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Optimal Integrability of the Jacobian
of Orientation Preserving Maps.

ANDREA CIANCHI

Sunto. – Dato un qualsiasi spazio invariante per riordinamenti X(V) su un insieme
aperto V%Rn, si determina il più piccolo spazio invariante per riordinamenti
Y(V) con la proprietà che se u : VKRn è una applicazione che mantiene l’orienta-
mento e NDuNn�X(V), allora det Du appartiene localmente a Y(V).

1. – Introduction and results.

Let V be an open bounded subset of Rn, nF2, and let u : VKRn be a
weakly differentiable function whose gradient will be denoted by Du. Consid-
er any Banach function space X(V) of real-valued functions on V (see e.g.
[BS], Chap. 1) and assume that NDuNn �X(V). Then, owing to the monotonicity
of the norm in X(V) under pointwise inequality between functions, det Du, the
Jacobian of u, is also in X(V). When X(V) 4L 1 (V), a well-known theorem by
S. Müller [Mü] states that if, in addition, u is assumed to be orientation pre-
serving (o.p.), i.e. det DuF0 a.e. on V, then det Du is not merely in L 1 (V), but
locally belongs to L log L(V) as well. After this result, several spaces X(V)
have been exhibited enjoing the analogous property that a Banach function
space Y(V), strictly contained in X(V), exists such that, for every compact sub-
set E of V,

Vx E det DuVY(V) GCVNDuNn
VX(V)(1.1)

for all o.p. maps u with NDuNn �X(V). Here, V QVX(V) and V QVY(V) denote the
norms in X(V) and Y(V), respectively, x E is the characteristic function of E
and C is a constant independent of u. We shall call the spaces X(V) enjoing
this property integrability improving for the Jacobian of o.p. maps or,
briefly, integrability improving. For example, the Zygmund space
L loga L(V) is integrability improving for every aF0, since (1.1) holds with
Y(V) 4L loga11 L(V) (this is the result of [Mü] when a40; see [GI] for a41
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and [Mi] for aF0); more general integrability improving Orlicz spaces are ex-
hibited in [Mos], [GIM] (see also [IS], [BFS] and [G] for related results). On
the other hand, most Banach function spaces are not integrability improving.
This is not the case, for instance, when X(V) 4L p (V) with pD1. Thus, the
following (related) problems arise:

i) How can integrability improving spaces be characterized?

ii) Given X(V), which is the smallest space Y(V) that renders (1.1)
true?

In the present note we answer these questions in the framework of rear-
rangement invariant Banach function spaces (r.i. spaces), namely Banach
function spaces X(V) whose norm satisfies

V f VX(V) 4VgVX(V) whenever f *4g *;(1.2)

here f * stands for the decreasing rearrangement of f, i.e. the non-increasing
right-continuous function from [0 , Q) into [0 , Q) which is equidistributed
with f (we refer to [BS] for an exhaustive treatment of r.i. spaces). In a sense,
our results show that the maximal function approach of [Mü] to higher inte-
grability properties of the Jacobian of o.p maps is sharp. Actually, roughly
speaking, it turns out that the r.i. integrability improving spaces are precisely
those where the norm of a function f and the norm ot its maximal function Mf
are not equivalent, and that the gain in the integrability between NDuNn and
det Du for o.p. maps is always exactly the same as that between Mf and f. In
particular, we recover, as special cases, the above quoted contributions to the
subject and prove their optimality in the setting of all r.i. spaces (see
section 3).

