BOLLETTINO UNIONE MATEMATICA ITALIANA

WENCHANG CHU

Divided differences and symmetric functions

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **2-B** (1999), n.3, p. 609–618.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_3_609_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Divided Differences and Symmetric Functions.

CHU WENCHANG (*)(†)

Sunto. – L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».

1. - Multivariate divided differences.

For a given complex function f(y), its divided difference of the first order at two distinct complex numbers u and v is defined by

(1.1a)
$$\Delta[u, v] f(y) = \frac{f(u) - f(v)}{u - v}.$$

In general, for n distinct complex numbers $\{x_k\}_{k=1}^n$, we may repeat this process for f(y) and define its (n-1) th divided difference by

$$(1.1b) \Delta[x_1, x_2, ..., x_n] f(y) = \Delta[x_{n-1}, x_n] \Delta[x_{n-2}, y]$$

$$(1.1c) ... \Delta[x_2, y] \Delta[x_1, y] f(y).$$

The result is independent of the order of $\{x_k\}_{k=1}^n$ and may be expressed as

(1.1d)
$$\Delta[x_1, x_2, ..., x_n] f(y) = \sum_{i=1}^n \frac{f(x_i)}{\prod_{\substack{j=1\\j\neq i}}^n (x_i - x_j)}.$$

In order to compute the divided difference of monomials $\{y^m\}$, consider ex-

- (*) Paris, January 11, 1998: Partially supported by Colomba & Yuang Foundation.
 - (†) Mathematics Subject Classification (1991): Primary 05 E 05, Secondary 05 A 19.

pansion in partial fractions

$$\prod_{k=1}^{n} \frac{1}{1 - x_k y} = \sum_{i=1}^{n} \frac{\lambda_i}{1 - x_i y}, \quad \text{where} \quad \lambda_i = \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x_i}{x_i - x_j}$$

which may be restated as

LEMMA 1. – Let $\{x_k\}_{k=1}^n$ be arbitrary distint complex numbers, and y a complex variable. We then have

(1.2)
$$\sum_{i=1}^{n} \frac{1}{1 - x_i y} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x_i}{x_i - x_j} = \prod_{k=1}^{n} \frac{1}{1 - x_k y}.$$

Its power series expansions with respect to y at y=0 and $y=\infty$, respectively, read as a summation theorem on symmetric functions.

PROPOSITION 2 (Biedenharn and Louck [1]). – Denote by $h_p(x)$ and $h_p(1/x)$ the pth complete symmetric functions, respectively, in $\{x_k\}_{k=1}^n$ and their reciprocals. We then have

$$(1.3) \quad \sum_{i=1}^{n} x_{i}^{p} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x_{i}}{x_{i} - x_{j}} = \begin{cases} \frac{(-1)^{n-1} h_{-p-n}(1/x)}{x_{1} x_{2} \dots x_{n}}, & (-\infty$$

This approach is much simpler than the original analytic proof due to Biedenharn and Louck [1].

2. - Constant term identities.

Denote by N_0 the set of nonnegative integers. For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in N_0^n$, and n variables $\{x_k\}_{k=1}^n$, let $x^{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} ... x_n^{\lambda_n}$ be a monomial and $[x^{\lambda}] f(x)$ the coefficient of x^{λ} in the Laurent series expansion of f(x), which is a multivariate function of $\{x_k\}_{k=1}^n$.

The Dyson [4] conjecture on constant term identities may be stated as

(2.1)
$$[x^0] \prod_{1 \leq i \neq j \leq n} (1 - x_i/x_j)^{m_i} = \binom{m_1 + m_2 + \dots + m_n}{m_1, m_2, \dots, m_n}.$$

It was confirmed independently by Gunson and Wilson in the same volume of Journal of Mathematical Physics where Dyson announced his conjecture. A shorter proof due to Good [5] is based on a special case of Lemma 1 when y = 0.

