithm to the case of 33

3 matrices.
The purpose of our paper is the better understanding of the T-ideal ax n bT

generated by x n in the free associative nonunitary algebra A4KaXb where
X4 ]x1 , x2 , R( is a countable set of variables. Our approach is based on rep-
resentation theory of the general linear group GLm (K) which, for applications
to PI-algebras is equivalent to the representation theory of Sn (see [4] and
Berele [3]). For m fixed, the group GLm (K) acts canonically on the free alge-
bra Am 4Kax1 , R , xm b in the same way as it acts on the tensor algebra of the
m-dimensional vector space with basis x1 , R , xm . Since the T-ideals of Am are
GLm (K)-invariant, a lot of information for ax n bT can be obtained from its
GLm (K)-module structure. Our first result describes the GLm (K)-module
Am O ax n bT as a homomorphic image of the n-th symmetrized tensor power of
Am .

As an application we have computed the Sk-character of the multilinear
consequences of degree kGn12 of the identity x n 40 and found explicit gen-
erators of the irreducible components. In particular, for nF3

x Sn11
(Vn11 O ax n bT ) 4x(n11)12x(n , 1 )1x(n21, 2 )1x(n21, 12 )

and for nF6

x Sn12
(Vn12 O ax n bT ) 4x(n12)14x(n11, 1 )15x(n , 2 )15x(n , 12 )1

3x(n21, 3 )16x(n21, 2 , 1 )13x(n21, 13 )1x(n22, 4 )1

x(n22, 3 , 1 )12x(n22, 22 )1x(n22, 2 , 12 )1x(n22, 14 ) ,

where Vk is the set of all multilinear polynomials of degree k in the free asso-
ciative algebra.

It turns out that for kGn12 the exact values of the multiplicities of the ir-
reducible Sk-characters in the character sequence of ax n bT coincide with or are
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very close to the estimates obtained from the description of ax n bT as a sym-
metrized tensor power. In order to calculate the Sk-characters we have devel-
oped further the approach from our recent paper [2] where we have found the
Sn12-character of the multilinear consequences of degree n12 of the stan-
dard polynomial of degree n. As in [2], we have used results of Thrall [20] on
plethysms and, especially, on symmetrized tensor powers of irreducible
GLm (K)-modules. The complete calculations, including the list of the highest
weight vectors of the consequences of degree n12 of x n 40, are available by
request as a Plain TEX file and as a preprint. Since our considerations are
based on algorithmic ideas, we believe that one can use them for further inves-
tigations. For example one can try to find the exact value of the class of nilpo-
tency of algebras satisfying the identity x 5 40 and to confirm the above men-
tioned conjecture for n45.

1. – Preliminaries.

Let K be a fixed field of characteristic 0. We consider associative, nonuni-
tary K-algebras only. All vector spaces and tensor products are also over K.
We denote by A4KaXb the free associative algebra of countable rank with a
set of generators X4 ]x1 , x2 , R(. We consider the free algebra Am 4

Kax1 , R , xm b of rank m as a subalgebra of A. An ideal U of A is a T-ideal if it
is invariant under all endomorphisms of A. We denote by afbT the T-ideal of A
generated by f�A.

The algebras A and Am are graded, A4! A (k), where A (k) is the space of
all homogeneous polynomials of degree k and Am 4! Am

(k) with A (k)
m 4Am O

A (k). We shall also use the multigrading Am 4! Am
(k1 , R , km ), where Am

(k1 , R , km ) is
the component homogeneous of degree ki in each variable xi. In our considera-
tions, all graded vector spaces are subspaces or tensor products of subspaces
of A and Am with these particular gradings. It is well known that every T-ideal
U is a graded subspace of A and Am OU is multigraded.

The general linear group GLm 4GLm (K) acts canonically from the left on
the vector space with basis ]x1 , R , xm (. This action is extended diagonally on
Am by

g(xi1
R xik

) 4g(xi1
) R g(xik

), g�GLm , xi1
R xik

�Am ,

and Am OU is a GLm-submodule of Am for any T-ideal U. Similarly, if Vk 4

Ak
(1 , R , 1 ), k41, 2 , R, is the vector space of all multilinear polynomials of de-

gree k in Ak, the symmetric group Sk acts from the left on Vk by

s(xi1
R xik

) 4xs(i1 ) R xs(ik ) , s�Sk , xi1
R xik

�Vk .

