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Asymptotic Analysis for the Ginzburg-Landau Equations.

TRISTAN RIVIÈRE

Sunto. – Questo lavoro costituisce un survey sui problemi di limite asintotico per le so-
luzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presenta-
ti essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento
asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo
(large K limit).

1. – Introduction.

We consider a domain V%R3, filled by a superconducting element. Super-
conductivity corresponds to the formation of electron pairs, called Cooper
pairs, and is represented by a complex function u on V, such that NuN2 equals
the density of Cooper pairs. By applying an external magnetic field Hext , the
superconductor reacts with producing a magnetic field h. One may choose a
vectorfield A on V such that curl A4h and the superconductor’s state is fully
characterized by the couple (u , A), or more precisely by an equivalence class
for the relation

(u , A) A (ue iW , A1˜W) ,(1)

where W is a real valued function on V. Under the influence of the external
field, the superconductor can roughly get into two different states, depending
on the intensity of Hext :

– NuN2
f1 and hf0: superconducting state.

– NuN2
f0 and hfHext : normal state.

For superconducting elements of type II (see below), on may observe two
critical values Hc1

EHc2
such that

– for Hext EHc1
the superconductor is in superconducting state,

– for Hext DHc2
the superconductor is in normal state.

In between Hc1
and Hc2

, there is a transition phase or mixed state, which is

(*) Mini-Course given by T. RIVIÈRE at Mathematick Departement ETH Zürich
und Forschungs institut für Mathematik ETH, Zürich.

Notes by P. HARPES, ETH, Zürich.
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characterized by the formation of filament like non-superconduction zones,
called vortices, in the middle of superconducting areas.

Let j denote the characteristic width of each filament and l the character-
istic distance between two filaments. The parameter k»4l/j then character-
izes the nature of the superconductor and in particular superconductors of
type II, considered above, are those with k larger than some given critical
value. Here we are interested in large k and will write k41/e. Empirical ob-
servation yields:

Hc1
B

e

2
log

1

e
.

Moreover the induced field h verifies an equation, called London equation, of
the form

2l 2 ! h1h4f 0!d vortex ,

where d vortex is a Dirac mass in each vortex. Finally if V is a cylinder, with an
external field Hext directed parallelly to the axis, the filaments are also parallel
to the axis and looking at a slice of V, we get a regular pattern of vortices,
called Abrikosov lattice.

For further details on the physical aspects of these problems, see [16].
The action functional put forth by Ginzburg and Landau to describe the

free energy of this system is

Ge (u , A) »4s
V

(Ne˜u2 iAuN2 1 (12NuN2 )2 1Ncurl AN2 ) dx(2)

and for the total energy

G Hext
e (u , A) »4Ge (u , A)22 scurl A QHext dx .

These expressions actually are invariant under the equivalence relation given
above in (1); this invariance is known as gauge invariance.

The related mathematical problem, which we are going to consider is the
following: Let (ue , Ae ) be a minimizing couple for G Hext

e (existence of such a
couple in an adequate function space is a standard problem, see [7] ), for an ex-
terior field Hext close to Hc1

B (1 /2) e log (1 /e). We then let e tend to 0, in order
to amplify the discontinuity produced by a vortex and the goal is to study the
asymptotic behaviour of the couple (ue , Ae ), with the hope of detecting some
loss of compactness in the given function space, as e tends to 0, describing the
creation of vortices.

