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Superposition of Imbeddings
and Fefferman’s Inequality (*).

MIROSLAV KRBEC - THOMAS SCHOTT

Dedicated to memory of Filippo Chiarenza

Sunto. – In questo lavoro si studiano condizioni sufficienti sulla funzione peso V,
espresse in termini di integrabilità, per la validità della disuguaglianza

g s
B

u 2 (x) V(x) dxh1/2

Gcg s
B

(˜u(x) )2 dxh1/2

,

dove B denota una sfera in RN. Usando una tecnica di decomposizione di immer-
sioni si dimostrano condizioni sufficienti in termini di appartenenza a spazi di
Lebesgue, Lorentz-Orlicz e/o di tipo debole. Come applicazioni vengono fornite con-
dizioni sufficienti per la proprietà forte di prolungamento unico per NDuNGVNuN
nelle dimensioni 2 e 3.

1. – Introduction.

Fefferman’s inequality [6]

g s
RN

u 2 (x) V(x) dxh1O2

Gcg s
RN

(˜u(x) )2 dxh1O2

, u�W 1, 2 ,(1.1)

has turned out to be a very powerful tool to handle many topical problems in
the PDEs including the strong unique continuation property (the SUCP in the
sequel), distribution of eigenvalues and so on.

Our goal is to establish efficient and manageable condition for the function
V, guaranteeing validity of a local version of (1.1), that is,

g s
B

u 2 (x) V(x) dxh1O2

Gcg s
B

(˜u(x) )2 dxh1O2

, u�W 1, 2
0 (B) ,(1.2)

where B is a bounded domain in RN, say, a ball, NBN41. We shall use a natural
idea of a decomposition of the imbedding in (1.2) into an imbedding of W 1, 2

0
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under the number A/97/00224 is gratefully acknowledged.



MIROSLAV KRBEC - THOMAS SCHOTT630

into a suitable target space and an imbedding from this target into L 2 (V); we
invoke imbedding theorems for the Sobolev space W 1, 2

0 — the classical
Sobolev theorem and a refinement in terms of Lorentz spaces in the role of
target spaces in the dimension NF3, and the limiting imbedding theorem due
to Brézis-Wainger [2] (see also [17], Lemma 2.10.5) in the dimension N42,
which can be viewed as an analogous refinement of Trudinger’s celebrated
limiting imbedding [15]. The method suggested for proving (1.2) is a kind of a
generator of N-dimensional Hardy inequalities or, alternatively, of weighted
imbeddings W 1, 2

0 %KL 2 (V): general results of this nature will appear else-
where. It is rather surprising that working with superpositions of imbeddings
we do not lose much and that combining our conditions for validity of (1.2) with
[4] we recover or generalize some of known results about the strong unique
continuation property for NDuNGVNuN in dimensions 2 and 3. In fact all the
above imbeddings of the Sobolev spaces are sharp in given scale of spaces and
the same is true for the weighted imbeddings. In the latter case we shall use
only Hölder’s inequality, nevertheless, we actually use conditions which are
necessary as well.

For the sake of applications we shall pay a special attention the so called
«smallness condition» (see (1.3) below), playing a important role in the study
of the strong unique continuation property for NDuNGVNuN: Let T(V) denote
the imbedding in (1.1), let B(x , r) stand for a ball centered at x and of radius r
and let V be a bounded, open and connected subset of RN, N42 or N43; if

lim sup
rK01

VT(Vx B(x , r) )VGe(1.3)

with a sufficiently small eD0 for all x�B, then any solution u�W 2, 2
loc of the in-

equality NDuNGVNuN in V has the SUCP—see Chanillo and Sawyer [4].
Let us recall that a locally integrable function u is said to have a zero of in-

finite order at x0 if

lim
rK01

r 2k s
Nx2x0NEr

Nu(x)N2 dx40

for all k41, 2 , R. If every solution of an elliptic equation, with a zero of infi-
nite order, vanishes identically, then the corresponding operator is said to sat-
isfy the strong unique continuation property. As to non-analytic setting of the
problem let us recall that in 1939 Carleman [3] proved that the operator 2D1

