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Multibump Solutions for Hamiltonian Systems
with Fast and Slow Forcing.

VITTORIO COTI ZELATI (*) - MARGHERITA NOLASCO (*)

Sunto. – Si dimostra l’esistenza di infinite soluzioni «multi-bump» – e conseguente-
mente il comportamento caotico – per una classe di sistemi Hamiltoniani del se-
condo ordine della forma 2q

..
1q4 (g1 (vt)1g2 (t/v) ) V 8 (q) per v sufficientemente

piccolo. Qui q�Rn , g1 e g2 sono funzioni strettamente positive e periodiche e V è un
potenziale superquadratico (ad esempio V(q) 4NqN4 ).

1. – Introduction.

In this paper we prove that the Hamiltonian system

2q
..

1q4gg1 (vt)1g2g t

v
hh V 8 (q)(HSv)

has, for vc0 small, a «chaotic» behavior under the following assump-
tions:

(V1) V�C Q (Rn , R);

(V2) V(0) 4V 8 (0) 4V 9 (0) 40;

(V3) Exists mD2 such that 0 EmV(x) GV 8 (x) Qx for all xc0,

while the assumptions on av (t) 4g1 (vt)1g2 (tOv) are:

(a1) Exist 0 Ek1 Ek2 such that k1 Gav (t) Gk2 for all t�R;

(a2) g1 is 1-periodic in t, and g2 is a T-periodic function with zero mean;

(a3) Exist a 0 D0 bD0 such that g18 (t) Fa 0 for all t� [0 , b].

REMARK 1.1. – Let us point out that it not necessary that g2 has zero mean.
Indeed, if the mean of g2 is mc0, then we can consider gA1 4g1 1m and gA2 4

g2 2m, and assumptions (a1)-(a3) hold for av (t) 4g1 (vt)1g2 (tOv) 4 gA1 (vt)1

gA2 (tOv).

(*) Supported by EEC contract ERBCHRXTC940494.
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We also remark that the interval [0 , b] in assumption (a3) can be replaced
by any other interval in [0 , 1 ], and that the existence of such an interval is
trivial if we assume that g1 is nonconstant.

REMARK 1.2. – We believe that our approach works, with minor changes,
also when g1 is an almost periodic function.

About g2 , what we really need in the proof is that it is sufficiently small
(with respect to g1 ) in some topology, for example in the weak* topology, as it
is the case in the situation we consider (indeed g2 (Q/v) K0 in such a
topology).

To better illustrate what we mean by «chaotic» behavior, let us remark
that equation (HSv ) depends on time in a quasi-periodic fashion. For this rea-
son the most widely accepted definition of «chaos» (that is, conjugation to a
Bernoulli shift) does not make sense (indeed such a conjugation implies, for
example, existence of periodic solutions).

What we will show is that our system admits a class of multi-bump sol-
utions (see theorem 1.4 for the precise result). For systems depending periodi-
cally on time this fact implies the existence of an approximate Bernoulli shift,
and positivity of topological entropy (see [25]). So we think that this fact is a
good indication of a chaotic behavior in our setting.

Results on existence of chaotic behavior for systems like (HSv ) date back
to [22] and [18]. Indeed many paper have studied the behavior of (HSv ) under
different set of assumptions on the time dependence. In more recent years the
study of such a class of systems has been done also using variational tech-
niques (or a mixture of variational and perturbative techniques).

In the papers [8, 24, 25, 10] the periodic case is considered, while the pa-
pers [5, 9, 20, 23, 26] study the almost periodic case. In all this papers there is
no small parameter. The «typical» result is: there exist infinitely many sol-
utions. Moreover, if a nondegeneracy condition hold (not easy to check), multi-
bump solutions exist. In particular the results of [20] apply in our situation, for
every vc0, and imply existence of infinitely many homoclinic solutions for
(HSv ). Existence of a chaotic behavior follows provided an additional nonde-
generate condition hold. Remark that we do not need such a condition (for v
small).

The case g2 40, and v small, has been studied in the paper [14], and later
extended by [2, 3, 7, 11, 15, 16, 21]. All these papers deals with existence of one
or more solution for v small. g1 does not have to be periodic, or quasi-periodic
in this situation. The typical result is that such a system has, for v small, sol-
utions (one or more, possibly multi-bump ones) which concentrates near criti-
cal points of g1 . For these results to hold, some information on the «limit»
problem (corresponding in such a case to g1 (t) 4a�R) is needed. Neither of
these results are applicable in our case, even if g2 40. Indeed in the papers
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[2, 3, 7, 14, 16, 21] one assumes the limit problem has a nondegenerate mani-
fold of solutions, while the papers [11, 15] require an additional assumption
(which implies that the limit problem has the Mountain Pass critical level as
the lowest critical level).

The case g2 c0, and v small, has been studied in the paper [1]. In that pa-
per it is proved existence of chaotic behavior when av (t) 4g1 (vt)1g2 (t), g1

and g2 almost periodic and v small. An additional assumption with respect to
our setting is required (which implies that the limit problem has the Mountain
Pass critical level as the lowest critical level-a crucial point in their proof), on
the other hand no smallness condition on the term g2 is required. It is not clear
to us if their method can be adapted to deal with equation (HSv ).

Finally, let us mention that a very interesting problem, which partly moti-
vated our study, arise when g1 (t) 4a�R is a constant function, the «true»
rapidly oscillating problem (case that we do not cover). The problem has been
widely investigate under the assumption that the unperturbed problem, corre-
sponding to g2 40, has a homoclinic solution. In this case it is known that the
separatrix splitting is exponentially small in v, and existence of a chaotic be-
havior does not follow using the usual Melnikov techniques. More refined
analysis are required, and some result can be obtained when everything is
analytic. For a discussion of the problem, see, for example, [4, 12, 13].

