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Dedicated to Professor Manuel Valdivia

Sunto. – È noto che se uno spazio di Banach è quasi-smooth (cioè, la sua applicazione
di dualità è debolmente semicontinua superiormente in senso ristretto), allora il
suo duale non ha sottospazi chiusi normanti propri. Inoltre, se uno spazio di Ba-
nach ha una norma equivalente la cui applicazione di dualità ha un grafo che con-
tiene superiormente un’applicazione debolmente semicontinua superiormente in
senso ristretto, allora lo spazio è Asplund. Dimostriamo che se uno spazio di Ba-
nach ha una norma equivalente la cui applicazione di dualità ha un grafo che con-
tiene quello di un’applicazione ristretta debolmente semicontinua superiormente,
allora il suo duale non ha sottospazi chiusi normanti propri. Questo teorema viene
applicato per dare nuove caratterizzazioni della riflessività.

1. – Introduction.

One important tool in Banach space theory is the study of several forms of
the continuity of the duality mapping. For a Banach space X this mapping is
defined by

¯V QVX (x) 4 ]x *�SX * : ax , x * b 41( , x�SX ,

where SX denotes its unit sphere. This is a particular case of a general defini-
tion: If f is a convex continuous function defined on an open subset D of X and
x�D, then the subdifferential of f at x is defined by

¯f (x) 4 ]x *�SX * : ay2x , x * b G f (y)2 f (x), (y�D( .

Through this paper we shall denote by BX the closed unit ball of a Banach
space and by SX its unit sphere. When there is no confusion the duality map-
ping will be denoted by ¯V QV(x).

A set valued mapping F from a topological space X into nonempty subsets
of a topological vector space Y endowed with the topology t is said to be t-up-
per semicontinuous at x�X if given an open subset W of Y containing F(x)

(*) Supported in part by DGICYT Grant PB94-0535.
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there exists an open neighbourhood U of x such that F(U) %W. Following
[G-M] we say that F is restricted t-upper semicontinuous at x�X if given W
a neighbourhood of 0 �Y there exists an open neighbourhood U of x such that
F(U) %F(x)1W. In this paper we shall always consider X a Banach space en-
dowed with the norm topology.

Contreras and Payá proved that a Banach space X is an Asplund space if
¯V QV is restricted weak upper semicontinuous (they called a Banach space with
this property quasi-smooth [C-P]). There they proved also several characteri-
zations of reflexivity; see also [F-P] and [G-G-S] for the study of the restricted
norm upper semicontinuity of the duality mapping. Giles and Moors [G-M]
proved a similar result under a (formaly) more general condition: A Banach
space X is an Asplund space if it has an equivalent norm whose duality map-
ping has a graph which contains the graph of a restricted weak upper semicon-
tinuous mapping.

In this paper this weakened condition is used to prove that in such a case
the dual of a Banach space has no closed proper norming subspace. A closed
subspace N of X * is norming if

VxV4 sup ]Nax , x * bN : x *�BN ( .

By the Hahn-Banach Theorem, a closed subspace N of X * is norming if and
only if BN is w*-dense in BX * . Observe that the property that for some equiva-
lent norm the dual contains no proper norming subspace and the property of
being Asplund are independent, as is shown in [J-M]. We shall apply this re-
sult to give two new characterizations of reflexivity, improving the aforesaid
results of Payá and Contreras.

2. – A sufficient condition for the dual of a Banach space containing no
closed proper norming subspace.

First of all we will prove the separable case. We need the following
results:

THEOREM 2.1 ([G-M] Theorem 4.3). – A Banach space is an Asplund space
if it has an equivalent norm whose duality mapping has a graph which con-
tains the graph of a restricted weak upper semicontinuous mapping.

The following lemma is a slight improvement of a lemma of Godefroy.

LEMMA 2.1 ([C-P] Lemma 2.2). – Let B be a boundary (i.e. a subset of SX *

with BO¯V QV(x) c¯ for all x�X) such that B% coV QV (F1aBX * ) for some
countable subset F%X * and some 0 GaE1. Then lin ( F ) is norm-dense in
X *.
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The following theorem is the separable case of Theorem 2.3 below.

THEOREM 2.2 (Separable case). – Let X be a separable Banach space such
that there exists F : SX K P(X *) restricted weak upper semicontinuous with
the property F(x) %¯V QV(x), (x�X. Then X * has no closed proper norming
subspace.