This problem, in such generality, as it is explained in [6], is mathematically
quite difficult, and not entirely solved so far. In their initial work, F. Bethuel,
H. Brezis, and F. Hélein (cf. [4]) study a simplified model, with neither mag-
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netic field, nor gauge invariance, where the effect of the exterior magnetic
field is simulated by the prescription of some vorticity at the boundary (non-
vanishing degree for boundary data mapping into S 1 ). Precisely, as e tends to
zero, they study the behavior of the critical points of the energy

Ee (u ; V) »4
1

2
s

V

gN˜uN2 1
1

2e 2
(12NuN2 )2h dx

among the maps

u�W 1, 2
g (V , C) »4 ]u�W 1, 2 (V , C)Nu4g on ¯V(

for a smooth boundary data g : ¯VKS 1 having a degree deg g4dD0. They
give a complete description of this behavior (see Theorem 1 and 2 in part II)
which correspond to an answer to a first question about the relation between
vorticity and the actual formation of vortices:

vorticity ¨ formation of vortices

This first problem and its solution is offered in the second section of this mini-
course. In the third section, we consider a similar problem but including the
induced magnetic field h4curl A, Precisely we minimize the functional

Ge (u , A) »4
1

2
s

V

gNdAN2 1N˜u2 iAuN2 1
1

2e 2
(12NuN2 )2h dx

among couples (u , A) in the space

V»4 ](u , A) �W 1, 2 (V , C)3W 1, 2 (V , R2 )NNuN41 on ¯V ,

deg (u , ¯V) 4d , aiu , t Q˜A ub 4J on V(

for a given degree dD0 and a given regular function J on ¯V which corre-
sponds to the tangential current. We give an answer to the corresponding
question (see Theorem 18):

vorticity ¨
.
/
´

formation of vortices and induction of amagnetic field

1

the induced magnetic field verifies the London equation .

Moreover we sketch the solution of the problem

exterior fieldFHc1
¨ vorticity ,

under some additional assumptions (see the Remark following Theorem 18).
Let us mention a recent work of S. Serfaty (see [17]) where she proves the sta-
bility of solutions of the complete Ginzburg-Landau problem with external
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magnetic field, which have more and more vortices as this external magnetic
field increases starting from the critical value Hc1

.
In this paper we restrict ourselves to the static problem in dimension 2.

Let us just give some references for the corresponding static problem in high-
er dimension [15], [12] and the corresponding heat-flow problem [9], [10], [8].

2. – Asymptotic behaviour of critical points of the Ginzburg-Landau
functional without magnetic field.

Consider the Ginzburg Landau functional

Ee (u) »4Ee (u ; V) »4
1

2
s

V

gN˜uN2 1
1

2e 2
(12NuN2 )2h dx

defined for maps

u�W 1, 2
g (V , C) »4 ]u�W 1, 2 (V , C)Nu4g on ¯V(

with smooth boundary data g : ¯VKS 1 and fixed degree deg g4dD0, for a
smooth, bounded, simply connected, starshaped domain V in R2. In this con-
text starshaped means that there is some aD0 such that

x QnFaD0 , (x�¯V ,

n being the outward unit normal to ¯V.
The goal of this lecture is to analyse the asymptotic behaviour as eK0 of

minimizers as well as of critical points of Ee in Wg
1, 2 (V , C). Throughout the

general reference is [4].

THEOREM 1. – Let ]ue n
(n�N be a sequence of minimizers of Ee n

in
Wg

1, 2 (V , C), with e n K0, as nKQ.
Then there is a subsequence, still denoted by ]ue n

(, there are exactly d4

deg g points a1 , R , ad in V such that

ue n
Ku * in C k

loc (V0]a1 , R , ad (), (k�N ,(3)

in C 1, a
loc (V0]a1 , R , ad (), for 0 EaE1 .(4)

where u *: V0]a1 , R , ad ( KS 1 is the following harmonic map

u *(z) 4»
j41

d z2aj

Nz2aj N
exp (if)

with Df40 on V, u *4g on ¯V.
Moreover, there is a function («the renormalized energy»), depending
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only on V and g

W : V d KR ,

such that (ai )i41
d minimizes W in V d.

The previous result has been extended to the case where V is only simply
connected and not necessary starshaped by M. Struwe in [16]. The result on
the asymptotic behaviour of critical points, which are not necessarily minimiz-
ers, is similar but the limiting map need not have degree 1 in each singularity
(vortex) and there is no precise information on the number N of singularities,
for which one merely obtains an upper bound.