Let us now state more precisely our result. In order to do that, we have to
introduce some notation and recall some results on quasi-periodic func-
tions.

NOTATION 1.3. – First of all, for us a continuous function g : RKR is quasi-
periodic if g(t) 4 f (v 1 t , v 2 t , R , v n t) for some function f : Rn KR, f 1-peri-
odic in each of its variables. Given a quasi-periodic function g, we say that t�R
is an e-period for g if Ng(t1 t)2g(t)NGe for all t�R. We will denote by
P(g , e) the set of e-periods of g. It is possible to show that for all eD0 there
exists a l eD0 such that [a , a1l e ]OP(g , e) c¯ for all a�R (i.e. the e-peri-
ods are l e-dense in R).

Given v, e, N�R1 and k�N, we will set

P(v , N , e , k) 4 ]p
K

�RkNpi �P(av , e), pi11 2pi FN( .

and, given p
K

� P(v , N , e , k), we let p0 42Q, pk11 41Q and

Ii 4 [pi , pi11 ] , i40, R k .

We also introduce, for u�H and A%H, (following [25])

dist (u , A) 4 sup
0 G iGk

inf
v�A

Vu2vVH 1 (Ii , Rn ) .

If t�R and v�H, we let (t*v)(Q)4v(Q2t); if p
K

�Rk, we let (p
K

*v)(Q)4!
i41

k

v(Q2pi)
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while if A%H, we let

p
K

* A4mu4 !
i41

k

ui (Q2pi ) Nui �An .(1.6)

We are now in position to state our theorem.

THEOREM 1.4. – Suppose (V1), (V2), (V3), (a1), (a2) and (a3) hold. Then
there exist a v 0 D0 such that for all 0 ENvNEv 0 there exists a nonempty set
A of homoclinic solutions of (HSv ), compact in the C 2 (R ; Rn ) and in the
H 1 (R ; Rn ) topology.

In correspondence to such a set A and to each rD0 exist eD0 and ND0
such that for every k�N, for every p

K
� P(v , N , e , k) there exists a solution

vp
K of (HSv ) such that

dist (vp
K , p

K

* A) Er .

2. – Variational setting.

In this section we will introduce the variational problem corresponding to
(HSv ), we show that it has a Mountain Pass geometry.

REMARK 2.1. – Let us remark that, as a consequence of assumption (V2), we
have that exist d 1 and d 2 , d 2 Dd 1 D0, such that

V(x) G
1

4k2

NxN2 and NV 8 (x)NG
1

4k2

NxN for all NxNGd 1 .(2.1)

V 8 (x) QxG
1

2k2

NxN2 for all NxNGd 2 .(2.2)

We also remark, that, for any rD0 exist Kr such that

V(x) G
Kr

2
NxN2 and NV 8 (x)NG

Kr

2
NxN for all NxNGr .(2.3)

We introduce the Hilbert space

H4H 1 (R , Rn ) 4 ]u�L 2 Nu
.

�L 2 ( ,

with scalar product and norm given by

au , vb 4 s
2Q

1Q

[u
.
Qv
.
1u Qv] dt VuV

2 4 au , vb .
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We recall that H%L Q, and that the following inequality holds

VuVQGCQ VuV for all u�H .(2.4)

The homoclinic solutions of (HSv ) are in one to one correspondence with the
critical points of the functional

fv (u) 4
1

2
s

2Q

1Q

[Nu
.
N2 1NuN2 ] dt2 s

2Q

1Q

av (t) V(u) dt

in H. We will denote with Kv the set of nontrivial critical points of fv .
An easy consequence of our assumptions is that the functional has the

Mountain Pass geometry.

LEMMA 2.2 (Mountain Pass Geometry. – There exist rD0 and aD0, not
depending on v, such that

fv (u) FaD fv (0) 40 for all VuV4r

and for all uc0

fv (lu) K2Q as lK1Q .

This allows us to introduce the Mountain Pass level, defined as

cv4 inf
g�G v

max
t� [0 , 1 ]

fv (g(t) ) ,

where G v4 ]g�C( [0 , 1 ], H)Ng(0) 40 and fv (g(1) )E0(.
By the Mountain Pass theorem we get that cvD0 and that there exists a

Palais Smale sequence for fv at level cv , namely,

un �H such that fv (un ) KcvD0 and ˜fv (un ) K0 .

We remark that in general the Palais Smale condition does not hold as one can
easily verify when av (t) is a periodic function. In the next section we give a
precise description of this lack of compactness.

3. – Palais Smale sequences.

In this section we give some results concerning PS sequences. These re-
sults are a consequence of the concentration-compactness method of Lions,
see [17], and are contained in most of the above quoted paper. So we will just
recall the results, and refer to [9], whose setting is very close to the one here,
for the proofs we omit.

First of all, by assumption (V3) we easily get that the Palais Smale se-
quences are bounded and at non negative level.
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LEMMA 3.1. – Let un �H be a Palais Smale sequence for fv . Then un is
bounded and lim inf

n
fv (un ) F0. In particular, fv (u) D0 if u is a nontrivial

critical point.

PROOF. – By (V3) we have that

g 1

2
2

1

m
hVun V

2 G fv (un )1
1

m
V˜fv (un )V Vun V .(3.1)

LEMMA 3.2. – Let un �H be a PS sequence for fv at level b, weakly conver-
gent to u�H. Then ˜fv (u) 40

LEMMA 3.3. – Let un �H be a PS sequence for fv not strongly convergent to
0, then lim supVun VQFd 1 and there exists a sequence tn �R such that, up to a
subsequence, un (Q2 tn ) Kv strongly in H 1

loc (R , RN ) with VvVQFd 1 .
In particular for every v, for every u solution of (HSv ), ug0, we have

that

VuVQDd 1 .(3.2)

Non we give a local compactness property and a characterization of the
lack of compactness.