V has the strong unique continuation property provided V�L Q
loc , that is, he

showed that under this assumption a solution of the equation 2Du1V(x)u40
with a zero of infinite order vanishes identically. There is a lot of results con-
cerning the SUCP, with various assumptions on the potential V and also on co-
efficients in the case of a more general elliptic operator in question. Here we
shall go along the lines of sufficient conditions in terms of integrability of the
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potential with no apriori assumptions on its pointwise behaviour. Let us recall
Jerison and Kenig [8], Stein [14], where the SUCP is proved for V�L N/2

loc or for
V locally small in the Marcinkiewicz space L N/2 , Q, NF3, and Pan [13] with the
pointwise growth condition V(x) GM/NxN2, NF2, and without the size condi-
tions for V. Wolff [16] has constructed counterexamples for N43 and N42,
showing that the assumption about the local smallness of the imbedding norm
in (1.1) cannot be removed in general. For N42 there is the result due to
Gossez and Loulit [7] with the sufficient condition V�L 1 log L.

We shall need some basic facts from the Orlicz, Lorentz–Zygmund and Or-
licz–Lorentz spaces theory. Let us agree that all the spaces in the sequel will
be considered on a ball B%RN with the unit measure, NF2, or on the interval
(0 , 1 ); we shall usually omit the appropriate symbol for the domain since it will
be clear from the context. Let us observe that then only the asymptotic be-
haviour of Young functions at infinity is relevant. An even and convex function
F : RK [0 , Q) such that lim

tK0
F(t) 4 lim

tKQ
1/F(t) 40 is called a Young function.

If F is a Young function, then C(t) 4 sup
sD0

]sNtN2F(s)( is the Young function

complementary to F. A convex and even function F 1 is called the major part
of a Young function F if F4F 1 near infinity. For brevity we shall often use
only major parts of Young functions in symbols for spaces under considera-
tion.

A Young function F 1 is dominated by a Young function F 2 if there is a con-
stant kD0 such that F 1 (t) GF 2 (kt) near infinity. Two Young functions F 1

and F 2 are equivalent (we shall write F 1 AF 2 ) if each of them is dominated
by the other. If F 1 AF 2 , then the same relation holds for the complementary
functions.

A general reference for the (non-weighted) theory of Orlicz spaces is [9],
more general modular spaces are subject of [12].

We shall also need a finer scale of spaces, which includes Orlicz spaces in a
rather same manner as Lorentz spaces include Lebesgue spaces. We refer to
Montgomery-Smith [11]: Let F and C be Young functions. For a function g
even on R1 and positive on (0 , Q) let us put

gA(t) 4

.
/
´

1/g(1 /t) ,

gA(2t) ,

g(0) ,

tD0 ,

tE0 ,

t40 .

Let V be a weight in B and let f *V denote the non-increasing rearrangement of f
with respect to the measure V(x) dx. An Orlicz-Lorentz space L F , C (V) is the
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set of all measurable f on B for which the Orlicz-Lorentz functional

(1.4) V f VF , C ; V 4V f *V iF
A

iC
A21

VC4 inf{lD0; s
0

Q

Cu f *V (FA(CA 21 (t) ))
l

v dtG1}
is finite. A measurable function f defined on B belongs to a weak Orlicz (or Or-
licz–Marcinkiewicz) space L F , Q (V) if its Orlicz–Marcinkiewicz functional

V f VF , Q ; V 4 sup
jD0

F
A21 (j) f *V (j)(1.5)

is finite. If Vf1, we shall simply write L F , C and L F , Q instead of L F , C (1) and
L F , Q (1), resp.

The quantities in (1.4) and (1.5) are not generally norms. Nevertheless,
they are quasinorms in many relevant cases; cf. Montgomery-Smith [11], and
Krbec and Lang [10]. Let us observe that L F , F4L F, the Orlicz space. If
F(t) 4NtNp and C(t) 4 t q, then L F , C4L p , q, the Lorentz space, L F , Q4L p , Q,
the Marcinkiewicz space; analogously for the weighted variants.

Special cases of the Orlicz-Lorentz spaces are also the Lorentz-Zygmund
spaces, that is, logarithmic Lorentz spaces, investigated by Bennett and Rud-
nick [1]. For 0 Ep , qGQ and a�R1, the Lorentz-Zygmund space
L p , q ( log L)a consists of functions f with the finite functional

V f VL p , q ( log L)a 4u s
0

1

[t 1/p (log (e/t) )a f *]q dt

t
v1/q

, for qEQ ,

V f VL p , Q ( logL)a 4 sup
0 E tE1

t 1/p (log (e/t) )a f *(t) , for q4Q

(we put t 1/Q41). It is easy to check that these spaces increase with decreasing
p, increasing q and decreasing a.