THEOREM 2. – Let ]ue n
(n�N be a sequence of critical points of Ee n

in
Wg

1, 2 (V , C), with e n K0, as nKQ.
Then there is a subsequence, still denoted by ]ue n

(, there are N points
a1 , R , aN in V, N integers d1 , R , dN

ue n
Ku * in C k

loc (V0]a1 , R , aN (), (k�N ,(5)

in C 1, a
loc (V0]a1 , R , aN (), for 0 EaE1 .(6)

where u *: V0]a1 , R , aN ( KS 1 , is the following harmonic map

u *(z) 4»
j41

d u z2aj

Nz2aj N
vdj

exp (if)

with Df40 on V, u *4g on ¯V.
Moreover there is a function («the renormalized energy»), depending only

on V N and g ,

W : V N 3ZN KR ,

such that (ai )i41
N is a critical point of W in V N.

The complete definition of W is given in the step 11 of the proof of Theorem
1 and 2 bellow. Let us make a digression to the questions which arise from the
results stated just above. Observe that once you know the dj and the aj you
know the limit u *. So the limiting problem e40 is included in the finite di-
mensional one which consists of finding the critical points of W. Now it would
be interresting to understand what happens just before e40 (i.e. e small but
different from zero): How many critical points of Ee do exist? In [1] and [2]
critical points of Ee which are not necessary minimizers are found by the mean
of topological methods. But in a more systematic approach we can ask the
question of understanding the number of familly of critical points of Ee wich
converges to a u * constructed from a given (aj , dj ), critical point of W. The
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first result in this approach was given by F. H. Lin and T. C. Lin in [11] : they
prove that, in the case where all the dj are equal to 11, if (aj ) is a non degener-
ate critical point of W, there exists at least a familly of critical points ue of Ee

which converges to the corresponding u *. In [13] this result is extended to the
case where dj 46 1. Finally the problem of describing exactly the number of
branch of solution converging to a given u * has only be solved, untill now, in
the particular case where we restrict ourselves to minimizers (see [14]). The
general situation is still far from being understood especially when the multi-
plicity of the limiting vortices are different from 61.

In the sequel, we will sketch the main ideas of the proof of Theorems 1 and
2, which consist of eleven steps:

Step 1: The Euler-Lagrange Equation.

The Euler-Lagrange equations for critical points of Ee (u) are:

.
/
´

2!u4
1

e 2
u(12NuN2 )

u4g

in V ,

on V .

(7)

Step 2: L Q-estimate for u.

LEMMA 3. – Let u be a solution of (7), then VuVL Q (V) G1.

PROOF. – Note that by elliptic regularity and a standard boot-strap argu-
ment, weak W 1, 2 solutions are smooth. We thus may take the scalar product
with u in (7) and deduce:

2
1

2
!NuN2 42N˜uN2 2 a!u , ub 42N˜uN2 1

1

e 2
NuN2 (12NuN2 ) ,

and

1

2
!(NuN2 21)2g NuN2

e 2 h (NuN2 21) F0 .

Since NuN4NgN41 on ¯V, the claim follows by applying the maximum princi-
ple to NuN2 21. r

Step 3: L Q estimate for the gradient.

LEMMA 4. – Solutions of (7) satisfy V˜uVQGC/e .

PROOF. – In [3] the following interpolation inequality is proved:
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LEMMA 5. – Assume u�L Q (V) satisfies !u�L Q (V) for some smooth,
open V%%RN, then:

i) N˜uN2 (x) GCgV!uVL Q VuVL Q 1
VuV

2
L Q

dist2 (x , ¯V)
h, (x�V .

ii) If in addition u40 on ¯V, then:

V˜uV

2
L Q GC(V!uVL Q VuVL Q ) .

Now the result follows by equation (7) and lemma 3, with a constant depending
on g.

Step 4: Pohozaev identity.