LEMMA 3.4. – Let un �H be a PS sequence for fv such that un Kv weakly in
H. If there exists TD0 such that

sup
NtNDT

Nun (t)NGd 1 for all n�N ,

then un Kv strongly in H (up to subsequences).

LEMMA 3.5. – Let un �H be a PS sequence for fv . Then there are v0 � KvN
]0(, k�NN ]0(, v1 , R , vk �H, with Vvj VQFd 1 and sequences t 1

n , R , t k
n �R

such that, up to a subsequence, as nK1Q, Nt j
n NK1Q, t j11

n 2 t j
n K1Q, for

all j41, R , k, and

V
un 2gv0 1 !

i41

k

vi (Q2 t i
n )h

V
K0 .

REMARK 3.6. – The function vi can be characterized as homoclinic solution
of a problem at infinity, that is, as solution of the equation

2v
..

i 1vi 4 aA(t) V 8 (vi )

for some aA(Q) 4 lim
nKQ

av (Q2 t i
n ) (such limit exists if av is almost periodic).
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Now we introduce two functions T 6 : HK [2Q , 1Q] defined as follows.
For any u�H

T 1 (u) 4 sup ]t�RNNu(t)N4d 1 ( ,

T 2 (u) 4 inf ]t�NNu(t)N4d 1 ( .

with the agreement that T 6 (u) 4ZQ if VuVQEd 1 .
First of all note that arguing as in lemma 3.4 we have the following com-

pactness property.

LEMMA 3.7. – Let un �H be a PS sequence for fv . If the sequence T 1 (un ) is
bounded then, up to a subsequence, un Kv in H 1 ([2R , 1Q), RN ) for any
R�R.

Similarly, if T 2 (un ) is bounded then un Kv in H 1 ([2Q , R , R)N ) for any
R�R.

Now we prove a continuity property of the functions T 6 on Palais Smale
sequences. Precisely, we have:

LEMMA 3.8. – Let un �H be a PS sequence for fv such that un Kv weakly in
H. If the sequence T 1 (un ) (T 2 (un ) ) is bounded then (up to a subsequence)
T 1 (un ) KT 1 (v) (T 2 (un ) KT 2 (v) ).

PROOF. – Let us assume T 1 (un ) is bounded. Then vg0 and, from lemma
3.2 and 3.3 we deduce that v� Kv and VvVQFd 1 . Therefore T 1 (v) �R. If
there exists RD0 such that NT 1 (un )NER, we have in particular that there
exists a subsequence of T 1 (un ), that we denote again by T 1 (un ), that con-
verges to some t �R. We claim that t 4T 1 (v). Indeed, by lemma 3.7 we have
that un Kv (up to a subsequence) in H 1 ([2R , 1Q), RN ) and by the continu-
ous Sobolev embedding it converges in L Q ([2R , 1Q), RN ). Therefore, t G

T 1 (v) plainly follows. Now, arguing by contradiction, let us suppose that t E

T 1 (v). By continuity there exists r�(0 , 1 /2(T 1 (v)2 t )) such that Nv(t)NGd 2

for any t� [T 1 (v)2r , T 1 (v) ] and, since v
..

4v2av (t) V 8 (v), by (2.2), there
exists aD0 such that dO(dt)Nv(t)N2 G2a for all t� [T 1 (v)2r , T 1 (v) ].
Hence we get

Nv(T 1 (v)2r)N2 4d 1
2 2 s

T 1 (v)2r

T 1 (v)

d

dt
Nv(t)N2 dtFd 1

2 1ar .

Hence there exists n �N such that for any nF n we have Nun (T 1 (v)2r)ND

d 1 and T 1 (un ) DT 1 (v)2r, that is a contradiction. Exactly the same argu-
ment applies for the sequence T 2 (un ). r
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4. – Estimates on solutions.

LEMMA 4.1. – Let bD0.
Then there exist d 3 D0 and d 4 D0 such that for every v, for every u�H

solution of (HSv ) such that fv (u) Gb one has

(a) VuVGd 3 4o 2mb

m22
;

(b) V u
.
VQGd 4 fd 3 (11CQ )1k2 sup ]NV 8 (x)NNNxNGCQ d 3( .

PROOF. – Just observe that from

bF fv (u)2
1

m
a˜fv (u), ub 4

4g 1

2
2

1

m
h VuV

2 1
1

m
sav (t) (V 8 (u) Qu2mV(u) )Fg 1

2
2

1

m
h VuV

2

one deduces point (a) of the lemma.
Since, by (a), VuVGd 3 4k2mbO(m22), we get VuVQGCQ d 3 . Take any

t�R, and let n�N be such that t� [n , n11] %R. From

d 3
2 Fs

R

Nu
.
N2 1NuN2 F s

n

n11

Nu
.
N2 F inf

s� [n , n11]
Nu

.
(s)N2 4Nu

.
(u)N2

we find that in each interval of length one there exists a point u such that
Nu

.
(u)NGd 3 .
Then, using the equation (HSv ), we find

Nu
.
(t)NGNu

.
(u)N1Nu

.
(t)2u

.
(u)NGNu

.
(u)N1Nt2uNNu

..
(j)NG

Gd 3 1Nu(jN)1k2 NV 8 (u(j) )NGd 3 1CQ d 3 1k2 sup
NxNGCQ d 3

NV 8 (x)N4d 4 .

LEMMA 4.2. – Let d 1 and d 2 be as in (2.1) and (2.2), v�R, bD0 and u a sol-
ution of (HSv ) such that fv (u) Gb. Assume there exist [a , c] %R such
that

1. Nu(t)NFd 1 for all t� [a , c];

2. Nu(a)N4Nu(c)N4d 1 .
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Then

(a) c2aF
(m22)(d 2 2d 1 )2

mb
;

(b) s
a

c

[Nu
.
N2 1NuN2 ] F2 k2(d 2 2d 1 ) d 1 ;

(c) s
a

c

V(u) F
(m22)(d 2 2d 1 )2

mb
inf

NxNFd 1
V(x).