When $m_1 = m_2 = ... = m_n = 1$, it may be specified as

(2.2)
$$[(x_1 x_2 ... x_n)^{n-1}] \prod_{1 \leq i \neq j \leq n} (x_i - x_j) = n!.$$

Denote by S_n the set of permutations of $\{0, 1, ..., n-1\}$. For each $\sigma \in S_n$, define a sign function $\varepsilon(\sigma) = \pm 1$ according to its parity. If $\theta = (n-1, n-2, ..., 1, 0)$ and $\vartheta = (0, 1, ..., n-2, n-1)$, then the product of the Vandermonde determinants yields

$$[(x_1 x_2 \dots x_n)^{n-1}] \prod_{1 \le i \ne j \le n} (x_i - x_j),$$

$$(2.3b) \qquad = [x^{\theta+\vartheta}] \sum_{\sigma \in S_n} \varepsilon(\sigma) \ x^{\sigma\theta} \sum_{\tau \in S_n} \varepsilon(\tau) \ x^{\tau\vartheta},$$

$$(2.3c) = \left[x^{\theta + \vartheta} \right] \sum_{\sigma, \tau \in S_n} \varepsilon(\sigma \tau) \, x^{\sigma \theta + \tau \vartheta},$$

$$(2.3d) = [x^{\theta+\vartheta}] \sum_{\sigma \in S_n} \varepsilon(\sigma^2) x^{\sigma(\theta+\vartheta)},$$

$$(2.3e) \qquad \qquad = \sum_{\sigma \in S_n} 1 = n!,$$

which provides an alternate proof for (2.2).

3. - Symmetric functions.

For a fixed natural number n and the corresponding set $[n] = \{1, 2, ..., n\}$ of the first n natural numbers, let $A = \{k_1 < k_2 < ... < k_p\} \subset [n]$ be its subset with the cardinality p = |A| and the complement A^c in [n]. Then the m-th elementary and complete symmetric functions in $\{x_k \mid k \in A\}$ and their reciprocals, will be denoted, respectively, by $e_m(x|A)$, $e_m(1/x|A)$, $h_m(x|A)$ and $h_m(1/x|A)$. When A = [n], it will be omitted from the symmetric function notation. Similarly, for a multivariate complex function $f(y_1, y_2, ..., y_p)$, the replacement $\{y_i = x_{k_i}\}_{i=1}^p$ will be denoted by f(x|A) instead of $f(x_{k_1}, x_{k_2}, ..., x_{k_p})$. The tensor product of divided differences of $f(y_1, y_2, ..., y_p)$ with respect to the same point-set $\{x_k\}_{k=1}^n$ for each variable is given by

(3.1a)
$$\Delta^{p}[x_{1}, x_{2}, ..., x_{n}] f(y_{1}, y_{2}, ..., y_{p}),$$

$$(3.1b) \qquad = \sum_{\Lambda \in [n]^p} f(x|\Lambda) \left| \prod_{i \in \Lambda} \prod_{j \neq i} (x_i - x_j) \right|.$$

Comparing it with the symmetric summation defined by

(3.2a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A} \frac{x_i^{n-m}}{\prod_{j \notin A} (x_i - x_j)} = \sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A} \frac{x_i^{n-m}}{\prod_{j \neq i} (x_i - x_j)} \prod_{i \neq j \in A} (x_i - x_j),$$

$$(3.2b) = \{1/p!\} \sum_{\Lambda \in [n]^p} \prod_{i \in \Lambda} \frac{x_i^{n-m}}{\prod\limits_{j \neq i} (x_i - x_j)} \prod_{i \neq j \in \Lambda} (x_i - x_j),$$

we find that the last sum is equal to the multivariate divided difference

$$\Delta^{p}[x_{1}, x_{2}, ..., x_{n}] \{ (y_{1}y_{2}...y_{p})^{n-m} \prod_{i \neq j \in A} (y_{i} - y_{j}) \},$$

where $(y_1y_2\dots y_p)^{n-m}\prod_{\substack{i\neq j\in A\\ i\neq j\in A}}(y_i-y_j)$ is a symmetric polynomial of degree p(p-1+n-m) in $\{y_k\}_{k=1}^p$, whose multivariate divided difference at $\{x_1,\,x_2,\,\ldots,\,x_n\}$ vanishes for $p< m\leq n$. When m=p, it reduces to the coefficient of the monomial $(y_1y_2\dots y_p)^{n-1}$ in the Laurent expansion of $(y_1y_2\dots y_p)^{n-p}\prod_{\substack{i\neq j\in A}}(y_i-y_j)$, i.e., the constant term of $\prod_{\substack{i\neq j\in A}}(1-y_i/y_j)$. From (2.2), we recover the following summation formulae

PROPOSITION 3 (Gross and Richards [6, eqs. (3.3-6)]).