Precise statements of the above assertions require the introduction of the
space X0 (V) associated with X(V) as in the definition below. Such a definition
makes use of the notion of the representation space X(0 , NVN) of X(V), name-
ly the unique r.i. space on (0 , NVN) such that

V f VX(V) 4V f * VX(0 , NVN)(1.3)

for every f�X(V), where NVN denotes the Lebesgue measure of V. Notice
that, for customary r.i. spaces, such as Lebesgue, Lorentz and Orlicz spaces,
the norm in the representation space can be immediately computed from the
original one; however, a general formula for V QVX(0 , NVN) is available (see e.g.
[BS], Chap. 2, proof of Thm. 4.10). Another ingredient in the definition of

X0 (V) is the function f ** given for f : VKR by f **(s) 4 (1 /s) s
0

s

f *(r) dr. Re-

call that, by Hertz’ theorem, f ** is equivalent to (Mf )*, i.e. c1 f **G (Mf )*G

c2 f **, where c1 and c2 are positive constants depending only on n.
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DEFINITION. – Let X(V) be a r.i. space on V. We call X0 (V) the space of all
real-valued functions f on V for which the quantity

V f VX0 (V) 4V f ** VX
–

(0, NVN)(1.4)

is finite.

It is a routine task to verify that V QVX0 (V) is a norm and that X0 (V), equipped
with such a norm, is a r.i. space. Observe that, since f *G f ** for every f, then
V QVX(V) GV QVX0 (V), so that X0 (V) ’X(V), but the inclusion may be strict.

Problem ii) is solved by the following

THEOREM. – Let V be an open bounded subset of Rn, nF2. Let X(V) be any
r.i. space on V and let X0 (V) be the r.i. space defined as above. Then, for every
compact subset E of V, a constant C exists such that

Vx E det DuVX0 (V) GC V
NDuNn

VX(V)(1.5)

for all o.p. maps u : VKRn for which NDuNn �X(V).
Moreover, X0 (V) is the smallest r.i. space rendering an inequality of type

(1.5) true, in the sense that if (1.1) holds for some r.i. space Y(V), then
V QVY(V) GConst V QVX0 (V).

This result enables us to characterize the r.i. integrability improving
spaces and thus to answer problem i). As stated above, such a characterization
can be given in terms of (un)boundedness properties of the maximal function
operator M; recall that, for a locally integrable function f : VKR, Mf is de-
fined by

Mf (x) 4 sup
x�Q

1

NQN
s

Q

Nf (y)Ndy ,

where the supremum is extended over all cubes having sides parallel to the co-
ordinate axes and f is continued by 0 outside V. Alternative characterizations
make use of the one-dimensional Hardy operator H, defined as

Hf(s) 4
1

s
s
0

s

f(r) dr

on f : [0 , Q) KR, or of the (upper) Boyd index I(X(V) )� [0 , 1 ] of X(V) given
by

I(X(V) )4 lim
tKQ

log VDt V

log t
,(1.6)

where VDt V is the norm of the dilation operator Dt : X(0 , NVN) K X(0 , NVN) de-
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fined, for tF1, as Dt f(s) 4f(s/t), s� (0 , NVN). Let us mention that the index
I plays a role in the theory of interpolation. Formulas for such index for cus-
tomary spaces are known (see e.g. [BS], [BF], [Mo2]); for instance,
I(L p (V) )41/p if p� [1 , Q].

COROLLARY. – Let V , X(V) and X0 (V) be as in the Theorem. Then the fol-
lowing conditions are equivalent:

i) X(V) is integrability improving for the Jacobian of o.p. maps.

ii) X0 (V) is strictly contained in X(V).

iii) The maximal function operator M is unbounded on X(V).

iv) The Hardy operator H is unbounded on X(0 , NVN).

v) The upper Boyd index I(X(V) )41.

2. – Proofs.

PROOF OF THE THEOREM. – Let u be as in the statement. Then, in particu-
lar, u belongs to the Sobolev space W 1, n (V 8 , Rn ) for every smooth open sub-
set V 8 of V. Indeed, since V has finite measure, then X(V) ’L 1 (V) ([BS],
Thm. 6.6, Chap. 2); hence NDuN�L n (V) and, by the Sobolev embedding theo-
rem, u�L n (V 8 ). Thus, the following inequality of [Mi], rephrasing the result
of [Mü] in terms of rearrangements, holds

(2.1)
1

s
s
0

s

(x Q/2 det Du)*(r) drGcu 1

s
s
0

s

[ (x Q NDuNn )*(r) ]1/n 8 drv
n 8

,

for 0 EsGNQN/2 .