PROOF. – Let t � [a , c] be a local maximum of t ONu(t)N. Then Nu(t)NDd 2

since

1

2

d 2

dt 2
Nu(t)N2 4Nu

.
(t)N2 1Nu(t)N2 2av (t) V 8 (u(t) ) Qu(t) D

DNu(t)N2 2k2
1

2k2

Nu(t)N2 D0 .

whenever Nu(t)NGd 2 .
Then

d 2 2d 1 GNu(t)N2Nu(a)NGNu(t)2u(a)NGNs
a

t

u
.
(s) dsNG

Gkt2aus
a

t

Nu
.
(s)N2 dsv

1/2

and we obtain

s
a

t

Nu
.
(s)2 dsF

(d 2 2d 1 )2

t2a
.

Reasoning similarly on the interval [t , c], one finds

s
a

c

Nu
.
(s)N2 dsF2

(d 2 2d 1 )2

c2a
.
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Since Nu(t)NFd 1 in [a , c], we deduce that

s
a

c

Nu
.
(s)N2 1Nu(s)N2 dsF2

(d 2 2d 1 )2

c2a
1 (c2a) d 1

2 .(4.1)

We know from lemma 4.1 that

2mb

m22
Fs

a

c

Nu
.
(s)N2 1Nu(s)N2 dsF2

(d 2 2d 1 )2

c2a

from which we deduce

c2aF
(m22)(d 2 2d 1 )2

mb
.

Always from (4.1) we find that

s
a

c

Nu
.
(s)N2 1Nu(s)N2 dsF2 k2(d 2 2d 1 ) d 1 .

(remark that the estimate is independent from b).
Finally

s
a

c

V(u(s) ) dsF (c2a) inf
NxNFd 1

V(x) F
(m22)(d 2 2d 1 )2

mb
inf

NxNFd 1
V(x) ,

and the lemma is proved. r

LEMMA 4.3. – Let u be a solution of (HSv ) such that Nu(t)NGd 1 for all t�
[a , c]. Assume that D4c2aF1.

Then, for all t� [a , c],

Nu(t)N2 G
Nu(a)N22Nu(c)N2 e 2D

12e 22D
e 2(t2a)1

Nu(c)N22Nu(a)N2 e 2D

12e 22D
e (t2c) .(4.2)

As a consequence, setting m4 (a1c) /2, we have

Nu(t)N2 G4d 1
2 e 2D/2 cosh (t2m)(4.3)

and

Nu
.
(t)NG9d 1 e 2D/4g11sinh

(t2m)

2
h .(4.4)
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PROOF. – Let

L42
d 2

dt 2
11

and

w(t) 4
Nu(a)N2 2Nu(c)N2 e 2D

12e 22(c2a)
e 2(t2a) 1

Nu(c)N2 2Nu(a)N2 e 2D

12e 22(c2a)
e (t2c) .

It is immediate to check that w solves the boundary value problem

.
/
´

Lw40 in [a , c] ,

w(a) 4Nu(a)N2 ,

w(c) 4Nu(c)N2 .

(4.5)

Let u be a solution of (HSv ) such that Nu(t)NGd 1 for all t� [a , c]. Then,
using (HSv ) and (2.1), we deduce that

L(Nu(t)N2 )42 2Nu
.
(t)N2 22u(t) Qu

..
(t)1Nu(t)N2 G

G2u(t) Q(2u(t)1av (t) V 8 (u(t) ))1Nu(t)N2 G

G2 2Nu(t)N2 12k2 V 8 (u(t) ) Qu(t)1Nu(t)N2 G

G2Nu(t)N2 1Nu(t)N2 G0

for all t� [a , c]. Then

.
/
´

L(w2NuN2 ) F0

w(t)2Nu(t)N2 40

in (a , c) ,

for t4a , c .

By maximum principle we obtain

Nu(t)N2 Gw(t) for all t� [a , c] .

Since

w(t) G
Nu(a)N2

12e 22D
e 2(t2a) 1

Nu(c)N2

12e 22D
e (t2c)

(4.3) follows since Nu(a)NGd 1 and Nu(c)NGd 1 . As a consequence we have
that

Nu(t)NG2 k2d 1 e 2D/4 cosh
t2m

2
.(4.6)
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To prove (4.4), we remark that

Nu
.
(m)N4Nu(m11)2u(m)2 s

m

m11

dts
m

t

u
..

(t) dtNG

GNu(m11)N1Nu(m)N1 s
m

m11

dts
m

t

Nu(tN)2av (t) V 8 (u(t) ) dtG

G2 k2d 1 e 2D/4 (cosh (1 /2)1cosh (0))1
3

2
s

m

m11

dts
m

t

Nu(t)NdtG

G2 k2d 1 e 2D/4 (3 cosh (1 /2)21)G9d 1 e 2D/4

(we have used the bounds (4.6) and (2.1) together with the equation (HSv ) ).
Finally, from

u
.
(t) 4 u

.
(m)1s

m

t

u
..

(s) ds

and the above bounds one deduces (4.4). r

LEMMA 4.4. – Let b�R. Then exists v 0 D0 such that for all 0 ENvNEv 0 if
u�H is such that fv (u) Gb. Assume that

Nu(b/4v)N4d 1 and Nu(t)NEd 1 for all tEb/4v

or that

Nu(3b/4v)N4d 1 and Nu(t)NEd 1 for all tD3b/4v .

Then u is not a solution of (HSv ).

PROOF. – Let us assume that u satisfying the above conditions is a solution
of (HSv ). We will find a contradiction.

