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Bollettino U. M. I.
(8) 2-B (1999), 609-618

Divided Differences and Symmetric Functions.

CHU WENCHANG (*)(")

Sunto. — L’operatore di differenze multivariate ¢ utilizzato per stabilire varie formule
di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame
con le identita del «termine costante».

1. — Multivariate divided differences.

For a given complex function f(y), its divided difference of the first order
at two distinct complex numbers  and v is defined by

(1.1a) Alu, v] f(y) = S —J)
u—v

In general, for n distinct complex numbers {x; };-,, we may repeat this pro-
cess for f(y) and define its (n — 1) th divided difference by

(llb) A[xl’ L2y -ty xn] f(y) =A[907,,,1, 96'"] A[x”,g, 2/]

The result is independent of the order of {x;};-; and may be expressed
as

(lld) A[xly Lo, ---,%n]f(?/): ;#

(%z—%j)
j=1
VEX)

In order to compute the divided difference of monomials {y™}, consider ex-

(*) Paris, January 11, 1998: Partially supported by Colomba & Yuang Founda-
tion.
(") Mathematics Subject Classification (1991): Primary 05 E 05, Secondary 05 A 19.
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pansion in partial fractions

H =2 Ai , where /'Li=H i

1-xy i=-11-wy J=12; —
J#E

which may be restated as

LEMMA 1. — Let {ux;}t-1 be arbitrary distint complex numbers, and y a
complex variable. We then have
n 1 " xl n 1
(1.2) > 11 =11 .
i=1l-—wyj=1x;,—x; k=11-—x,y
J#E

Its power series expansions with respect to ¥ at ¥ =0 and y = o, respect-
ively, read as a summation theorem on symmetric functions.

ProPosITION 2 (Biedenharn and Louck [1]). — Denote by h,(x) and h,(1/x)
the p th complete symmetric functions, respectively, in {x;}i -1 and their re-
ciprocals. We then have

(=" he, o, (1/2)

(1.3) Eacpl_[ X1 ... %,

S O e 0, (-n<p<0)
VEX)

, (mw<ps-—mn)

This approach is much simpler than the original analytic proof due to Bieden-
harn and Louck [1].

2. — Constant term identities.

Denote by N, the set of nonnegative integers For A=A, 49, ...,4,) €
N{, and n variables {x;};_y, let x*=xf1af2...2 be a monomial and
[*] f(x) the coefficient of #* in the Laurent series expansion of f(x), which is
a multivariate function of {x;}i_;.

The Dyson [4] conjecture on constant term identities may be stated

as

@D [« Il (l—oci/.%ji)’"'fz(

1<izj<n

my + M+ ... +mn)
my, Mg, ..., My,

It was confirmed independently by Gunson and Wilson in the same volume
of Journal of Mathematical Physics where Dyson announced his conjecture.
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A shorter proof due to Good [5] is based on a special case of Lemma
1 when y =0.

When m; =my, =... =m, =1, it may be specified as
(2.2) [y @y...x,)" ] TI (v — ;) =nl.
1<izj<sn

Denote by S, the set of permutations of {0, 1, ..., » —1}. For each 0§,
define a sign function &(o) = *1 according to its parity. If 6 = (n — 1, n — 2,
..., 1,0) and 9=(0,1, ..., —2,n—1), then the product of the Vander-
monde determinants yields

(2.30) [ (2, mz...x,n)"’l]lsil;[jsn(mi - ),
(2.30) = [90"“’]”;9 e(0) ac"(’rg,g e(r) ™,
(2.3¢) = [90"“’]0 Z's,, e(or) &%+

(23d) =L’ 2 (o) a Y,

(2.3¢) = ES 1=mnl,

which provides an alternate proof for (2.2).

3. — Symmetric functions.

For a fixed natural number = and the corresponding set [n]=
{1, 2, ..., n} of the first » natural numbers, let A= {k; <k, <...<k,}c[n]
be its subset with the cardinality p = | /4| and the complement A1°¢ in [n]. Then
the m-th elementary and complete symmetric functions in {w,|keA} and
their reciprocals, will be denoted, respectively, by e, (x|A4), e, (1/x|A),
hy, (x| A) and h,,(1/x|A). When A = [n], it will be omitted from the symmetric
function notation. Similarly, for a multivariate complex function
f1, ¥2, ..., Yp), the replacement {y, = x;, }’_, will be denoted by f(x|A) in-

stead of f(wy, @, ..., @ ). The tensor product of divided differences of
f1, ¥, .-, y,) with respect to the same point-set {x; }; _; for each variable is
given by

(3'10“) AP[WI,WQ, "',xn] f(yl’y27 "'vyp)’

AenlP ied j#i

(3.1b) = 2 flx]A) / IT IT(w—ay).
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Comparing it with the symmetric summation defined by