LEMMA 6. – Every critical point u of Ee in W 1, 2
g (V , C) satisfies

1

e 2
s

V

(12NuN2 )2 dx42s
¯V

¯u

¯n

¯u

¯t
t Qx do1

1

2
s

¯V

x QnuN ¯u

¯t N
2

2N ¯u

¯n N
2v do .

Here we only need the assumption that V is smooth and bounded.

PROOF. – In the sequel, we will drop the index e. The lemma follows from a
Pohozaev identity, which is obtained by multiplying equation (7) by

!
i41

2

xi (¯u/¯xi ) and integrating over V, noting that

div (˜u i xj ¯j u i ) 4!u i x Q˜u i 1N˜uN2 1
1

2
x Q˜(N˜uN2 ) ,

u(12NuN2 ) 42
1

2
x Q˜(12NuN2 )2 ,

and

¯u

¯n
(x˜u) 4g ¯u

¯n
h2

n Qx1
¯u

¯n

¯u

¯t
t Qx ,

where n and t denote the outward unit normal and a unit tangent vector to ¯V,
we obtain:

1

e 2
s

V

(12NuN2 )2 dx2
1

2e 2
s

¯V

x Qn (12NuN2 )2

���
40 on ¯V

do4

42s
¯V

¯u

¯n
Qx˜u do1

1

2
s

¯V

x QnN˜uN2 do

so this yields the result. r
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COROLLARY 7. – There is a constant C independent of e , such that for every
critical point ue of Ee in W 1, 2

g (V , C), we have:

s
V

1

e 2
(12NuN2 )2 dxGC .

Here we essentially need V to be starshaped.

PROOF. – By Young’s inequality and the previous lemma, we obtain

Ns
¯V

¯u

¯n

¯u

¯t
t Qx doNGd21 s

¯V

NxN2N ¯u

¯t N
2

do1ds
¯V

N ¯u

¯n N
2

do ,

and since V is starshaped, we may choose d such that 0 EdEaGx Qn , (x�V
and thus we obtain

1

e 2
s

V

(12NuN2 )2 dxGCs
¯V

N ¯g

¯t N
2

do . r

Step 5: A remark.

From equation (7) we see that !uVu, which is equivalent to

!
i41

2

¯i (uR¯i u) 4»div (uR˜u) 40 .

In particular, if NuNF1/2 locally on some simply connected subdomain V
A

%V,
we may write u4re iW, where W satisfies the following elliptic equation:

div (r 2 ˜W) 40 ,

with 1 /2 GrG1.
Actually for u4re if equation (7) transforms into the system

.
/
´

div (r 2 ˜f) 40 ,

2!r1rN˜WN2 4
1

e 2
r(12r 2 ) ,

(8)

(cf. [4] p. 109) and since uR˜u4r 2 ˜f this may be written as

.
/
´

div (uR˜u) 40

2!NuN1
1

NuN3
NuR˜uN2 4

1

e 2
NuN(12NuN2 ) .

(9)

Note that the first equation is independent of e and will be preserved under
weak W 1, p-limits lim

eK0
ue4u * for solutions ue of (7). In view of the elliptic
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equations (8), the limit u * can be expected to be regular in the part of the do-
main where NuNF1/2. The problem is now to locate the part of the domain
where (8) is degenerate, i.e. where NuNeE1/2.

Step 6: Locating the «bad set», where NuNE1/2.

LEMMA 8. – Let ue denote a critical point of Ee in W 1, 2
g (V , C).

There are constants N�N, lD0 depending only on V and g, such that for
each eD0 there are x e

1 , R , x e
Ne

�V and NeGN with

�e »4mx�VNNue NE
1

2
n% 0

i41

Ne

Ble (xj
e ) ,

where the balls Ble (xj
e ) are mutually disjoint.