Let

A4{t� k0,
b

v
lNNu(t)NFd 1} .

A is not empty, and from our assumptions it follows that it contains an interval
of the form [ b/4v , b 8 ] since (b/4v) in A cannot be a local maximum of Nu(t)N2.
Indeed the equation implies that

d 2

dt 2
Nu(t)N2 FNu(t)N2 2k2 V 8 (u(t) ) Qu(t) D0 for all t such that Nu(t)NGd 1 .
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Then, using lemma 4.1, we deduce

d 3
2 FsNuN2 Fs

A

NuN2 Fd 1
2 meas (A)

and hence

meas (A) G
d 3

2

d 1
2

.

Remark that the constant d 3
2 /d 1

2 does not depend on v.
We now claim that exists v 0 such that for all NvNEv 0 we can find a closed

interval [a v , b v ] satisfying

(a) [a v , b v ] % [b/4v , b/v];

(b) exists k0 independent of v such that b v2a vFk0 /v;

(c) Nu(t)NGd 1 for all t� [a v , b v ].

Since u is a continuous function, A4 0
i41

l

[ai , bi ]. Remark that a1 4b/4v and

we also set al11 4b/v if bl Eb/v. Since meas (A) Gd 3
2 /d 1

2 , in [b/4v , b/v] 0A
there is at least one interval (bi , ai11 ) such that

ai11 2bi F
1

l
g b

v
2

b

4v
2

d 3
2

d 1
2 h4

1

l
g 3b

4v
2

d 3
2

d 1
2 h

and the claim is proved provided we can estimate l independently of v by
choosing [a v , b v ] to be the largest interval in b/4v , b/v] 0A.

In order to bound l independently of v, we simply use, in each interval
[ai , bi ], point (b) of lemma 4.1 together with point (a) of lemma 4.1. We
find

d 3
2 F !

i41

l

s
ai

bi

Nu
.
N2 1NuN2 F l2 k2(d 2 2d 1 ) d 1

and the claim follows provided vEv 0 , v 0 sufficiently small. Corresponding
to such an interval [a v , b v ] we define D4b v2a v and m4 (a v1b v ) /2. Ob-
serve that we are in position to apply lemma 4.3 to such an interval.

We will now show that such an u cannot be a solution of (HSv ) by showing
that

V˜fv (u) VFC1 v2C2 v 2 .

then the lemma will follow provided v 0 is sufficiently small. In the following, C
and CA will denote positive constants, independent of v, which can vary from
line to line.
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Let m be as above and define f : RKR by setting

f(t) 4

.
/
´

1 ,

m2 t11 ,

0 ,

tGm ,

mG tGm11 ,

tFm11 .

Since u is a solution of (HSv ), it is regular; in particular u
.

�H (indeed u
.

�L 2

and u
..

4u2av V 8 (u) �L 2 ). Then also v4fu
.

�H. Let us estimate

(4.7) a˜fv (u), vb 4 s
2Q

1Q

u
.
Qv
.
1u Qv2 s

2Q

1Q

av (t) V 8 (u) Qv4

4 s
2Q

1m

u
.
Qu
..

1u Qu
.
2 s

2Q

m

av (t) V 8 (u) Qu
.
1

1 s
m

m11

u
.
Q(fu

..
2u

.
)1u Qfu

.
2 s

m

m11

av (t) V 8 (u) Qfu
.

.

We begin estimating the term

s
m

m11

u
.
Q(fu

..
2u

.
)1u Qfu

.
2 s

m

m11

av (t) V 8 (u) Qfu
.

.

Using the exponential estimates of lemma 4.3 together with the equation
( HSv ), one easily deduces that this term is smaller then CA e 2D/2 GC1 e 2k0 /v for
some constant C1 independent of v.

In order to estimate the other term of (4.7) we perform an integration by
part, finding

(4.8) s
2Q

1m

u
.
Qu
..

1u Qu
.
2 s

2Q

m av (t)V 8 (u) Qu
.

4

4
1

2
Nu

.
(m)N2 1

1

2
Nu(m)N2 2av (m) V(u(m) )1 s

2Q

m

a
.

v (t) V(u(t) ) .

Always by the estimates in lemma 4.3, one finds that the term dNu
.
(m)N2 1

dNu(m)N2 2av (m) V(u(m) ) can be bounded by C1 e 2k0 /v (eventually taking C1

larger). So we are left with the term

s
2Q

m

a
.

v (t) V(u(t) ) .
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Recalling that av (t) 4g1 (vt)1g2 (tOv), this term breaks down to

v s
2Q

m

g
.

1 (vt) V(u(t) ) dt1
1

v
s

2Q

m

g
.

2g t

v
h V(u(t) ) dt .

Let us show that the term
1

v
s

2Q

m

g
.

2g t

v
h V(u(t) ) dt is smaller then Cv 2 provid-

ed v is small. Given any periodic, zero mean function h, denote by (Ph)(t) the
zero mean primitive of h. We have that, for some constant k1 , VP j g2 VQGk1 for
j40, 1 , 2. Integrating by part we obtain

1

v
s

2Q

m

g
.

2g t

v
h V(u) dt4g2g m

v
h V(u(m) )2 s

2Q

m

g2g t

v
h V 8 (u) Qu

.
dt4

4g2g m

v
h V(u(m) )2v(Pg2 )g m

v
h V 8 (u(m) ) Qu

.
(m)1

1v s
2Q

m

(Pg2 )g t

v
h [V 9 (u) u

.
Qu

.
1V 8 (u) Q (u2av (t) V 8 (u) )] dt .

The terms g2 (mOv) V(u(m) ) and v(Pg2 )(mOv) V 8 (u(m) ) Qu
.
(m) are exponen-

tially small in 1 /v. In order to evaluate the integral, we perform an additional
integration by part. We obtain the boundary terms (exponentially small as be-
fore) and the integral term

v 2 s
2Q

m

(P 2 g2 )g t

v
h d

dt
[V 9 (u) u

.
Qu

.
1V 8 (u) Qu2av V 8 (u) QV 8 (u) ] dt .