PROOF. – By Theorem 2.1 X is an Asplund space, so there exists (xn )n41
Q

dense in SX such that V QV is Fréchet differentiable at each xn . Let

]xn*( 4F(xn ) 4¯V QV(xn ) .

Let N be a norming subspace of X *. Since BN is w*-dense in BX * and BX * is
metrizable in the w*-topology, there exists (xn , m* )m41

Q %BN such that

w*2 lim
mKQ

xn , m* 4xn*, (n�N .

Let F4 ]xn , m* : n , m�N(, A4 coV QV (F11O2BX * ) and B4AOSX * .
It is easy to prove that Bc¯. If B were not a boundary, there would exist

x�SX such that BO¯V QV(x) 4¯, that is AO¯V QV(x) 4¯. Since A is convex with
nonempty V QV-interior and ¯V QV(x) is convex, there exists z **�SX ** such
that

sup ]az **, a * b: a *�A( G inf ]az **, x * b: x *�¯V QV(x)( .

We claim that

f *�F¨
1

2
1 az **, f * b G inf ]az **, x * b: x *�¯V QV(x)( .

Let hD0, f *�F. There exists z *�BX * such that 12hE az **, z * b. Since
f *1 (1 /2) z *�A, we have

inf ]az **, x * b: x *�¯V QV(x)( F oz **, f *1
1

2
z *p4

4 az **, f * b1
1

2
az **, z * b D az **, f * b1

1

2
(12h) ,

and it is enough to let hK01 in order to prove the claim.
Let W»4 ]y *�X *: Naz **, y * bNE1/2(, a weak neighbourhood of 0 in X *.

By the claim we have FO (¯V QV(x)1W) 4¯.
Since F is restricted weak upper semicontinuous at x, there exists eD0

such that F(B(x , e) )%F(x)11/2W.
As (xn ) is dense in SX, there exists n�N such that Vxn 2xVEe. Since V QV is

Fréchet differentiable at xn and lim
mKQ

axn , xn , m* b 4 axn , xn* b 41, then by the
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S̆mulyan characterization of Fréchet differentiability we get lim
mKQ

Vxn , m* 2

xn* V40. It follows that there exists f *�F such that Vf *2xn* VE1/4, hence

az **, f *2xn* b GV f *2xn* VE1/4, so f *�xn*11/2W.
Since Vxn 2xVEe and V QV is Fréchet differentiable at xn

]xn*( 4¯V QV(xn ) 4F(xn ) %F(B(x , e) )%F(x)11/2W .

It follows that f *�F(x)11/2W11/2W%F(x)1W. This contradicts FO
(¯V QV(x)1W)4¯. Hence B is a boundary. By Lemma 2.1 lin (F) is norm-dense
in X *. Since F%BN we have lin (F) %N and because N is V QV-closed, we get
N4X *. r

We need the following simple lemma in order to prove the general
case:

LEMMA 2.2. – Let F : SX K P(X *) be a restricted weak upper semicontinu-
ous mapping such that F(x) %¯V QVX (x) for all x�X. Let Y be a closed subspace
of X. Define C : SY K P(Y *) as C(y) 4 ]x * NY : x *�F(y)(. Then

i) C(y) %¯V QVY (y) for all y�Y.

ii) C is restricted weak upper semicontinuous.

PROOF. – i) Let x *�F(y) %¯V QVX (y). Then ay , x * NY b 4 ay , x * b 41. More-
over,

1 4Vx * VFVx * NY VF ay , x * NY b 41 .

This implies x * NY �SY *.

ii) Let y�Y and W a weak neighbourhood of 0 in Y *. Since x * O x * NY is
continuous for the weak topologies there exists V, a weak neighbourhood of 0
in X *, such that ]x * NY : x *�V( %W. Since F is restricted weak upper semi-
continuous, there exists dD0 such that F(B(y , d) )%F(y)1V. Now it is easy
to prove that C(B(y , d) )%C(y)1W . r

We will use several results of Godefroy and Kalton relative to the ball
topology. Given a Banach space we define the ball topology bX as the coarsest
topology in X so that every closed ball is bX-closed (see, for instance, [G-K] and
[D-B]).

LEMMA 2.3 ([G-K] Theorem 2.4 and Proposition 2.5). – Let X be a Banach
space and let x *�X *. Then

i) If x * NBX
is bX-continuous then x * belongs to all norming sub-

spaces.
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ii) If x * belongs to all norming subspaces and X is separable, then
x * NBX

is bX-continuous.

iii) If for all separable closed subspaces Y of X, x * NBY
is bY-continuous,

then x * NBX
is bX-continuous.