PROOF. – In the sequel we omit the index e for u. Suppose NuN(y) E1/2 for
some y�V. Since V˜uVL Q GCOe, there is some l 0 D0 independent of e such
that

NuN(x) G
3

4
on Bl 0 e (y) ,

thus

1

e 2
(12NuN2 )2 FC1 on Bl 0 e (y) ,

and

1

e 2
s

Bl 0 e (y)

(12NuN2 )2 dxFC0 D0 ,

C0 being independent of e.
Vitali’s covering theorem applied to the cover ]Bl 0 e (x)Nx��e( gives us a

countable subset ]xj
e(j�Je

%�e such that

Bl 0 e (xj
e )OBl 0 e (xi

e ) 4¯ for ic j ,

�e% 0
i�Je

B5l 0 e (xj
e ) .

From the global bound in Step 4, we deduce:

C0 NJe NG !
j�Je

s
Bl 0 e (xj

e )

1

e 2
(12NuN2 )2 dxG

1

e 2
s

V

(12NuN2 )2 dxGC ,

i.e. NJe NGN independently of e.



TRISTAN RIVIÈRE546

Set l
A

»45l 0 .
Furthermore one may chose a subset J 8%J and a constant lF l

A, such
that

Nxi 2xj NF8le , (i , j�J 8 , ic j and 0
i�J

Bl
A

e ( xj
e ) % 0

i�J8
Ble ( xj

e ) .

Indeed we may proceed by induction on card (J) 4NJN: If there are xi , xj with
Nxi 2xj NG8 l

A
e, set J 8 »4J0] j( and l»49 l

A.
In particular we obtain a covering of �e by disjoint balls. r

Step 7: Convergence of the «bad set» to limiting singularities.

From step 6 we obtained a covering

�e% 0
i41

Ne

Ble (xj
e )

with mutually disjoint balls.
Since 0 GNeGN, we may select a converging subsequence Ne n

, which
must be stationary for n sufficiently large and we may assume Ne n

fN. Ex-
tracting a converging subsequence from

(x1
e n , R , xN

e n )n�N% VN ,

we get a covering of �e n
by N disjoint balls, with converging centers

xj
e n Kaj (nKQ) , 1 G jGN .

It might happen that aj �¯V for some j. In [4] they actually prove that the aj

lie in V.

Step 8: Convergence to a limiting map, away from the singularities.

There are two different approaches, depending on whether we consider
minimizers or merely critical points of E.

i) For minimizers one may derive lower and upper bounds for the en-
ergy from which we deduce a uniform upperbound for the energy outside the
singular set.

ii) For critical points in general we prove uniform W 1, p estimates, for
pE2.

The second method is more general, so we will merely give a sketch of the
first and develop the second one.

Sketch of the first method:

– On the one hand, we have:
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LEMMA 9. – There are constants e 0 , CD0, such that for any minimizer ue

of Ee in W 1, 2
g (V , C), with eGe 0 we have

Ee (ue ) G2pd logg 1

e
h1C .

This can be seen by using test functions of the following form: Fix
d4deg g distinct points a1 , R , ad in V such that B2e (ai )OB2e (aj ) 4¯ for ic j
and set

ue (z) »4 »
k41

d z2aj

Nz2aj N
e iW(z) on V0 0

k41

d

B2e (ak ) ,(10)

where W is a harmonic function on V chosen in such a way that ue4g on
¯V.

Further set

ue (z) »4rg Nz2aj N

2e
h z2aj

Nz2aj N
e iHj (z) on B2e (aj ), (1 G jGd),(11)

where r�C Q ( [0 , 1 ] ) r(1) 41 and rf0 on [0 , 1 /2] and Hj is a harmonic func-
tion determined by

e iHj (z) 4
Nz2aj N

z2aj

ue (z) on ¯B2e (aj ), (1 G jGd) .

Noting that

s
BR (0)0Br (0)

N˜g x

NxN
hN

2

dx42p logg R

r
h ,(12)

we see that each vortex aj creates an energy 2p log (1Oe) plus constants inde-
pendent of e. Indeed, according to (12), (11) produces an energy A log (2e/e)1

C, but the term 2p log (2e) cancels with the corresponding term of the energy
of (10) (cf. [4] theorem III.1, p. 44).