Let us examine the terms arising from this integral. First observe that VuVQ

and V u
.
VQ are bounded independently of v; this implies that also V(u(t) ) as

well as all V 8 (u(t) ), V 9 (u(t) ) and VR(u(t) ) are bounded independently of v.
Then

NVR(u)[u
.
, u

.
, u

.
]NGCNu

.
N2 ,

while

NV 9 (u) u
..

Qu
.
N4NV 9 (u) u Qu

.
2V 9 (u) av V 8 (u) Qu

.
NGCNuNNu

.
N

(we have used the equation and the fact that NV 8 (u)NGK
V u VQ

NuN, see (2.3)).
Similarly we have that

N d

dt
V 8 (u) QuNGCNu

.
NNuN .
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We also have that

Nav V 9 (u) u
.
QV 8 (u)NGCNu

.
NNuN

and that

Nvg
.

1 (vt) V 8 (u) QV 8 (u)NGvCNuN2 .

Let us examine now

v 2 s
2Q

m

(P 2 g2 )g t

v
h 1

v
g
.

2g t

v
hNV 8 (u)N2 dt .

Observe that g
.

2 (t)(P 2 g2 )(t) is a zero mean, T-periodic function, hence the
function GfP(g

.
2 (P 2 g2 ) ) is a periodic (and hence bounded) zero mean func-

tion. Then, performing another integration by part, we obtain

v s
2Q

m

(P 2 g2 )g t

v
h g

.
2g t

v
hNV 8 (u)N2 dt4

4v 2 Gg m

t
hNV 8 (u(m) )N2 22v 2 s

2Q

m

Gg t

v
h V 8 (u) QV 9 (u) u

.
dt

and since

NGg t

v
h V 8 (u) QV 9 (u) u

. NGCNuNNu
.
N

we finally find, collecting all the pieces, that

N 1

v
s

2Q

m

g
.

2g t

v
h V(u) dtNGCAv 2 s

2Q

m

(NuN2 1NuNNu
.
N1Nu

.
N2 ) GCv 2

where C does not depend on v.
Let us now examine the last term in a˜fv (u), vb, the term

v s
2Q

m

g
.

1v (vt) V(u(t) ) dt .

We have that Nu(t)NGd 1 for all t� [0 , b/4v] and u(t) K0 as tK2Q, hence,
by the lemma 4.3,

Nu(t)N2 Gd 1 e 2(bO4v2 t)
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for all tGb/4v. We deduce that

N s
2Q

0

g
.

1 (vt) V(u(t) ) dtNGC s
2Q

0

NuN2 GCe 2bO4v .

From assumption (a3), we deduce, using the estimate (c) of lemma 4.2, which
we can apply in the interval [b/4v , b1 ] % [0 , m]

s
0

m

g
.

1 (vt) V(u(t) ) dtFa 0s
0

m

V(u(t) )Fa 0 s
bO4v

b1

V(u(t) )FC .

All the above estimates imply that

C1 v2C2 v 2 G a˜fv , vb GV˜fv (v) VVvV .

To conclude, it is enough to show that VvV is bounded from above independent-
ly of v. This is a consequence of point (a) of lemma 4.1.

The other part of the lemma follow in a similar fashion. r

5. – Multibump solutions.

From now on we fix w, 0 ENvNEv 0 and c *Dcv . By lemmas 4.4 and 3.8 we
deduce the following property:

(*) there exist t1 , t2�R, hD0 and m D0 such that V˜fv (u) VF m for any u�
] fvGc *( for which T 1 (u) �I 1

f [t 12h , t 11h] or T 2 (u) �I 2
f

[t 22h , t 21h].

Property (*) is actually the nondegeneracy condition needed in [20] to prove
the existence of multibump solutions for (HSv ), therefore the technique used
there apply. In the following we just sketch how property (*) allow us to prove
the existence of multibump solutions, referring to [20] and [19] for all the
proofs we omit.

Let us fix h *� (0 , 1O4(c *2cv ) ), and define

I64 ]u�HNT 6 (u) �I 6(O ]u�HNfv (u) Gcv1h *( .

Let us also define, for t�R,

I6
t 4 ]u�HNT 6 (u)1t�I 6(O ]u�HNfv (u) Gcv1h *( .

Since ae (t) depends quasi-periodically in time, we get the existence of a se-
quence t n K6Q as nK6Q for which we have an estimate from below for
the norm of the gradient of fv in the set 0

n�Z
I1

t n
N 0

n�Z
I2

t n
.
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Indeed, the quasi-periodicity of the potential reflects on the functional
in the following way:

LEMMA 5.1. – For any lD0 and RD0 there exists eD0 such that for any
u�H such that VuVGR, if t�P(av , e) then,

(a) NV˜fv (u)V2V˜fv (t * u)VNGl;

(b) Nfv (u)2 fv (t * u)NGl.

PROOF. – For any t�P(av , e) we have

Na˜fv (u)2˜fv (t * u), hbNGs
R

N(av (t)2av (t1t)NNV 8 (u)NNhNG

G sup
t�R

N(av (t)2av (t1t)Ns
R

NV 8 (u)NNhNGCes
R

NuNNhNGCeVhV

and (a) plainly follows. The proof of (b) is analogous. r

Therefore, we get

LEMMA 5.2. – There exist m 0 D0, e 0 D0 and a sequence t n �P(av , e 0 ), t n K

6Q, as nK6Q, with t i Gt i11 , for all i�Z, and t 0 40, such that:

V˜fv (u)VFm 0 for all u�g 0
n�Z

I1
t n
hNg 0

n�Z
I2

t n
h .