Here, Q denotes any cube contained in V, Q/2 stands for the cube concen-
tric with Q whose sides are parallel to those of Q and have half length, c is a
constant depending only on n, and n 84n/(n21).

Consider now the operator T defined by

Tf(s) 4u 1

s
s
0

s

Nf(r)N1/n 8 drv
n 8

, for s� (0 , NVN)

on functions f : (0 , NVN) KR. The operator T is quasilinear, since for all l�R
and all functions f and c, NT(lf)N4NlNNTfN and NT(f1c)NG

2n 821 (NTfN1NTcN). Furthermore, T is bounded on L Q (0 , NVN) with norm
G1 and, by Hardy’s inequality ([BS], Chap. 3, Lemma 3.9) it is also bounded
on L 1 (0 , NVN) with norm Gn n 8. Thus, since X(0 , NVN) is a r.i. space, an inter-
polation theorem by Calderón ([BS], Thm. 2.12, Chap. 3) ensures that T is
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bounded on X(0 , NVN) and that

VTfVX
–

(0, NVN) G2n 821 n n 8
VfVX

–
(0, NVN)(2.2)

for all f� X(0 , NVN). On setting f4 (x Q NDuNn )* in (2.2), observing that (2.1)
holds for all s� (0 , NVN) if c is replaced by c(2NVN/NQN)n 821 and recalling (1.4)
yields

Vx Q/2 det DuVX0 (V) Gc4n 821 n n 8 (NVN/NQN)n 821
V
NDuNn

VX(V) .(2.3)

Inequality (1.5) obviously follows from (2.3).
As for the optimality of X0 (V), suppose by contradiction that there exists a

r.i. space Y(V) such that (1.1) holds, but

sup
f

V f VY(V)

V f VX0 (V)

4Q ,(2.4)

where the supremum extends over all f�X0 (V) which do not vanish identical-
ly. Given any such f, consider the function v : Rn KRn defined by

v(x) 4f(NxN)
x

NxN
, where f(r) 4u 1

Cn

s
0

Cn r n

f *(s) dsv
1/n

and Cn 4p n/2 /G(11n/2 ), the measure of the n-dimensional unit ball. On set-
ting r4NxN, we have

det Dv(x) 4
1

nr n21

d

dr
(f(r)n )4 f *(Cn r n ) F0 for x�Rn ;(2.5)

moreover,

(2.6) NDvNn (x) 4 ( tr Dv T Dv)n/2 4g(n21)
f 2 (r)

r 2
1g df

dr
(r)h2hn/2

G

2(n/2 )21g (n21)n/2 f n (r)

r n
1g df

dr
(r)hnh4

2(n/2 )21u (n21)n/2

Cn r n
s
0

Cn r n

f *(s) ds1u 1

Cn r n
s
0

Cn r n

f *(s) dsv
12n

( f *(Cn r n ) )nvG

K

Cn r n
s
0

Cn r n

f *(s) ds , for x�Rn ,

where K42n/221 ((n21)n/2 11). Notice that the last inequality is due to the



ANDREA CIANCHI624

inequality f *G f **. Hence,

(NDvNn )*(s) GKf **(s) for sD0 .(2.7)

Now, define u : VKRn by u4vx V and choose E in (1.1) to be a ball B
(which may be assumed, without loss of generality, to be centered at the ori-
gin). Let N�N be such that NNBNFNVN. It is easily seen that, if we set g(x) 4

f *(Cn NxNn ), then

(gx B )**(s) F
1

N
(gx R n 0 B )**(s) for sD0 .