– On the other hand, there is an optimal lower bound for the energy
around the vortices (this is the more difficult part to prove):

LEMMA 10. – For dD0 there is a constant Cd such that for (sub-)sequence
of minimizers as in step 7, satisfies:

s
0

k41

N

Bd (xj
e n )

gN˜uN2 1
1

2e 2
n

(12NuN2 )2h dxF2pd logg 1

e n
h2Cd
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(cf. [4] theorems V.2 and V.3. They also show that there are exactly d vortices,
which is actually a consequence of lemma 9 and 10.)

– Subtracting both estimates yields a bound on the energy away from
the singularities, uniformly in e, and ensures weak W 1, 2

loc (V0]a1 , R , ad () con-
vergence to a limiting map.

The second method, W1, p estimate method for critical points of Ee :

LEMMA 11. – For any critical point ue of Ee and any pE2, VuVW 1, p (V) is
uniformly bounded with respect to e.

PROOF. – Let V
A

»4 V
A

e »4V0 0
j41

Ne

Ble (xj
e ) for a covering ]Ble (xj

e )(j41
Ne of �e

as in step 6. On V
A we have NuNF1/2. Now we are tempted to write u4NuNe iW

and use the elliptic equation div (NuN2 ˜W) 40 (cf. step 5) which yields appro-
priate estimates. But u does not admit such an expression globally, since V

A is
not simply connected. Note that locally for u4NuNe iW :

!
i41

2

(uR¯i u) dxi 4»uRdu4NuN2 dW

and

dg 1

NuN2
uRduh4dg u

NuN
Rdg u

NuN
hh40 ,

here R denotes the vector product in R2.
But uONuNRduONuN is not exact in V

A because

s
¯V

u

NuN
Rdg u

NuN
h4 s

¯V

gRdg42pd .

The idea is to subtract the «topologically non trivial part» from uONuNR
duONuN in order to obtain an exact form which will satisfy the elliptic equation.
We thus need some kind of Hodge decomposition. We present this Hodge de-
composition for arbitrary dimensions, which can be usefull for Ginzburg-Lan-
dau problems in higher dimensions, in particular in dimension 3.
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Hodge decomposition.

First observe that the topological part of uONuNRduONuN is «finite»:

s
¯Ble (xj

e )

u

NuN
R

du

NuN
42pdj

e(13)

and from step 3, we know V˜uVQGC/e , which implies that Ndj
eN must be uni-

formly bounded.
In order to obtain a decomposition

u

NuN
R

du

NuN
4

1

NuN2
d * c1dH ,(14)

for some 2-form c and some 0-form H, where the «topological part» d * c
should possess as little energy as possible, we consider a solution c of the fol-
lowing minimization problem

(15) Min{ s
V
A

1

NuN2
Nd * c2uRduN2 dx for c�W 1, 2 (L 2 V

A),

d(˜c)N¯V
A 4dT (˜cN¯V

A ) 40}
for c�W 1, 2 (L 2 V

A), which projects to cN¯V
A �W 1/2 , 2 (L 2 ¯V

A). The index T de-
notes restriction of the considered operation or form to the tangential compo-
nents of ¯V

A. Observe that unlike the usual Hodge decomposition, we do not
separate a purely harmonic part, which contains the topological information.
As we will see below, this information is contained in d * c. Such a decomposi-
tion is always possible on any manifold «whose topology comes from the
boundary» (cf. (20) below), typically an open set in Rn.

In the sequel we treat the 2-dimensional problem, the same approach
might yield analogous results in higher dimensions. In particular in dimension
2, the boundary constraint implies * c4 constant on each connected compo-
nent of ¯V

A and so we may choose

.
/
´

˜c40 on ¯V ,

˜c4cj
e on ¯Ble (xj

e ) for 1 G jGNe .
(16)

Now we claim that for minimizers c of this problem

1

NuN2
d * c2

u

NuN
R

du

NuN

is exact.
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Indeed the (weak) variational equations for c read as follows:

s
V
A

Ed * j ,
1

NuN2
(d * c2uRdu) Ddx40(17)

for any smooth 2-form j satisfying dT (˜j) 40 on ¯V
A.