This lemma says, in particular, that the property «the dual of a Banach
space contains no proper norming subspace» is separably determined: Let X a
Banach space such that for every closed separable subspace, its dual has no
proper norming subspaces. Let N be a proper norming subspace of X *. Given
x *�X * 0N, x * NBX

is not bX-continuous, hence there exists a closed separable
subspace Y of X such that x * NBY

is not bY-continuous. It follows that Y * con-
tains a proper norming subspace, a contradiction.

THEOREM 2.3. – Let X be a Banach space such there exists F : SX K P(X *)
restricted weak upper semicontinuous such that F(x) %¯V QV(x), (x�SX . Then
X * has no closed proper norming subspace.

PROOF. – Let Y be a closed separable subspace of X. By Lemma 2.2 we
get that there exists a restricted weak upper semicontinuous mapping C :
SY K P(Y *), such that C(y) %¯V QVY (y). By Theorem 2.2, Y * has no proper
closed norming subspace. By Lemma 2.3, X * has no proper closed norming
subspace either. r

3. – Two characterizations of reflexivity.

We shall use the following well known fact: If f is a convex continuous func-
tion defined on an open convex subset of a Banach space X then ¯f is always
upper semicontinuous for the w*-topology.

A Banach space X has the finite-infinite intersection property (IPf , Q ) if
for every collection of closed balls in X with empty intersection there is a finite
subcollection with empty intersection. It is easy to prove that if X is reflexive
then has the property IPf , Q : Let ]Ba(a�I be a collection of balls such that for
every finite F%I, 1

a�F
Bac¯. By w*-compactness there exists x **� 1

a�I
Ba

w *.

Since X is reflexive we get 1
a�I

Bac¯.

The following lemma is due to Godefroy [G]

LEMMA 3.1. – Let X be a Banach space which has the property IPf , Q and
X * has no closed proper norming subspace. Then X is reflexive.

Now we are ready to prove the first characterization of reflexivity:
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THEOREM 3.1. – Let X be a Banach space. Then X is reflexive if and only if
X has the property IPf , Q and there exists a restricted weak upper semicon-
tinuous mapping F : SX K P(X *) such that F(x) %¯V QV(x), (x�X.

PROOF. – If X is reflexive, then X has the property IPf , Q and ¯V QV(x) is
weak upper semicontinuous (x�SX .

The converse follows from Lemma 3.1 and Theorem 2.3. r

Now the following fact is obvious:

COROLLARY 3.1. – Let X be a Banach space with the property IPf , Q . Then
the following statements are equivalent:

i) X is reflexive.

ii) X is quasi smooth.

iii) There exists F : SX K P(X *) restricted weak upper semicontinuous
such that F(x) %¯V QV(x), (x�X.

In order to prove the second characterization of reflexivity we will use the
following lemma due also to Godefroy and Kalton.

LEMMA 3.2 ([G-K] Theorem 8.2). – Let X be a Banach space and W a
bounded subset of X such that for every equivalent norm in X , W is closed in
the respective ball topology. Then W is w-compact.

THEOREM 3.2. – A Banach space X is reflexive if and only if for all equiva-
lent norm V QV in X there exists F : SX K P(X *) restricted weak upper semi-
continuous such that F(x) %¯V QV(x) (x�X.

PROOF. – The only if part is obvious. To prove the converse, assume first
that X is separable. By Lemma 3.2 it is enough to prove that BX is bX-closed for
all equivalent norm in X. Let V QV be an equivalent norm in X. By hypothesis
there exists F : SX K P(X *) restricted weak upper semicontinuous such that
F(x) %¯V QV(x), (x�X. Hence X * has no proper closed norming subspace, so,
by Lemma 2.3, x * NBX

is bX-continuous for all x *�X *.
Let (xn )n41

Q %BX , such that xn Kx in the bX-topology. It follows that xn Kx
in the w-topology, hence x�BX so BX is bX-closed for all equivalent norm, and
the theorem is proved in the separable case.

In the general case, by Eberlein’s Theorem, it is enough to prove that if Y
is a closed separable subspace then Y is reflexive. Let V QVY an equivalent norm
in Y. Let V QV be an equivalent norm in X which extends V QVY. By Lemma 2.2
there exists a restricted weak upper semicontinuous mapping C : SY K P(Y *)
such that C(y) %¯V QVY (y), and by the separable case Y is reflexive. r
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