X
G2) > IS - 11 (-2
Ac[n] ieA H(x _90) Ac[n] ied l__[(x —x)1¢]e/l J
|4] = jeA [4]=p Jj=i

n m

(3.2D) SRSV DN ] [ — )

Ae[np ied H(m — ) izjed
]#7

we find that the last sum is equal to the multivariate divided difference
Ap[xl’ Loy «vvy mn] {(?/1?/2 --~yp)717m' H (y’L - y])} ’
1#je

where (y;%...9,)" ™ Il (y;—v;) is a symmetric polynomial of degree
izjed ’

plp—1+n—-m) in {y.}-,, whose multivariate divided difference at
{@y, a3, ..., x,} vanishes for p <m <n. When m = p, it reduces to the coeffi-
cient of the monomial (y;%»...y,)" ' in the Laurent expansion of
(Y- Yy 7P H (yl y;), i.e., the constant term of [l (1—y,/y;). From

iZzjed
(2.2), we recover the following summation formulae

ProposITION 3 (Gross and Richards [6, eqgs. (3.3-6)]).

- m 0, <msmn,
3.3) xl— = p
Ac[n] ie H(x ) 1, m=p.
|| = jeAa
THEOREM 4. — Let {my, ms, ..., m,} be nonnegative integers. There
hold

(3.4a) I1

Acln] ied, jed X; —x
[l =p

(3.4D) > I

Ac[n] ied, jeA ﬂ’/' —96
[4]=p

Hh,yLk<x|A> Hh(m)

p
Hemk(xl/l )_ ( 7k21mk)7

where O(-, -) 1s the Kronecker delta.

In particular, when m, =m and my; =mg= ... =m, =0, this theorem re-
duces to
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COROLLARY 5. — Let m be a nonnegative integer. There hold

(3.50) > 11

/IC[n] ied, je 90 96]
[4]=

hy, (x| A) = h,,(x),

(3.5b) > T —fe, @A) =600, m).
|/i1c\[—n] icd, jed x; — &;

The first formula in this corollary is due to Gross and Richards [6, eq.
(3.13)]. When m = 0, both identities reduce to the case m =p of (3.3).
Recalling the generating function for complete symmetric functions

1
Z B (| A) 4™,

ked l—ﬁcky m=0

—

':|:

E T () Y™,

l—xky m=0

we may restate (3.4a) and (3.4b) as

THEOREM 6.

P P
X 1 1

@ > I =l [1——=111T——,

ﬁlcl[lz] ied, jed X, — @5 ked 1=1 1 —xpy, k=11=11—1a,y,

p
X | Hn(l"'xkyz):l-

Ac[n] ied, jeA X —90 keA =
|1] =

In fact, if we multiply both sides of (3.6a) by H H (1 —x,9;) and replace

{y:} by their opposites, we get (3.6b). Then (3. 4b) follows simply from (3.60) on
account of the generating functions for elementary symmetric functions

E em('%'/l)ym l_[/](1+xky)’

777,/
> en(x)y™ = [T +x.y).
m=0 k=1
Therefore it suffices to show (3.4a) in order to prove the theorems.

ProoF oF (3.4a). — We will do it by the induction principle.
When p =1, it reduces to (1.3) due to Biedenharn and Louck [1]. Suppose
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the statement is true for p. Then for p + 1, let
H(x|A) = hy, (x| A) by, (]| A) .. Ry, (] A) .

From (1.3) we can deduce

(3.70) o:= > 1l hyy (2| A) H(x| A),
|[A|=p+1 ied, jed X; — OC]
+ my
(3.7b) - > I —H(| ) Z e
A1 =p+1 ied, e x; — ZJI:[A(%'I:_%Z)

Interchanging the summation order and noticing that for a fixed &

xlgwrmo T xl’cnfl+m0

IT (e,—x)ieam—a;, [, -
Izked =k

we have
xn 1+my '%.in—l—p
87 Q= Z > = H@AU kD).
H(xk x;) |4l=p ied I1 (902‘_9@')
Acn]\{k} jeAU {k}

Noting that
el AU (k) = 2™ ] ),

we may combine its tensor product

P m,

H(x|AU {k}) = ]:[1 gox,gm‘“hm(ad/l)

with the induction hypothesis which asserts that for every p-ple nonnegative
integers {vi, vy, ..., v, }, there holds

n—1-p
> H”—Hh (@A) = Hhvl<ac|[n]\{k}>
jdl=p ica T (;—a;)
Ac[nI\{k} jeAU{k}

and conclude that

xln 1-p

3.7d) >
[A]=p iea H (901'_907')
Ac[n]\{k} jeAu {k} '

H(x|AU {k}) = H(x).
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In view of (1.3), we arrive at

3 n—1+mgy
3.7¢) Q=2 -  H)=h,,(x) Hx).
k=1 ‘Hk(xk - 907')
J#

This complete the proof of the Theorems.