PROOF. – First of all note that, by (3.1), there exists RD0 such that
V˜fv (u)VF m for all VuVFR such that fv (u) Gc *, where m is given by (*).

Moreover, by lemma 5.1 for any lD0 there exists eD0 such that if VuVGR
and t�P(av , e) then NV˜fv (u)V2V˜fv (t * u)VNGl and Nfv (u)2 fv (t * u)NGl.

Therefore, choosing lG (1 /2) min ]m, c *2 (cv1h *)( there exists e 0 and a
sequence t n �P(av , e 0 ), t n K6Q as nK6Q, and t i Gt i11 , for any i�Z,
such that the lemma follows with m 0 4 mO2.

Then, given n� (0 , m 0 ) we define the set

A n4 ]u�HNV˜fv (u)VEn and fv (u) Gcv1h *( .
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Moreover, for r� (0 , CQ d 1 ), i , j�Z and t i �P(av , e) given by lemma 5.2, we
consider the sets

Un
r 4A nO ]u�HNVuVEr( ,

A n
ij 4A nO ]u�HNT 1 (u) � [t 11h2t i , t 12h2t i21 ]

and T 2 (u) � [t 21h2t j , t 22h2t j21 ]( .

By lemma 3.7 we have the following compactness result:

LEMMA 5.3. – Let un �X be a PS sequence for fv . If un �A n
ij , for some fixed

i , j�Z, then un is precompact.

Clearly A n
ij OA n

i 8 j 84¯ for all (i , j) c (i 8 , j 8 ). Moreover, for n sufficiently
small the sets A n

ij %H are uniformly disjoint. Precisely, we have:

LEMMA 5.4. – There exist n � (0 , m 0 ) and rA D2 n such that:

A n4 U
n
rA N 0

i , j�Z
A n

ij

U
n
rA %mfvG

cv

2
n

and

Vu2vVFr0 for all u�A n
ij , v�A n

i 8 j 8N Un
rA if (i , j) c (i 8 , j 8 ) .

In the following we denote Aij 4A n
ij for i , j�Z and U0 4 U

n
rA , and given a

set A%H, we define Br (A) 4 ]u�HN inf
v�A

Vu2vVEr(.

Then, by lemma 5.4 and a deformation argument, we have

LEMMA 5.5. – For any r� (0 , r0 O2) there exists D r D0 such that for any
h� (0 , min ]h *, D r () there is a path g�G v and a finite number of sets
Ai1 j1

, R , Aik jk
%A n for which

(a) max
s� [0 , 1 ]

fv (g(s) )Ecv1h;

(b) if g(s) � 0
p41

k

Br (Aip jp
) then fv (g(s) )Gcv2D r .

By lemma 5.5 we can define a local minimax in a region where the Palais
Smale condition holds.

We now fix r � (0 , r0 O4) and h � (0 , min ]h *, D r (). We take g�G v and
sets Ai1 j1

, R , Aik jk
%A n, satisfying (a) and (b) of lemma 5.5 for the chosen

values r and h. By the definition of the minimax level cv , there exists p�
]1, R , k( such that, setting Ap 4Aip jp

, there exist s1 , s2 � [0 , 1 ] for which
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u0 4g(s1 ), u1 4g(s2 ) �¯Br (Ap )O ] fvGcv2D r (, g(s) �Br (Ap ) for any s�
(s1 , s2 ) and u0 , u1 are not connectible in ] fvEcv(.

Setting B f Br (Ap )N] fvGcv21/2D r (, let us consider the class

G 4 ]g�C( [0 , 1 ], H)Ng(0) 4u0 , g(1) 4u1 , g( [0 , 1 ] ) % B( .

Since Gc¯ we define cv4 inf
g� G

max
s� [0, 1]

fv (g(s)) and we have cvG cvEcv1h.

Let us denote by KA the compact set of critical points KvOAp . By lemma
5.5 we have that KA has a variational characterization as follows:

LEMMA 5.6. – For any r� (0 , r /4 ) there exists hr D0 such that for any h�
(0 , hr ) there is a path g�C( [0 , 1 ], H) satisfying the following proper-
ties:

(a) g(0), g(1) �¯Br/2 (KA ), and they are not path-connectible in
Br (Ap )O ] fvE cv(;

(b) g( [0 , 1 ] ) % Br/2 (KA )O ] fvG cv1h(;

(c) g( [0 , 1 ] )O (Br/2 (KA ) 0Br/4 (KA ) )% ] fvG cv21/2hr (;

(b) supp g(u) % [2R , R] for any u� [0 , 1 ], R being a positive constant
independent on u.

Since av depends quasi-periodically in time, by lemma 5.1 we have
also:

LEMMA 5.7. – For any r� (0 , rO4) and h� (0 , hr ) there is e 1 D0 such that
for any t�P(av , e 1 ) there is a path g t�C( [0 , 1 ], H) satisfying the following
properties:

(a) g t (0), g t (1) �¯Br/2 (t * KA ), and they are not path-connectible in
Br (t * Ap )O ] fvE cv(;

(b) g t ( [0 , 1 ] ) % Br/2 (t * KA )O ] fvGcv13/2h(;

(c) g t ( [0 , 1 ] )O (Br/2 (t * KA ) 0Br/4 (t * KA ) )% ] fvG cv21/4hr (;

(d) supp g t (u) % [2R1t , R1t] for any u� [0 , 1 ], R being a positive
constant independent on u.

Moreover, we have

LEMMA 5.8. – For any r� (0 , r/4 ) there exists m r D0 and e 2 D0 such that
for any t�P(av , e 2 ):

V˜fv (u)VFm r for any u� (Br (t i Ap )O ] fvG cv1h *( )0Br/4 (t * KA ) .