Owing to the subadditivity of the operator «**» and to the last inequali-
ty,

(2.8) (g *)**(s)4g **(s)4(gx B1gx Rn 0 B )**(s)G(gx B )**(s)1(gx Rn 0 B )**(s)G

(N11)(gx B )**(s)4(N11)((gx B )* )**(s) for sD0 .

On making use of (2.5), (2.8) and of Corollary 4.7, Chap. 2 of [BS] we
get

(2.9) Vx B det DuVY(V) 4Vx B gVY(V) 4V(x B g)* VY(0 , NVN) F

1

N11
Vg * VY

–
(0, NVN) 4

1

N11
V f * VY

–
(0, NVN) 4

1

N11
V f VY(V) .

On the other hand, since (NDuNn )*G (NDvNn )*, inequality (2.7) and the
monotonicity of V QVX

–
(0, NVN) imply that

VNDuNn
VX(V) 4V(NDuNn )* VX

–
(0, NVN) GKV f ** VX

–
(0, NVN) 4KV f VX0 (V) .(2.10)

From (2.9), (2.10) and (2.4) we deduce that

sup
u o.p.

Vx B det DuVY(V)

VNDuNn
VX(V)

F
1

K(N11)
sup

f�X0 (V)

V f VY(V)

V f VX0 (V)

4Q ,(2.11)

a contradiction. r

PROOF OF THE COROLLARY. – The equivalence of i) and ii) is a straightfor-
ward consequence of the Theorem. The equivalence of iii), iv) and v) is well-
known (see e.g. [BS], Chap. 3). Thus, we only need to prove that ii) and iv) are
equivalent. Since both X(V) and X0 (V) are Banach function spaces (and
X0 (V) ’X(V)), then, by Thm. 1.8, Chap. 1 of [BS], X(V) 4X0 (V) if and only if
there exists a constant kD0 such that V QVX0 (V) GkV QVX(V), i.e. if and only if

V f ** VX
–

(0, NVN) GkV f * VX
–

(0, NVN) , for all f in X(V) .(2.12)
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Inequality (2.12) is equivalent to the inequality

VHfVX
–

(0, NVN) GkVfVX
–

(0, NVN) for all f in X
–

(0, NVN) ,(2.13)

i.e. to the boundedness of H on X(0 , NVN). Indeed, (2.12) follows from (2.13) on
choosing f4 f *. Conversely, assume that (2.12) holds. By Cor. 7.8, Chap. 2 of
[BS], for every f� X(0 , NVN) there exists a real-valued function f on V such

that f*4 f *. By Hardy-Littlewood’s inequality ([BS], Thm. 2.2, Chap. 2),

s
0

s

f(r) drG s
0

s

f*(r) dr for sF0. Therefore,

(2.14) VHfVX
–

(0, NVN) GVf** VX
–

(0, NVN) 4V f ** VX
–

(0, NVN) G

kV f * VX
–

(0, NVN) 4kVf* VX
–

(0, NVN) 4kVfVX
–

(0, NVN)

and (2.13) follows. r

3. – Examples.

Lebesgue spaces. Any of conditions iii), iv), v) of the Corollary tells us that
L 1 (V) is the only integrability improving Lebesgue space. Moreover, since
L 1(V) 4L 1 (0 , NVN), we obtain from (1.4), via Fubini’s theorem, that

V f V(L 1 (V) )0
4 s

0

NVN

f *(s) log (NVNOs) ds ,

a Lorentz norm which is equivalent to the norm in the Orlicz space L log L(V)
(see Remark 1 below). Thus, the Theorem reproduces the result of [Mü] and
also tells us that it is optimal in the framework of all r.i. spaces.