Every T-ideal U of A is generated by its multilinear elements and Vk OU is an
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Sk-submodule of Vk, k41, 2 , R The Sk-character

x k (U) 4x Sk
Vk /(Vk OU), k41, 2 , R ,

is the k-th cocharacter of U.
For a background on representation theory of the symmetric and the gen-

eral linear groups we refer to [11], [14] or [23]. Recall that l4 (l 1 , R , l p ) is a
partition of k (notation l l2k) if l 1 FRFl p F0 and l 1 1R1l p 4k. The ir-
reducible representations of Sk and the irreducible polynomial representa-
tions of GLm are described by partitions. We denote respectively by M(l), x(l)
and W(l) the irreducible Sk-module, its character and the irreducible GLm-
module related with l, assuming that W(l) 40 if l m11 D0. The modules M(l)
and W(l) are isomorphic to submodules of Vk and Am

(k), respectively.
By a result of Berele [3] and one of the authors [4], for any T-ideal U the

actions of Sk on Vk OU and of GLm on Am
(k) OU, k41, 2 , R, are equivalent

and if the Sk-module Vk OU is isomorphic to !
l

m(l)M(l), m(l) �NN ]0(, l l2

k, then the GLm-module Am
(k) OU is isomorphic to !

l
m(l)W(l) with the same

multiplicities m(l), for each l4 (l 1 , R , l m ).
Let l m11 40. Up to a multiplicative constant there exists a unique genera-

tor wl of W(l) which is multihomogeneous of degree (l 1 , R , l m ). This ele-
ment is called the highest weight vector of W(l) and can be described in the
following way. The symmetric group Sk acts from the right on the homoge-
neous component of degree k of Am by place permutation

(xi1
R xik

) s21 4 (xis(1)
Rxis(k)

), s�Sk , xi1
R xik

�Am
(k) .

Every nonzero element

wl (x1 , R , xm ) 4g»
j41

q

spj
(x1 , R , xpj

)h !
s�Sk

bs s , bs�K ,

is the highest weight vector of a submodule W(l) of Am
(k). Here q4l 1, pj is the

length of the j-th column of the Young diagram related with l and

sd (x1 , R , xd ) 4 !
p�Sd

( sign p)xp(1) Rxp(d)

is the standard polynomial of degree d.
For a GLm-module W we consider the k-th symmetrized tensor power W 7sk

identifying the tensors w1 7R7wk and wp(1) 7R7wp(k), w1 , R , wk �W,
p�Sk . In particular, W7s W is the symmetrized tensor square of W and
w1 7s w2 is the symmetric product of w1 and w2. As in [2], we shall use the
Young rule for the tensor product of GLm-modules and the rule for the decom-
position of the symmetrized tensor squares of W(2) and W(12 ) which follows
from the results of Thrall on plethysms [20] (see also [14]).
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PROPOSITION 1.1. – (i) The tensor product W(l 1 , R , l m )7W(k) is isomor-
phic to the direct sum of W(m), where m4 (m 1 , R , m m ),

m 1 Fl 1 Fm 2 Fl 2 FRFm m Fl m , m 1 1R1m m 4l 1 1R1l m 1k ,

i.e. the diagram of m is obtained by adding k boxes to the diagram of l in such
a way that no two new boxes are in the same column of the diagram of m.

(ii) The following GLm-module isomorphisms hold

W(2)7s W(2) `W(4)5W(22 ), W(12 )7s W(12 ) `W(22 )5W(14 ).

PROPOSITION 1.2. – Let W4 !
iF1

Wi be a direct sum of irreducible polynomi-

al GLm-modules such that for each l only a finite number of Wi are isomor-
phic to W(l). Then, as a GLm-module, the n-th symmetrized tensor power
W 7sn of W is isomorphic to the direct sum

!Wi1
7sn1 7R7Wip

7snp ,

where the summation runs over all i1EREip , pGn, and n11R1np4n.

PROOF. – Every irreducible polynomial GLm-module is a multigraded vec-
tor space. We choose an ordered multigraded basis ]w1 , w2 , R( of W assum-
ing that the inclusions wj �Wp and wj11 �Wq imply that pGq. Then W 7sn is a
graded vector space and its homogeneous components are finite dimensional.
There is an obvious isomorphism as graded vector spaces between W 7sn and
!Wi1

7sn1 7R7Wip
7snp, defined by

(wj1
7s R7s wjn1

)7s R7s (wjn2np11
7s R7s wjn

) K

(wj1
7s R7s wjn1

)7R7 (wjn2np11
7s R7s wjn

),

where wj1
, R , wjn1

�Wi1
, j1 GRG jn1

, R, wjn2np11
, R , wjn

�Wip
, jn2np11 GRG

jn, i1 ERE ip, n1 1R1np 4n. It is well known that if two GLm-modules U1

and U2 are direct sums of polynomial submodules and the homogeneous com-
ponents U1

(k) and U2
(k) are finite dimensional for any k, then the isomorphism of

U1 and U2 as graded vector spaces implies the isomorphism as GLm-modules.
Hence, the modules W 7sn and !Wi1

7sn1 7R7Wip
7snp are isomorphic.