Finally, we state a last preliminary property we need in order to apply the
Séré technique to prove the existence of multibump solutions.

Let us consider the set fv (KA ) %R. Then, thanks to the behavior at the ori-
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gin and to the regularity of the potential, we have the following proper-
ty:

LEMMA 5.9. – [0 , c *] 0 fv (KA ) is open and dense in [0 , c *].

The proof of this lemma, that can be found in [19], use a Morse reduction
(see e.g. [6]) and the Sard’s theorem.

The lemmas 5.7, 5.8 and 5.9 are the key ingredient to prove our main
result:

THEOREM 5.10. – Suppose (V1), (V2), (V3), (a1), (a2) and (a3) hold. For any
rD0 there exist ND0 and eD0 such that for every k�N, for every p

K
�

P(v , N , e , k) there exist a solution vp
K of ( HSv ) such that

dist (vp
K , p

K

* KA ) Er .

PROOF. – Given rD0 and p
K

� P(v , N , e , k), let us denote Br (KA ; p
K

) 4

]u�HNdist (u , p
K

i KA ) Er(. Given ND0 we define L N 4
kN

2
(kNO211).

Then, we introduce the intervals Mi 4 (pi 1L N , pi11 2L N ), M4 0
i41

k

Mi and
for any dD0 the set Md4 ]u�HNVuV

2
Mi

Gd(.
Arguing by contradiction, there is rD0 such that for any ND0 and eD0,

there exist k�N and p
K

� P(v , N , e , k) for which Br (KA ; p
K

)O Kv4¯.
Thanks to lemmas 5.8 and 5.9 we can construct in Br (KA ; p

K
) a common

pseudogradient vector field for fv and the truncated functionals

fv , i (u) 4s
Ii

1

2
(Nu

.
N2 1NuN2 )2s

Ii

av (t) V(u)

(see [20] for a proof).
Let us fix r1, r2, r3 for which (2 /3) rEr1 Er2 Er3 E (5 /6) r. By lemma 5.9,

for any h� (0 , hr ) one can choose c1 , c2 arbitrarily close and lD0 such that
the intervals [c22l , c212l] % (cv2h , cv2h/2 ), [c12l , c112l] % (cv1

h/2 , cv1h) verify

u�Br (KA )O ]c62lG feGc612l( ¨V˜fv (u)VFn

for some nD0.
Then, we have

LEMMA 5.11. – There exist m r D0, e r D0 and d D0 such that: (d� (0 , d)
there exists ND0 for which for any k�N and p

K
� P(v , N , e r , k), there exists

a locally Lipschitz continuous function W : HKH which verifies
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(W1) max
1 G jGk

VW(u)VIj
G1, a˜fv (u), W(u)b F0, (u�H, W(u) 40, (u�

H0Br3
(KA ; p

K
);

(W2) a˜fv , i (u), W(u)b Fm r if r1 G inf
v�KA

Vu2v(Q2pi )VIi
Gr2 , u� Br2

(KA ; p
K

)O
] fv , i Gc1(;

(W3) a˜fv , i (u), W(u)b F0, (u� ]c1G fv , i Gc11l(N ]c2G fv , i Gc21l(;

(W4) au , W(u)bMj
F0 (j� ]0, R , k( if u�H0Md .

Moreover if KvO Br3
(KA ; p

K
) 4¯ then there exists m p

K D0 such that

(W5) a˜fv (u), W(u)b Fm p
K (u� Br2

(KA ; p
K

).

Then, fixed suitable values of the parameters c6 , h and choosing conse-
quently the value of dD0 and ND0, we consider the flow associated to the
pseudogradient vector field given by lemma 5.11:

.
/
´

dh

ds
42W(h) ,

h(0 , u) 4u .

Since W is a bounded locally Lipschitz vector field, for any u�H there exists a
solutions h(Q , u) �C(R1 , H), depending continuously on u�H.

We now consider the surface G : Q4 [0 , 1 ]k KH defined as G(u) 4

!
i41

k

g pi
(u i ), for u4 (u 1 , R , u k ) �Q and g pi

given by lemma 5.7 for a suitable

value of h.
We consider the deformation h(s , G(u) ) under the flow. We get that there

exists s D0 such that, setting G(u) 4h(s, G(u) ), we have the following
properties:

(a) h(s , G(u) )4G(u) for any u�¯Q and for any s�R1 ;

(b) there exists i� ]1, R , k( and j�C( [0 , 1 ], Q) such that j(0) � ]u i 4

0(, j(1) � ]u i 41( and fv , i (G(u) )Ec21d, for any u�j( [0 , 1 ] );

(c) h(s , G(Q) )’ Md for any s�R1.

Thanks to the above properties, we finally get a contradiction. Indeed, let
x�C Q (R , R) with sup

t�R
Nx

.
(t)NG1 be such that x(t) 41 if

t�Ii 0M and x(t) 40 if t�R0Ii , where the index i� ]1, R , k( is given by (b).
Then, we define a path g : [0 , 1 ] KH by setting g(s) 4xG (j(s) ) for s�
[0 , 1 ].

By (a) we have that g(0) 4g pi
(0) and g(1) 4g pi

(1).
Moreover, g( [0 , 1 ] ) %Br (pi * Ap ) and, since d can be chosen sufficiently

small by (b) and (c), we get fv (g(s) )E cv , for any s� [0 , 1 ]. A contradiction
with property (a) of lemma 5.7. r
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Finally, as a corollary, we get the existence of an uncountable set of bound-
ed motions of the system (HSv ).

COROLLARY 5.12. – For any rD0 there exist e r D0 and Nr D0 such that
given a (bi-infinite) sequence pj �P(av , e r ) with pj11 2pj FNr there exists a
solution v of ( HSv ), which verifies

inf
u�pj * KA

Vv2uVC 1 (Ij , Rn ) Er , (j�Z .
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