We shall not pursue the relationship between L p , q ( log L)a and L F , C in de-
tails here. Note only that later we shall also need the spaces of the form
L exp t r 8 , t r

, where 1/r11/r 841. It turns out that they coincide (see [5]) with
spaces characterized by the condition (see [2], [17], Lemma 2.10.5)

s
0

1

g f *(t)

log (e/t)
hr

dtEQ ,

which equal to L Q , r ( log L)21 in the [1] notation. Also, the Zygmund space
L log L equals to L 1, 1 log L and it is nothing but L t log t , t log t.
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REMARK 1.1. – We recall that L p1 , q1 ( log L)a 1 %L p2 , q2 ( log L)a 2 if any of the
following conditions holds:

(i) p1 Dp2 ;

(ii) p1 4p2 , q1 Dq2 , and a 1 11/q1 Da 2 11/q2 ;

(iii) p1 4p2 EQ, q1 Gq2 , and a 1 Fa 2 ;

(iv) p1 4p2 EQ, q1 Gq2 , and a 1 11/q1 Da 2 11/q2

(see [1], Theorems 9.1 and 9.3 and 9.5).

REMARK 1.2. – According to the limiting imbedding theorem due to Brézis
and Wainger [2] we have, for N42,

W 1, 2
0 %KL Q , 2 ( log L)21 .(1.7)

The latter space, as was observed above, is the Orlicz-Zygmund space L exp t 2 , t 2
,

a space smaller than L exp t 2
4L exp t 2 , exp t 2

, and this interpretation of the target
space in (1.7) gives a natural analogue to the (sublimiting) imbeddings of
Sobolev spaces into Lebesgue spaces and their Lorentz refinements.

2. – Decomposition of imbeddings.

Let B be a bounded domain in RN with a sufficiently smooth boundary, say,
with an extension property with respect to Sobolev spaces. Let us recall our
agreement that for the sake of simplicity we shall suppose that B is a ball,
NBN41. We shall usually omit the symbol of the domain. We are going to es-
tablish sufficient conditions for (1.2) and (1.3); we shall even prove a condition
stronger than (1.3), namely,

lim
dK0

sup
A%B

NANEd

VT(Vx A )V40 .(2.1)

First we shall separately consider the scale of Lorentz spaces.

THEOREM 2.1. – Let NF3.

(1) Let V�L N/2 , r , N/2 GrEQ. Then (1.2) and (2.1) hold.

(2) Let V�L N/2 , Q. Then (1.2) holds.

PROOF. – In both cases the inequality (1.2) follows by combining the refin-
ed Sobolev imbedding W 1, 2 %KL 2N/(N22), s where sF2 (cf. e.g. [17], Theo-
rem 2.10.2). To prove (2.1) fix r� [N/2 , Q) and put p42r/(r21). Then
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pG2N/(N22) and by Hölder’s inequality,

g s
B

u 2 (x) V(x) x A (x) dxh1/2

GVuVL 2N/(N22), p VVx A VL N/2 , p/(p22) .

Repeating this for p42 and A4B yields also the imbedding in (2) itself when
V�L N/2 , Q. r

We shall pass to Lorentz-Zygmund spaces now and prove a theorem, es-
tablishing a general sufficient condition for (1.2) and various sufficient condi-
tions for (2.1); let us observe that the situation is not straightforward since
three parameters can change. The first parameter will be kept fixed, equal
to 1; its changes lead to changes too big for the fine tuning we need.

THEOREM 2.2. – Let N42.

(1) The inequality (1.2) holds provided V�L 1, Q ( log L)2.

(2) Let V�L 1, s ( log L)b, where either

0 EsG1 , bF1 ,(2.2)

or

1 EsEQ , bF221/s ,(2.3)

or

s4Q , bD2 .(2.4)

Then (1.2) and (2.1) hold.

PROOF. – Step 1. We shall prove (1). By Hölder’s inequality we have

s
B

u 2 (x) V(x) dxGs
0

1

[(log (e/t) )21 u *(t)]2 t(log (e/t) )2 V *(t)
dt

t
G

VuV

2
L Q , 2 ( log L)21 VVVL 1, Q ( log L)2 .

This together with Remark 1.2 yields (1.2).