COROLLARY 1.3. – Let * be a linear operator acting on the GLm-mod-
ule

W4W 1(1)5(W 1(2)5W 2(12))5(W 1(3)5W 1(2,1)5W 2(2,1)5W 2(13)) ,

where as a GLm-module W 6 (l) is isomorphic to W(l) and the operator * acts
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on W 6 (l) by w *46 w, w�W 6 (l). If we extend the action of * on W 7sn by

(w1 7s R7s wn )*4w1*7s R7s wn*,

then for nF6

W 7sn
`W 1 (n)5(W 1 (n11)5W 1 (n , 1 )5W 1 (n21, 2 ))5

(W 2 (n , 1 )5W 2 (n21, 12 ))5(2W 1 (n12)53W 1 (n11, 1 )5

5W 1(n,2)5W 1(n,12)52W 1(n21,3)53W 1(n21,2,1)5W 1(n21,13)5

W 1 (n22, 4 )52W 1 (n22, 22 )5W 1 (n22, 14 ))5

(2W 2(n11,1)52W 2(n,2)54W 2(n,12)5W 2(n21,3)53W 2(n21,2,1)5

2W 2 (n21, 13 )5W 2 (n22, 3 , 1 )5W 2 (n22, 2 , 12 ))5W 8 ,

where we have denoted by W 8 the sum of irreducible GLm-modules which are
homogeneous of degree Dn12.

PROOF. – Clearly the GLm-module W(1)7sk is isomorphic to the homoge-
neous component of degree k of the polynomial algebra K[x1 , R , xm ] and
W(1)7sk

`W(k). Since for every l4 (l 1 , R , l m ) the irreducible module W(l)
is homogeneous of degree l 1 1R1l m, by Proposition 1.2 the homogeneous
components of degree Gn12 of W 7sn are decomposed respectively as

(W 7sn )(n)
`W 1 (1)7sn

`W 1 (n),

(W 7sn )(n11)
`W 1 (1)7s(n21) 7(W 1 (2)5W 2 (12 ))`

W 1 (n21)7(W 1 (2)5W 2 (12 )) ,

(W 7sn )(n12)
`W 1 (1)7s(n21) 7(W 1 (3)5W 1 (2 , 1 )5W 2 (2 , 1 )5W 2 (13 ))5

W 1 (1)7s(n22) 7(W 1 (2)7s2 5W 1 (2)7W 2 (12 )5W 2 (12 )7s2 )`

W 1 (n21)7(W 1 (3)5W 1 (2 , 1 )5W 2 (2 , 1 )5W 2 (13 ))5

W 1 (n22)7(W 1 (2)7s2 5W 1 (2)7W 2 (12 )5W 2 (12 )7s2 ) .

Using the Young rule from Proposition 1.1 (i) and taking into account the ac-
tion of * we calculate

W 1 (n21)7W 1 (2) `W 1 (n11)5W 1 (n , 1 )5W 1 (n21, 2 ),

W 1 (n21)7W 2 (12 ) `W 2 (n , 1 )5W 2 (n21, 12 ).



POLYNOMIAL IDENTITIES OF NIL ALGEBRAS OF BOUNDED INDEX 679

Combining the Young rule with the decompositions of the symmetrized tensor
squares of W(2) and W(12 ) from Proposition 1.1 (ii) we obtain

W 1 (n21)7W 1 (3) `W 1 (n12)5W 1 (n11, 1 )5

W 1 (n , 2 )5W 1 (n21, 3 ),

W 1 (n21)7W 6 (2 , 1 ) `W 6 (n11, 1 )5W 6 (n , 2 )5

W 6 (n , 12 )5W 6 (n21, 2 , 1 ),

W 1 (n21)7W 2 (13 ) `W 2 (n , 12 )5W 2 (n21, 13 ),

W 1 (n22)7W 1 (2)7s2
`W 1 (n22)7(W 1 (4)5W 1 (22 ))`

W 1 (n12)5W 1 (n11, 1 )52W 1 (n , 2 )5W 1 (n21, 3 )5

W 1 (n21, 2 , 1 )5W 1 (n22, 4 )5W 1 (n22, 22 ),

W 1 (n22)7W 1 (2)7W 2 (12 ) `W 1 (n22)7(W 2 (3 , 1 )5W 2 (2 , 12 ))`

W 2 (n11, 1 )5W 2 (n , 2 )52W 2 (n , 12 )5W 2 (n21, 3 )5

2W 2 (n21, 2 , 1 )5W 2 (n21, 13 )5W 2 (n22, 3 , 1 )5W 2 (n22, 2 , 12 ),

W 1 (n22)7W 2 (12 )7s2
`W 1 (n22)7(W 1 (22 )5W 1 (14 ))`

W 1 (n , 2 )5W 1 (n21, 2 , 1 )5W 1 (n21, 13 )5

W 1 (n22, 22 )5W 1 (n22, 14 )

and the proof is completed by counting the irreducible components in the
above tensor products.

2. – Description of the T-ideal of the nil identity.

In this section we shall describe the GLm (K)-module structure of Am O
ax n bT as a homomorphic image of the n-th symmetrized tensor power of Am .
The following result can be obtained from the proof of Nagata of the Dubnov-
Ivanov-Nagata-Higman theorem.