Observe that [7, chap. I] every elementary symmetric function e,, (x| A1) can
be expressed as a multivariate polynomial of degree m in terms of complete
symmetric functions {&;(x|A)};, and viceversa. We can deduce from (3.4a)
and (3.4b) the following

PROPOSITION 7. — For p nonnegative integers {my, }f_, with 0 < E m, < p,
there hold

(3.80) > 11

/lc[n] ied,jed X; —90
[4] =

(3.8h) >

Ac[n] ied, jeA 9(}1—96
[4] =

Hemk<x|A> Hlemk(m,

P
H By (2] A€) = ( ,glmk) :

In particular, we have the dual formulas of (3.5a) and (3.5b).

COROLLARY 8. — Let m be a monmnegative integer with 0 <m <p, we
have

(3.90) > 11

/lc[n] ied, jed X; —90
[4] =

(3.90) > 11

Ac[n] ied, jed X; — 907»
[Al=p '

67,,(96|/1) = em(x) ’

hy, (2] A°) =0(0, m).

The last formula is also due to Gross and Richards [6, eq. (3.12)] and may
be extended further when m is not limited to 0 <m < p.

PROPOSITION 9. — For each nonnegative integer m, we have

3100 > I Y p a0 = E( 1) e (0) by ()
|/‘1/1C|[7L] ied, jed X; — Xj
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which specifies, for m=p+1, to

w.
(3.100) » l
Ac[n] ied, jeA X; _90]‘
[A]=p

by (@) A9) =(=1)e,,1(x).

The corresponding generating functions read as

P
‘ 2 (1) e (x)y"
CRTTO NN SR | QN § (N = )

Aclnl ied, jed X; — % keac (1 — 2,y)
4] =p Y Y lgl(l—xl?/)

p
x.
(3.11b) > I [Ta—umy = 2 (-1e@)y".
Acn] ied, jeA 90 —:)6 ke k=0
[A]=p

In fact, similar to the proof of (3.4a), we have

(3.12a) =) f, (] A°),

Acn] ied, jed X; —
|[4] =p

(3.12b) = > I =

b
Aclnl ied, jed X; — Xj keA® IT (x,—x)
[A]=p I=keA

E(—l)p

J

xlzn+n—p—1

m+ n—p-—1

(3.12¢)

H(g(;k x) 1Al=p ica I (a;—x)
Ac[nl\{k} jeAU {k}

According to (3.9a), the inner sum of the last equation is equal to
p
e,(@|[n]\{k}) = §0<—1)p*le*"el<x>
which results from the generating functions

lﬂl(lﬂczy)

1=1

en(x|[nI\{k}) = [y"] W

=1y"1 2 (~1'aly’ 2 @)y’

- gjo(—l)vac;;’e7n_v(w)-
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Substituting this into (3.12¢) for = and using (3.96), we have

n m+n 1
(3.12d) E= Z( g2t Z(—l)fo P e, (x),
= H(%k_xz)l
Ep: m+n 1—1
3.12 1) 2
(3.12¢) 2=( )e,(x) —1H(ack
p
(3.12f) = DU(—1) () by, ()

which completes the proof of (3.10a).

Recall that [7, chap. I] every power-sum symmetric function ¢,,(x|A4) in
{2 }rc1 can be expressed as a multivariate polynomial of degree m in terms of
complete symmetric functions {%;(x|A)};. For each term of the expression,
apply (3.4a) and (3.8b). Then their respective sums give rise to the following
formulas consequently.

ProrosITION 10. — For a nonnegative integer m with 0 <m <p, there
hold

(3.130) >
Acn] ied, jed :’UL — x]
[A]=p

on(x|A)=0,()),

(3.130) > Il

Ac[n] ied, jed X;
4] =p

0 (2] A¢) =6(0, m).

J

For a partition defined by A =(1,=1,=...241,), denote by 1’ its conju-
gate partition. Then the Schur functions [7, chap. I] read as

(3.14a) S;(x|A) =det[hj_;i (@] Dh<i j<p
(3.14b) Sy (x| A) =detlej_; (x| A) ] <i i<y

from which (3.4a) and (3.4b) may be reformulated as the following identities on
the Schur functions.
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PrOPOSITION 11. — Let A= (A, =A,=...24,) be a partition. There
hold

&L;
3.150) > I S, (| A) =S, (),
AcTn] ied,jed &; —
Al =p
£Li

P
(3.15b) S (x| A°) =0 (O,k;lk).

Ac[n] ied, jeA ﬂ'/',L — x]
4] =p
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