Step 2. Let us assume that (2.2) holds. Then by Remark 1.1 (iii) we
have

L 1, s ( log L)b %KL 1, 1 ( log L)1 .(2.5)

It follows from (2.1) and Remark 1.1 (iv) that

W 1, 2
0 %KL Q , 2 ( log L)21 %KL Q , Q ( log L)21/2 .(2.6)
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Using Hölder’s inequality we get

s
B

u 2 (x)(Vx A )(x) dxGs
0

1

[(log (e/t) )21/2 u *(t)]2 t log (e/t)(Vx A )*(t)
dt

t
G

VuV

2
L Q , Q ( log L)21/2 VVx A VL 1, 1 ( log L)1 .

This combined with (2.5) and (2.6) implies the inequality (1.2) and the size con-
dition (2.1).

Step 3. Let us now suppose that (2.4) is true. Then by Remark 1.1 (iii) we
have

V�L 1, s ( log L)221/s .(2.7)

Furthermore, from (1.7) and Remark 1.1 (iv),

W 1, 2
0 %KL Q , 2s/(s21) ( log L)(1/2s)21 .

By Hölder’s inequality we have

s
B

u 2 (x)(Vx A )(x) dxGVuV

2
L Q , 2s/(s21) ( log L)(1 /2s)21 VVx A VL 1, s ( log L)22 (1 /s) .

This together with (2.6) and (2.7) gives (1.2) and (2.1).

Step 4. Finally, we assume that (2.4) holds. Then V�L 1, 1 ( log L)1 by Re-
mark 1.1 (ii) and this case has been considered in Step 2 above. r

REMARK 2.3. – The space L 1, Q ( log L)2 can be identified with the Orlicz-
Marcinkiewicz space L t log2 t , Q and L 1, s ( log L)b, 0 EsEQ, with L t logb t , t s

. This
can be checked easily. Indeed, considering for instance V�L 1, Q ( log L)2, that
is, sup

0 E tE1
t (log (e/t) )2 V *(t) EQ, we have FA21 (t) 4 t(log (e/t) )2 near the origin,

hence F(j) Aj(log (e/j) )2 for large values of j.
By way of applications we give a sufficient condition for the SUCP, relying

on a result due to Chanillo and Sawyer [4] recalled in Section 1.

COROLLARY 2.4.

(1) Let N43. Let V�L 3/2 , r , 3 /2 GrEQ. Then the inequality NDuNG

VNuN has the SUCP in W 2, 2
loc OW 1, 2

0 .

(2) Let N42. Let u�W 2, 2
loc OW 1, 2

0 , let V�L 1, s ( log L)b , where s and b
satisfy any of the conditions (2.2)-(2.4). Then the inequality NDuNGVNuN has
the SUCP in W 2, 2

loc OW 1, 2
0 .
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REMARK 2.5. – The statement in (1) actually says that the size condition
from Stein [14] is fulfilled under the given conditions.

If V�L 1, s ( log L)b, where s and b satisfy either (2.2) or (2.4), then V�
L 1, 1 ( log L)1 (see Remark 1.1) and we recover the SUCP theorem due to
Gossez and Loulit [7]. Concerning (2.3) we show that L 1, 1 ( log L)1 and
L 1, s ( log L)22 (1 /s) are incomparable for 1 EsEQ. Indeed, let Va , 0 EaG1, be
such that

V *a (t) 4
1

t
(log (e/t) )22 (log (log (e/t) ))2a , for t small .

Then Va�L 1, 1 ( log L)1. On the other hand, if sD1/a, then Va�
L 1, s ( log L)22 (1 /s). Hence we have

L 1, s ( log L)22 (1 /s) + L 1, 1 ( log L)1 , 1 EsEQ .

It remains to prove that

L 1, 1 ( log L)1 + L 1, s ( log L)22 (1 /s) .(2.8)

Let Vt , 0 EtE1, be such that V *t (t) 4x (0 , t) (t). Then

VVtVL 1, 1 ( log L)1 4t(22 log t), 0 EtE1.

We have

lim
tK0

VVtV
s
L 1, s ( log L)22 (1 /s)

VVt V

s
L 1, 1 ( log L)1

4 lim
tK0

s
0

t

t s21 (log (e/t) )2s21 dt

t s (22 log t)s
4

lim
tK0

t s21 ( log eOt)2s21

st s21 (22 log t)s21 log eOt
4Q .

Hence L 1, 1 ( logL)1 is not continuously imbedded into L 1, s ( log L)22 (1 /s) and by
the closed graph theorem we get (2.8).
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