LEMMA 2.1. – Let

h(x1 , R , xn ) 4 !
p�Sn

xp(1) R xp(n)

be the complete linearization of the polynomial x n. Every element of the T-
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ideal ax n bT is a linear combination of evaluations of h(x1 , R , xn ) in
KaXb.

PROOF. – The multilinear polynomial h(x1 , R , xn ) is a linear combination of
elements (a 1 x1 1R1a n xn )n, a i �K, and x n 4 (1 /n! )h(x , R , x).

Every element from ax n bT has the form

u4! ui vi
n wi ,

where ui , vi , wi �KaXb and ui , wi are allowed to be empty symbols. Hence, it is
sufficient to show that the polynomials yx n, x n y and yx n z are linear combina-
tions of u n, u�Kax , y , zb. Recall that the partial linearizations of a polynomial
identity f (x1 , R , xm ) are obtained by Vandermonde arguments and are linear
combinations of f(u1 , R , um ), ui �KaXb. Since

x n y4yx n 1 [x n , y] 4yx n 1 !
i41

n

x i21 [x , y] x n2 i ,

where [x , y] 4xy2yx and !
i41

n

x i21 [x , y] x n2 i is an evaluation of the partial
linearization

h1 (x , z) 4zx n21 1xzx n22 1R1x n22 zx1x n21 z ,

it is enough to handle the case yx n only. Clearly h1 (x , x 2 ) 4nx n11 and x n11 is
a linear combination of evaluations of x n. Linearizing partially x n11 (again lin-
ear combinations) we obtain

f (x , y) 4yx n 1xyx n21 1R1x n21 yx1x n y

and a direct computation shows that

f (x , y)2h1 (x , xy) 4yx n .

Since

yx n z4 (yx n ) z4 g!
i

a i ui
nh z4!

i
a i (ui

n z) 4!
i

a i (!
j

b j vij
n ) 4!

ij
a i b j vij

n

the proof of the lemma is completed.
Now we state the main result of the section.

THEOREM 2.2. – As a GLm-module the T-ideal Am O ax n bT is a homomor-
phic image of the n-th symmetrized tensor power of Am .

PROOF. – By Lemma 2.1 every element of Am O ax n bT is a linear combina-
tion of h(u1 , R , un ), u1 , R , un �Am, where h(x1 , R , xn ) is the complete lin-
earization of x n. Since h(xr(1) , R , xr(n) ) 4h(x1 , R , xn ) for every r�Sn, we can
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define the following mapping

f : u1 7s R7s un Kh(u1 , R , un ), u1 , R , un �Am .

This mapping can be extended to a vector space homomorphism f
A of Am

7sn onto
Am O ax n bT. Obviously f

A is also a GLm-module homomorphism because for
every g�GLm

g(f(u1 7s R7s un ))4g(h(u1 , R , un ))4

h(g(u1 ), R , g(un ))4f(g(u1 )7s R7s g(un ))
and this completes the proof of the theorem.

COROLLARY 2.3. – For nF6 the multiplicities of the irreducible Sk-charac-
ters of the Sk-modules Vk O ax n bT, k4n11, n12, are bounded from above re-
spectively by the corresponding multiplicities of the Sk-characters

x Sn11
4x(n11)12x(n , 1 )1x(n21, 2 )1x(n21, 12 ),

x Sn12
4x(n12)15x(n11, 1 )17x(n , 2 )15x(n , 12 )1

3x(n21, 3 )16x(n21, 2 , 1 )13x(n21, 13 )1x(n22, 4 )1

x(n22, 3 , 1 )12x(n22, 22 )1x(n22, 2 , 12 )1x(n22, 14 ).

PROOF. – By the equivalence between the Sk-module Vk OU and the GLm-
module Am

(k) OU for any T-ideal U, it is sufficient to find upper bounds for the
multiplicities of the irreducible components of the GLm-modules Am

(k) O ax n bT,
k4n11, n12. It is well known that the homogeneous components Am

(k) have
the following GLm-module decomposition:

Am
(k)

`! deg x(l) W(l),

where the summmation runs on all partitions l4 (l 1 , R , l m ) of k and degx(l)
is the degree of the corresponding Sk-character. In particular,

Am
(1)

`W(1), Am
(2)

`W(2)5W(12 ), Am
(3)

`W(3)52W(2 , 1 )5W(13 ).

We apply Theorem 2.2 and Proposition 1.2. Clearly, in the notation of Proposi-
tion 1.2 the homogeneous components of degree k4n11, n12 of Am

7sn are
obtained for k4n11 from

p42, deg Wi1
41, n1 4n21, deg Wi2

42, n2 41,

and, for k4n12, from

p42, deg Wi1
41, n1 4n21, deg Wi2

43, n2 41,
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p42, deg Wi1
41, n1 4n22, deg Wi2

42, n2 42,

p43, deg Wi1
41, n1 4n22, deg Wi2

4deg Wi3
42, n2 4n3 41.