(3.3)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A} \frac{x_i^{n-m}}{\prod_{j \notin A} (x_i - x_j)} = \begin{cases} 0, & p < m \le n, \\ 1, & m = p. \end{cases}$$

THEOREM 4. – Let $\{m_1, m_2, ..., m_p\}$ be nonnegative integers. There hold

(3.4a)
$$\prod_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k=1}^p h_{m_k}(x|A) = \prod_{k=1}^p h_{m_k}(x),$$

$$(3.4b) \qquad \sum_{\substack{\Lambda \subset [n] \\ |\Lambda| = p}} \prod_{i \in \Lambda, j \notin \Lambda} \frac{x_i}{x_i - x_j} \prod_{k=1}^p e_{m_k}(x | \Lambda^c) = \delta\left(0, \sum_{k=1}^p m_k\right),$$

where $\delta(\cdot, \cdot)$ is the Kronecker delta.

In particular, when $m_1 = m$ and $m_2 = m_3 = ... = m_p = 0$, this theorem reduces to

Corollary 5. – Let m be a nonnegative integer. There hold

(3.5a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} h_m(x|A) = h_m(x),$$

(3.5b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} e_m(x | A^c) = \delta(0, m).$$

The first formula in this corollary is due to Gross and Richards [6, eq. (3.13)]. When m=0, both identities reduce to the case m=p of (3.3). Recalling the generating function for complete symmetric functions

$$\prod_{k \in A} \frac{1}{1 - x_k y} = \sum_{m=0}^{\infty} h_m(x | A) y^m,$$

$$\prod_{k=1}^{n} \frac{1}{1 - x_k y} = \sum_{m=0}^{\infty} h_m(x) y^m,$$

we may restate (3.4a) and (3.4b) as

THEOREM 6.

(3.6a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k \in A} \prod_{l=1}^p \frac{1}{1 - x_k y_l} = \prod_{k=1}^n \prod_{l=1}^p \frac{1}{1 - x_k y_l},$$

(3.6b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k \notin A} \prod_{l=1}^p (1 + x_k y_l) = 1.$$

In fact, if we multiply both sides of (3.6a) by $\prod_{k=1}^n \prod_{l=1}^p (1-x_ky_l)$ and replace $\{y_l\}$ by their opposites, we get (3.6b). Then (3.4b) follows simply from (3.6b) on account of the generating functions for elementary symmetric functions

$$\sum_{m\geq 0} e_m(x|\Lambda) y^m = \prod_{k\in\Lambda} (1+x_k y),$$

$$\sum_{m \ge 0} e_m(x) y^m = \prod_{k=1}^n (1 + x_k y).$$

Therefore it suffices to show (3.4a) in order to prove the theorems.

PROOF OF (3.4a). – We will do it by the induction principle. When p = 1, it reduces to (1.3) due to Biedenharn and Louck [1]. Suppose the statement is true for p. Then for p + 1, let

$$H(x|\Lambda) = h_{m_1}(x|\Lambda) h_{m_2}(x|\Lambda) \dots h_{m_n}(x|\Lambda).$$

From (1.3) we can deduce

$$(3.7a) \qquad \Omega := \sum_{|A| = p+1} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_i} h_{m_0}(x|A) H(x|A),$$

$$(3.7b) \qquad = \sum_{|A| = p+1} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} H(x|A) \sum_{k \in A} \frac{x_k^{p+m_0}}{\prod\limits_{l \neq k \in A} (x_k - x_l)}.$$

Interchanging the summation order and noticing that for a fixed k

$$\frac{x_k^{p+m_0}}{\prod\limits_{l\neq k\in\mathcal{A}}(x_k-x_l)}\prod_{j\notin\mathcal{A}}\frac{x_k}{x_k-x_j} = \frac{x_k^{n-1+m_0}}{\prod\limits_{l\neq k}(x_k-x_l)},$$

we have

$$(3.7c) \qquad \Omega = \sum_{k=1}^{n} \frac{x_k^{n-1+m_0}}{\prod\limits_{l \neq k} (x_k - x_l)} \sum_{\substack{|A| = p \\ A \subseteq [n] \setminus \{k\}}} \prod_{i \in A} \frac{x_i^{n-1-p}}{\prod\limits_{j \notin A \cup \{k\}} (x_i - x_j)} H(x | A \cup \{k\}).$$