Orlicz spaces. Let A be a Young function, i.e. a non-decreasing convex
function from [0 , Q) into [0 , Q] vanishing at 0. We denote by L A (V) the Or-
licz space of those functions f whose Luxemburg norm, defined as V f VL A (V) 4

inf ]lD0: s
V

A(Nf (x)NOl) dxG1(, is finite. Condition iii) of the Corollary, com-

bined with a generalization of the Hardy-Littlewood-Wiener maximal theo-
rem, tells us that L A (V) is integrability improving if and only if the conjugate
Young function AA of A, defined by AA(s) 4 sup ]rs2A(r): rF0(, does not sat-
isfy the D 2-condition near infinity. Recall that this amounts to requiring that
limsup
rK1Q

AA21 (r)OAA21 (mr) Fc for every mD0, where c is a positive constant in-

dependent of m. Furthermore, the optimal space

(L A (V) )0 4L A0 (V) ,

with equivalent norms, where A0 is the Young function defined by A0 (s) 4
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ss
0

s

A(r) r 22 dr (and A is modified, if necessary, near 0, in such a way that the

integral converges). This is a consequence of results from [BP], [C], [GIM],
[K1], [K2]. Thus, the Theorem overlaps with Theorem 2 of [GIM].

Lorentz spaces. Given an integrable function w : (0 , NVN) K [0 , Q) and a
number qF1, the classical Lorentz space L w , q (V) is the space of those func-

tions f for which the quantity V f VL w , q (V) 4g s
0

NVN

f *(s)q w(s) dsh1/q

is finite. Ob-

serve that, when w(s) 4s q/p21, L w , q (V) 4L p , q (V), the usual Lorentz space.
In spite of the notation, the expression V QVL w , q (V) need not be a norm. A charac-
terization of those w and q for which V QVL w , q (V) is (equivalent to) a norm, and
hence L w , q (V) is a r.i. space, is known. When qD1, Theorem 4 of [S] tells us
that this is the case if and only if the Hardy operator H is bounded on
L w , q (0 , NVN). Hence, by the Corollary, no integrability improving r.i. space
L w , q (V) exists for qD1. When q41, V QVL w , 1 (V) is equivalent to a norm if and
only if

1

s
s
0

s

w(t) dtGConst
1

r
s
0

r

w(t) dt for 0 ErGs(3.1)

(see [CGS]); notice that, in particular, (3.1) holds with Const 4 1 if w is non-
increasing. Under assumption (3.1), combining the Corollary with the results
of [AM] tells us that L w , 1 (V) is integrability improving if and only if

limsup
sK0

s s
s

NVN

w(t) t 21 dt

s
0

s

w(t) dt
4Q .

An alternative necessary and sufficient condition for L w , 1 (V) to be
integrability improving, which follows from the Corollary via a result of
Boyd (see [S]), is that

lim
tK1Q

logg sup
0 EsENVNOt

g s
0

st

w(r) drOs
0

s

w(r) drhh
log t

41 .

Moreover, the optimal space

(L w , 1 )0 (V) 4L w0 , 1 (V) ,

where w0 (s) 4 s
s

NVN

w(t) t 21 dt, as an application of Fubini’s theorem shows.
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Notice that the only integrability improving L p , q (V) space is L 1, 1 (V) 4

L 1 (V).

REMARK 1. – The last two examples overlap, since Orlicz and Lorentz
spaces may coincide. Actually, the Orlicz space L A (V) is known to agree with a
Lorentz space L w , 1 (V) (with equivalent norms) if and only if there exists

sD0 such that s
Q

AA(st) AA(t)22 dAA(s) EQ, and, if this is the case, w(s) 4

1OA 21 (1 /s); a condition of the same kind for the converse to hold is also avail-
able ([L]). Thus, in particular, the results where X(V) 4L loga L(V), aF0,
can be recovered from either of the last two examples, on choosing A(s) 4

s loga (11s) and w(s) 4 loga (NVNOs), respectively. It can be shown, however,
that neither all integrability improving Orlicz spaces are Lorentz spaces nor
the converse is true.

REMARK 2. – A common generalization of Orlicz and Lorentz spaces is
given by the Orlicz-Lorentz spaces (see e.g. [Mo1]). Integrability improving
spaces from this class could be exhibited on making use of the Corollary and of
the information on their indices contained in [Mo2].
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