Now we apply a weaker version of Corollary 1.3 without taking into account
the action of the operator * in its statement and obtain the bounds for all
lc (n12). The case l4 (n12) is trivial, because the multiplicity of W(k) in
the GLm-module Am

(k) is equal to 1.
Recall that the linear operator * acting on an algebra R is called an invo-

lution if it is an algebra antiautomorphism of order 2, i.e. (r *)*4r and
(r1 r2 )*4r2* r1* for every r , r1 , r2 �R. Then R4R 15R 2 as a vector space,
where R 64 ]r�RNr *46r( and any r�R has a decomposition r4r 11r 2,
r 64 (1 /2)(r6r *) �R 6.

The free associative algebras A and Am have an involution defined by

(xi1
Rxik

)*4xik
Rxi1

.

Since the action of * on Am commutes with the action of GLm , if w�W(l) %Am

is a highest weight vector and w4w 11w 2, w 6�Am
6, then w 1 and w 2 are

also highest weight vectors.

COROLLARY 2.4. – The T-ideal ax n bT is invariant under the involution * of
the free algebra. For nF6 the multiplicities of the irreducible Sk-characters
of the Sk-modules (Vk O ax n bT )6, k4n11, n12, are bounded from above re-
spectively by the corresponding multiplicities of the Sk-characters

x1
Sn11

4x(n11)1x(n , 1 )1x(n21, 2 ) for (Vn11 O ax n bT )1 ,

x2
Sn11

4x(n , 1 )1x(n21, 12 ) for (Vn11 O ax n bT )2 ,

x1
Sn12

4x(n12)13x(n11, 1 )15x(n , 2 )1x(n , 12 )1

2x(n21, 3 )13x(n21, 2 , 1 )1x(n21, 13 )1x(n22, 4 )1

2x(n22, 22 )1x(n22, 14 ) for (Vn12 O ax n bT )1 ,

x2
Sn12

42x(n11, 1 )12x(n , 2 )14x(n , 12 )1x(n21, 3 )13x(n21, 2 , 1 )1

2x(n21, 13 )1x(n22, 3 , 1 )1x(n22, 2 , 12 ) for (Vn12 O ax n bT )2 .

PROOF. – The statement that ax n bT is * -invariant is true for any T-ideal
generated by * -invariant identities. Any f� ax n bT can be written as f4

!
i41

p

u 8i vi
n u 9i , u 8i , ui9 , vi �A (some ui8 , ui9 may be empty symbols) and

f *4!(ui9 )*(vi*)n (ui8 )*� ax n bT .
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Hence ax n bT is * -invariant and (ax n bT )6% ax n bT. For the second part of the
lemma we use the following highest weight vectors of W(l) %Am

(k), k4

1, 2 , 3:

w 1
(k) 4x1

k , w 1
(2 , 1 ) 4 [x2 , x1 , x1 ] 4x1 s2 (x1 , x2 )2s2 (x1 , x2 ) x1 ,

w 2
(12 ) 4 [x1 , x2 ], w 2

(2 , 1 ) 4 [x1 , x1 x2 1x2 x1 ] 4x1 [x1 , x2 ]1 [x1 , x2 ]x1 ,

w 2
(13 ) 4s3 (x1 , x2 , x3 ).

Repeating the arguments from the proof of Corollary 2.3 we see that

Am
(1)

`W 1 (1), Am
(2)

`W 1 (2)5W 2 (12 ),

Am
(3)

`W 1 (3)5W 1 (2 , 1 )5W 2 (2 , 1 )5W 2 (13 ).

By Lemma 2.1, every element f� ax n bT has the form f4!a i h(ui1 , R , uin ),
a i �K, uij �A. Since (h(u1 , R , un ) )*4h(u1* , R , un*) we obtain that the ac-
tion of * on ax n bT is exactly the same as the action of the linear operator *
from Corollary 1.3. Now the proof is completed by Theorem 2.2 and Corol-
lary 1.3.

In the next section we shall show that the bounds given in Corollaries 2.3
and 2.4 are very close to exact.

3. – Cocharacters of small degree.

In this section we shall calculate the n11-st and the n12-nd character of
the multilinear polynomials in ax n bT of degree n11 and n12, respectively.
Our approach is similar to the approach from [2], where we have solved an
analogous problem for the multilinear consequences of degree n12 of the
standard polynomial sn of degree n. In the case of x n the calculations are easi-
er than in the case sn because by Lemma 2.1 all consequences are obtained by
substitutions only. In the case of sn we had to take into account also conse-
quences of the forms xn11 xn12 sn (x1 , R , xn ) and xn12 sn (x1 , R , xn xn11 ). In-
volving the involution * of the free algebra we additionally simplify the con-
crete calculations.

The following lemma is a restatement of [2, Lemma 1.7].