Noting that

$$h_m(x|\Lambda \cup \{k\}) = \sum_{\nu=0}^m x_k^{m-\nu} h_{\nu}(x|\Lambda),$$

we may combine its tensor product

$$H(x|\Lambda \cup \{k\}) = \prod_{i=1}^{p} \sum_{\nu_{i}=0}^{m_{i}} x_{k}^{m_{i}-\nu_{i}} h_{\nu_{i}}(x|\Lambda)$$

with the induction hypothesis which asserts that for every p-ple nonnegative integers $\{\nu_1, \nu_2, ..., \nu_p\}$, there holds

$$\sum_{\substack{|A|=p\\A \subseteq \{n\} \setminus \{k\}}} \prod_{i \in A} \frac{x_i^{n-1-p}}{\prod_{i \notin A \cup \{k\}} (x_i - x_j)} \prod_{i=1}^p h_{\nu_i}(x | A) = \prod_{i=1}^p h_{\nu_i}(x | [n] \setminus \{k\})$$

and conclude that

(3.7d)
$$\sum_{\substack{|A|=p\\A \in [n] \setminus \{k\}}} \prod_{i \in A} \frac{x_i^{n-1-p}}{\prod\limits_{j \notin A \cup \{k\}} (x_i - x_j)} H(x | A \cup \{k\}) = H(x).$$

In view of (1.3), we arrive at

(3.7e)
$$\Omega = \sum_{k=1}^{n} \frac{x_k^{n-1+m_0}}{\prod\limits_{j \neq k} (x_k - x_j)} H(x) = h_{m_0}(x) H(x).$$

This complete the proof of the Theorems.

Observe that [7, chap. I] every elementary symmetric function $e_m(x|A)$ can be expressed as a multivariate polynomial of degree m in terms of complete symmetric functions $\{h_k(x|A)\}_k$, and viceversa. We can deduce from (3.4a) and (3.4b) the following

PROPOSITION 7. – For p nonnegative integers $\{m_k\}_{k=1}^p$ with $0 \leq \sum_{k=1}^p m_k \leq p$, there hold

(3.8a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k=1}^p e_{m_k}(x|A) = \prod_{k=1}^p e_{m_k}(x),$$

(3.8b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k=1}^p h_{m_k}(x | A^c) = \delta\left(0, \sum_{k=1}^p m_k\right).$$

In particular, we have the dual formulas of (3.5a) and (3.5b).

Corollary 8. – Let m be a nonnegative integer with $0 \le m \le p$, we have

(3.9a)
$$\sum_{\substack{A \subset [n] \\ |A| = n}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} e_m(x|A) = e_m(x),$$

(3.9b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} h_m(x | A^c) = \delta(0, m).$$

The last formula is also due to Gross and Richards [6, eq. (3.12)] and may be extended further when m is not limited to $0 \le m \le p$.

Proposition 9. - For each nonnegative integer m, we have

(3.10a)
$$\sum_{\substack{A \subset [n] \\ |A| = n}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} h_m(x | A^c) = \sum_{k=0}^p (-1)^k e_k(x) h_{m-k}(x)$$

which specifies, for m = p + 1, to

(3.10b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} h_{p+1}(x | A^c) = (-1)^p e_{p+1}(x).$$

The corresponding generating functions read as

(3.11a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k \in A^c} \frac{1}{(1 - x_k y)} = \frac{\sum_{k=0}^p (-1)^k e_k(x) y^k}{\prod_{l=1}^n (1 - x_l y)},$$

(3.11b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \prod_{k \in A} (1 - x_k y) = \sum_{k=0}^p (-1)^k e_k(x) y^k.$$

In fact, similar to the proof of (3.4a), we have

(3.12a)
$$\Xi = \sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} h_m(x | A^c),$$

(3.12b)
$$= \sum_{\substack{\Lambda \subset [n] \\ |\Lambda| = p}} \prod_{i \in \Lambda, j \notin \Lambda} \frac{x_i}{x_i - x_j} \sum_{k \in \Lambda^c} \frac{x_k^{m+n-p-1}}{\prod\limits_{l \neq k \in \Lambda} (x_k - x_l)},$$

$$(3.12c) \qquad = \sum_{k=1}^{n} (-1)^{p} \frac{x_{k}^{m+n-p-1}}{\prod\limits_{l \neq k} (x_{k} - x_{l})} \sum_{\substack{|A| = p \\ A \subset [n] \setminus \{k\}}} \prod_{i \in A} \frac{x_{i}^{n-p}}{\prod\limits_{j \notin A \cup \{k\}} (x_{i} - x_{j})}.$$