LEMMA 3.1. – Let L be a finite set of partitions and let the sum

W4 !
l�L

m(l) W(l)

be a submodule of the GLm-module Am . Let wi
(l) �W(l) %W, i41, R , m(l),

l�L, be a collection of heighest weight vectors which generates the summand
m(l)W(l). If for each l�L the polynomials wi

(l), i41, R , r(l), are linearly
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independent and the other polynomials wj
(l), j4r(l)11, R , m(l), are their

linear combinations, then the set

]wi
(l) Ni41, R , r(l), l�L(

generates W and the multiplicity of W(l) in W is equal to r(l).

The following assertion gives a criterion when a polynomial is a highest
weight vector. If f(x1 , R , xm ) is a multihomogeneous polynomial, then we de-
note by f (i) (x1 , R , xm , y) the linear in y component of f(x1 , R , xi 1

y , R , xm ).

PROPOSITION 3.2 (Koshlukov [12]). – Let W be a polynomial GLm-module. A
non-zero multihomogeneous element f (x1 , R , xm ) of W of degree l4

(l 1 , R , l m ) is a highest weight vector if and only if

f (i) (x1 , R , xm , xj ) 40, 1 G jE iGm .

From now on we denote

c k(xi1
,R,xik

)4 !
s�Sk(i1,R,ik)

!
j11R1jkGn2k

x1
n2(j11R1jk)2k xs(i1) x1

j1 xs(i2) x1
j2
R xs(ik) x1

jk

where Sk (i1 , R , ik ) stands for the symmetric group of degree k on the inte-
gers i1 , R , ik . Clearly, c k is a partial linearization of x n. As usually, u i v4

uv1vu. We also keep the notation w 6 for the elements from Am
6 with respect

to the involution * of Am.

PROPOSITION 3.3. – Let l be a partition of n11. The highest weight vectors
of the irreducible components W(l) of the GLm-submodule of the homoge-
neous consequences in Am

(n11) of the identity x n 40, nF3, are linear combi-
nations of the following highest weight vectors:

(i) For l4 (n11)

w 1
1 4x1

n11 ;

(ii) For l4 (n , 1 )

w 1
1 42c 2 (x1

2 , x2 )2 (n21)c 1 (x1 i x2 ),

w 2
1 4c 1 ( [x1 , x2 ] );

(iii) For l4 (n21, 2 )

w 1
1 4 (n21)(n22) c 1 (x2

2 )2 (n22) c 2 (x1 i x2 , x2 )1c 3 (x1
2 , x2 , x2 );
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(iv) For l4 (n21, 12 )

w 2
1 4 !

s�A3

c 2 ( [xs(1) , xs(2) ], xs(3) ).

For each l the highest weight vector w1
6 is different from 0.

PROOF. – We shall briefly explain how we have found the above highest
weight vectors. By the proofs of Corollaries 2.3 and 2.4, the consequences of
degree n11 of x n 40 form a homomorphic image of the components of the
GLm-submodule (W 1 (2)5W 2 (12 ) )7W 1 (n21) of Am

7sn. Since

W 1 (2)7W 1 (n21) `W 1 (n11)5W 1 (n , 1 )5W 1 (n21, 2 ),

W 2 (12 )7W 1 (n21) `W 2 (n , 1 )5W 2 (n21, 12 ),

first we find the highest weight vectors of these five irreducible GLm-modules.
Let us denote by c k8 the partial linearization of x1

n21. Applying the algorithm
for computing the highest weight vectors of the irreducible components of the
tensor product of two GLm-modules [5, Rule 1.3.4] (or some of its shorter ver-
sions) we obtain the highest weight vectors

w 1
l (x1 ) 4x1

2 7x1
n21 , l4 (n11),

w 1
l (x1 , x2 ) 4 (n21)(x1 i x2 )7x1

n21 22x1
2 7c 18 (x2 ), l4 (n , 1 ),

w 1
l (x1 , x2 ) 4 (n22)(n21) x2

2 7x1
n21 2 (n22)(x1 i x2 )7

c 18 (x2 )1x1
2 7c 28 (x2 , x2 ), l4 (n21, 2 )

for the components of W 1 (2)7W 1 (n21) and

w 2
l (x1 , x2 ) 4 [x1 , x2 ]7x1

n21 , l4 (n , 1 ),

w 2
l (x1 , x2 , x3 ) 4 !

s�A3

[xs(1) , xs(2) ]7c 18 (xs(3) ), l4 (n21, 12 )

for the components of W 2 (12 )7W 1 (n21).
For example, we shall show that, for l4 (n21, 2 ), w 1

l (x1 , x2 ) is a highest
weight vector. Clearly, c 18 (x2 ) is of total degree n21, has n21 summands
x1

i x2 x1
n222 i (one for each i40, 1 , R , n22) and c 18 (x1 ) 4 (n21)x1

n21.
Similarly, c 28 (x2 , x3 ) is the partial linearization of c 18 (x2 ) (i.e. in c 18 (x2 ) we
replace x1 by x1 1x3 and consider the linear in x3 component) and
c 28 (x1 , x2 ) 4c 28 (x2 , x1 ) 4 (n22)c 18 (x2 ). Hence for the partial linearization
(w 1

l )(2) (x1 , x2 , y)

(w 1
l )(2) (x1 , x2 , x1 ) 4 (n22)(n21)(x1 i x2 )7x1

n21 22(n22) x1
2 7c 18 (x2 )2

(n22)(n21)(x1 i x2 )7x1
n21 12(n22) x1

2 7c 18 (x2 ) 40, l4 (n21, 2 )
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and w 1
l (x1 , x2 ) is a highest weight vector by Proposition 3.2. Now we use the

GLm-module homomorphism f
A: Am

7sn KAm O ax n bT and consider the images
f
A(w 6

l ) of w 6
l in Am O ax n bT. Up to multiplicative constants they are equal to

the highest weight vectors given in the statement of the proposition.
Finally, in order to see that the polynomials w 6

1 are different from 0, we
choose a monomial u4xi1

R xin11
, calculate the coefficient a6 of u in w1

6 and
show that a6

c0.
For l4 (n11) obviously w1

14x1
n11

c0.
For l4 (n , 1 ) we choose u4x2 x1

n and by direct calculations see that
a14n21 c0 and a2421, i.e. w1

6
c0.

For l4(n21, 2) we choose u4x2
2 x1

n21 and calculate that a14n(n22)c0.
For l4 (n21, 12) we choose u4x2 x3 x1

n21 and obtain that a24nc0.
Now we state the main result of the section.

THEOREM 3.4. – For nF6 the Sk-character of the multilinear consequences
of degree kGn12 of the identity x n 40 is the following:

x Sn
(Vn O ax n bT ) 4x(n),

x Sn11
(Vn11 O ax n bT ) 4x(n11)12x(n , 1 )1x(n21, 2 )1x(n21, 12 ),

x Sn12
(Vn12 O ax n bT ) 4x(n12)14x(n11, 1 )15x(n , 2 )15x(n , 12 )1

3x(n21, 3 )16x(n21, 2 , 1 )13x(n21, 13 )1x(n22, 4 )1

x(n22, 3 , 1 )12x(n22, 22 )1x(n22, 2 , 12 )1x(n22, 14 ).

PROOF. – The case k4n is obvious and the case k4n11 follows from
Proposition 3.3. For k4n12 we repeate the arguments from the proof of the
same proposition. For a partition l of n12 we find the highest weight vectors
of the irreducible components W(l) of the GLm-submodule of the homoge-
neous consequences in Am

(n12) of the identity x n 40, nF6. Every highest
weight vector w 6 is a linear combination of highest weight vectors
w1

6 , R , wp
6, where p4p 6 (l) is the multiplicity prescribed in Corollary 2.4.

We shall prove the theorem if we establish that the polynomials w1
6 , R , wp

6

are linearly independent in all cases different from l4 (n11, 1 ) and
l4 (n , 2 ). In the two cases left we have to show that there exist unique linear
dependences between the wj

1’s for l4 (n11, 1 ) and between the wj
6’s for

l4 (n , 2 ). We use the same approach for all l. We fix a partition l and a sign
6. For the polynomials w1

6 , R , wp
6 for which we claim that are linearly inde-
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pendent in KaXb, we consider a relation

!
j41

p

j j
6 wj

6 (x1 , R , xm ) 40

with unknown coefficients j j
6�K, j41, R , p. We choose p monomials ui 4

xi1
R xin12

and calculate the coefficient a ij of ui in wj
6. In this way we obtain p

equations

!
j41

p

j j
6 a ij 40, i41, R , p .

Considering these equations as a linear homogeneous system with respect
to the unknowns j j

6, we show that the only solution of the system is j j
640,

j41, R , p, and this gives that the highest weight vectors wj are linearly inde-
pendent. Below we give the polynomials wj

1 for l4 (n11, 1 ) and wj
6 for

l4 (n , 2 ).
For l4 (n11, 1 ):

w 1
1 43c 2 (x1

3 , x2 )2 (n21) c 1 (x1
2 x2 1 (x1 i x2 ) x1 ) ,

w 1
2 4c 1 ( [x2 , x1 , x1 ] ),

w 1
3 42c 3 (x1

2 , x1
2 , x2 )2 (n22) c 2 (x1

2 , x1 i x2 ) ;