According to (3.9a), the inner sum of the last equation is equal to

$$e_p(x|[n]\setminus\{k\}) = \sum_{i=0}^{p} (-1)^{p-i} x_k^{p-i} e_i(x)$$

which results from the generating functions

$$\begin{split} e_m(x|[n]\backslash\{k\}) &= [y^m] \left\{ \frac{\prod\limits_{i=1}^n (1+x_iy)}{1+x_ky} \right\} \\ &= [y^m] \sum\limits_{v=0}^\infty (-1)^v x_k^v y^v \sum\limits_{i=0}^n e_i(x) y^i \\ &= \sum\limits_{v=0}^m (-1)^v x_k^v e_{m-v}(x) \,. \end{split}$$

Substituting this into (3.12c) for Ξ and using (3.9b), we have

(3.12d)
$$\Xi = \sum_{k=1}^{n} (-1)^{p} \frac{x_{k}^{m+n-p-1}}{\prod\limits_{l \neq k} (x_{k} - x_{l})} \sum_{i=0}^{p} (-1)^{p-i} x_{k}^{p-i} e_{i}(x),$$

$$(3.12e) \qquad = \sum_{i=0}^{p} (-1)^{i} e_{i}(x) \sum_{k=1}^{n} \frac{x_{k}^{m+n-i-1}}{\prod\limits_{l \neq k} (x_{k} - x_{l})},$$

$$(3.12f) \qquad = \sum_{i=0}^{p} (-1)^{i} e_{i}(x) h_{m-i}(x)$$

which completes the proof of (3.10a).

Recall that [7, chap. I] every power-sum symmetric function $\varrho_m(x|A)$ in $\{x_k\}_{k\in A}$ can be expressed as a multivariate polynomial of degree m in terms of complete symmetric functions $\{h_k(x|A)\}_k$. For each term of the expression, apply (3.4a) and (3.8b). Then their respective sums give rise to the following formulas consequently.

Proposition 10. – For a nonnegative integer m with $0 \le m \le p$, there hold

(3.13a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \varrho_m(x|A) = \varrho_m(x),$$

(3.13b)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} \varrho_m(x | A^c) = \delta(0, m).$$

For a partition defined by $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p)$, denote by λ' its conjugate partition. Then the Schur functions [7, chap. I] read as

$$(3.14a) S_{\lambda}(x|\Lambda) = \det\left[h_{j-i+\lambda_i}(x|\Lambda)\right]_{1 \leq i, j \leq p},$$

$$(3.14b) S_{\lambda'}(x \mid \Lambda^c) = \det \left[e_{j-i+\lambda_i}(x \mid \Lambda^c) \right]_{1 \leq i, j \leq p}$$

from which (3.4a) and (3.4b) may be reformulated as the following identities on the Schur functions.

PROPOSITION 11. – Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p)$ be a partition. There hold

(3.15a)
$$\sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} S_{\lambda}(x | A) = S_{\lambda}(x),$$

$$(3.15b) \qquad \sum_{\substack{A \subset [n] \\ |A| = p}} \prod_{i \in A, j \notin A} \frac{x_i}{x_i - x_j} S_{\lambda'}(x | A^c) = \delta\left(0, \sum_{k=1}^p \lambda_k\right).$$

REFERENCES

- [1] L. C. BIEDENHARN J. D. LOUCK, Canonical unit adjoint tensor operators in U(n): Appendix A, J. Math. Phys., 11 (1970), 2368-2414.
- [2] W. Chu, The alternative form to an identity of Littlewoood and its multifold analogue, J. Math. Res. Exposition, 9 (1989), 198-199.
- [3] W. Chu, An algebraic identity with its proof, Acta Math. Appl. Sinica, 13 (1990), 383-384.
- [4] F. J. DYSON, Statistical theory of energy levels of complex systems, J. Math. Phys., 3 (1962), 140-156.
- [5] I. J. Good, Short proof of a conjecture of Dyson, J. Math. Phys., 11 (1970), 1884.
- [6] K. I. Gross D. St. P. Richards, Constant term identities and hypergeometric functions on spaces of Hermitian matrices, J. Statist. Plann. Inference, 34 (1993), 151-158.
- [7] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, London/New York (1979).

9 rue du Regard, 75006 Paris, France E-mail: Chu.dicastro@wanadoo.fr

Pervenuta in Redazione il 2 febbraio 1998