For l4 (n , 2 ):

w 1
1 43c 3 (x1

3 , x2 , x2 )22(n22) c 2 (x1
2 x2 1 (x1 i x2 ) x1 , x2 )1

(n21)(n22) c 1 (x2
2 x1 1 (x1 i x2 ) x2 ) ,

w 1
2 4c 2 ( [x2 , x1 , x1 ], x2 )1 (n21) c 1 ( [x1 , x2 , x2 ] ),

w 1
3 46c 4 (x1

2 , x1
2 , x2 , x2 )26(n23) c 3 (x1

2 , x1 i x2 , x2 )1

(n22)(n23) c 2 (x1 i x2 , x1 i x2 )12(n22)(n23) c 2 (x1
2 , x2

2 ),

w 1
4 44c 2 (x1

2 , x2
2 )2c 2 (x1 i x2 , x1 i x2 ),

w 1
5 4c 2 ( [x1 , x2 ], [x1 , x2 ] ),

w 2
1 4c 2 ( [x1

2 , x2 ], x2 )1 (n21) c 1 ( [x2
2 , x1 ] ),

w 2
2 42c 3 ( [x1 , x2 ], x1

2 , x2 )2 (n22) c 2 ( [x1 , x2 ], x1 i x2 );

We want to see that the highest weight vectors w1
1 , w2

1 for l4 (n11, 1 )
and w1

1 , w2
1 , w4

1 , w5
1 for l4 (n , 2 ) are linear independent, w1

2
c0 for
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l4 (n , 2 ). The polynomials ui and their coefficients a ij in wj
6 are the

following:
for l4 (n11, 1 ),

ui w1
1 w2

1

x2 x1
n11 2(n21) 1

x1 x2 x1
n n24 21

and, for l4 (n , 2 ),

ui w1
1 w2

1 w 1
4 w 1

5 w1
2

x2
2 x1

n n 2 1n26 n 4(n21) 0 n22

x1 x 2
2 x1

n21 2(n 2 2n25) 2n21 2(2n25) 22

x1
2 x 2

2 x1
n22 2(n 2 22n26) 2n 2(2n25) 22

x2 x 2
1 x2 x1

n22 22(n14) 1 24 0

Now we shall establish the linear dependences

(n24) w 1
1 1 (n12)(n21)w 1

2 23w 1
3 40

for l4 (n11, 1 ) and

8w1
114(n11) w2

112w3
12n(n11) w4

113n(n11) w5
140,

2w1
21w2

240

for l4 (n , 2 ).
For l4 (n11, 1 ) we express each wj

1 as a linear combination
of monomials x1

a x2 x1
b, where a1b4n11:

wj
14! a j (a , b) x1

a x2 x1
b , a j (a , b) �K .

Since we consider symmetric polynomials, it is sufficient to show
the linear dependence

(n24) w 1
1 1 (n12)(n21) w 1

2 23w 1
3 40

for the coefficients a j (a , b), j41, 2 , 3, for fixed (a , b) and aGb.
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The coefficients a j (a , b) are given below:

w1
1 w2

1 w 1
3

a40 2(n21) 1 (n21)(n22)

a41 n24 21 23(n22)

2 GaGb 26 0 22(n24)

Now, it is easy to check directly the given linear dependence.
For l4 (n , 2 ) we present wj

1, j41, R , 5, and w1
2 , w2

2 as linear combina-
tions of x1

a x2 x1
b x2 x1

c, a1b1c4n, assuming that aGc in the symmetric and
aEc in the skew-symmetric case. Then we verify the linear dependences for
each monomial. In the symmetric case the coefficients of wj

1 are given in the
following matrix:

a b c w1
1 w2

1 w3
1 w4

1 w5
1

F2 F2 F2 26(n12) 0 24(n 225n212) 28 0

1 F2 F2 22(2n15) 21 22(2n 227n221) 28 0

F2 1 F2 n 225n212 22n 26(n 223n28) 26 2

0 F2 F2 22(n14) 1 22(n13)(n25) 24 0

F2 0 F2 2(n 222n26) 2n 2(n 326n 215n124) 2(2n25) 22

1 1 F2 (n12)(n25) 2(2n11) 26(n 222n27) 26 2

1 F2 1 22(n14) 22 24(n 222n29) 28 0

1 0 F2 2(n 22n25) 2n21 2(n23)(n 223n27) 2(2n25) 22

0 1 F2 n 22n28 2(2n21) 22(n23)(2n15) 22 2

0 F2 1 26 0 22(n23)(n14) 24 0

0 0 F2 (n22)(n13) n 2(n12)(n22)(n23) 4(n21) 0

0 F2 0 2(n22) 2 2(n22)(n23) 22 22

The calculations in the skew-symmetric case are similar.
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REMARK 3.5. – For n43, the S5-character x S5
(V5 O ax 3 bT ) was calculated in

[22]:

x S5
(V5 O ax 3 bT ) 4x(5)14x(4 , 1 )14x(3 , 2 )15x(3 , 12 )1

5x(22 , 1 )13x(2 , 13 )1x(15 ).

Comparing this character with the S5-character prescribed by Theorem 3.4
(and omitting the partitions l l25 which do not exist for n43, e.g. l4 (n2

1, 3 )), we obtain that the only differences are for l4 (3 , 2 ) and l4

(22 , 1 ).
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