Choosing a 2-form j with compact support in V
A, we deduce:

dg 1

NuN2
d * c2g u

NuN
R

du

NuN
hh40 in V

A(18)

and since uONuNRduONuN is closed, also

dg 1

NuN2
d * ch40 in V

A .(19)

Moreover combining (17) and (19) it follows:

s
¯V

A

˜jR
1

NuN2
(d * c2uRdu) 4 s

¯V
A

˜jRdg 1

NuN2
d * ch dx 40

���
by (19)

,

for any 2-form j satisfying dT (˜j) 40 on ¯V
A . Now this implies that

b»4
1

NuN2
(d * c2uRdu)

is exact. Indeed note that in dimension 2, (˜j) is a function. Choosing for ˜j
the characteristic function of a given connected component of ¯V

A, we see
that

s
C

b40 , for every connected component C of ¯V
A(20)

and since every closed path in V
A is homotopic to an integral sum of connected

components of ¯V
A, the Poincaré dual

gKs
g

b (g a Lipschitz-representent of H 1
sing (VA) )

is identically zero and thus the DeRahm-class of b must be zero.
We thus obtain a decomposition as in (14) and in the sequel we will de-

rive estimates for d * c , dH and NuN.

Estimates on d * c for pEn/(n21) (for the case n=2).
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We have

.
`
`
/
`
`
´

dg 1

NuN2
d * ch40 in V

A ,

s
¯Ble (xj

e )

u

NuN
R

du

NuN
4 s

¯Ble (xj
e )

1

NuN2
d * c42pdj

e ,

s
¯V

1

NuN2
d * c42pd .

(21)

Combining (21) and (16), this yields in dimension 2 for the function W4˜c

.
`
`
/
`
`
´

divg 1

NuN2
˜Wh40 , in V

A ,

s
¯Ble (xj

e )

1

NuN2

¯W

¯n
do42pdj

e ,

W40 on ¯V ,

W4cj
e on ¯Ble (xj

e ) for 1 G jGNe .

(22)

Note that this is an e-approximation of the following problem:

!c
A

42p !
j41

N

d e
j d x e

j
in V , c

A
40 in ¯V

and since the Green-function in R2 is W 1, p for pE2 we have:

Vc
A

VW 1, p GC !
j41

N

Ndj
eN .(23)

We actually obtain the following similar estimate for a solution W:

LEMMA 12. – Let W be a solution of (22), with 1/2 GNuNG1 on V
A

4

V0 0
j41

N

Ble (xj
e ), for some smooth u. Then

V˜WVL p GC

where the constant C only depends on l , V and (dj
e )j , and 1 EpE2.

PROOF For fixed h and some constant c consider the weak solution

z�V p »4 ]j»4 (j 1 , j 2 )Nj i �H 1, p (VA, C), j4c on ¯Ble (xj
e )

for 1 G jGNe , j40 on ¯V(
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of

s
V
A

g 1

NuN2
˜zh ˜a dx4s

V
A

h˜a dx , (a�V q .(24)

where q is the Hölder conjugate of p: 1Op11Oq41. We have:

VzVL Q GCq (u)VhVL q .

The proof can be found in [4], Lemma X.8, p. 117 and uses a method due to
G. Stampacchia, which consists in testing with (z2k)1 . where k is any real
constant. Now for fixed h4 (h1 , h2 ), hi �L q (V , C), test equation (22) with z
solution of (24) in order to obtain

0 42s
V
A

1

NuN2
˜f Q˜z dx1 s

¯V
A

1

NuN2
˜f Qnz do

i.e.

s
V
A

1

NuN2
˜f Q˜z dx42p !

j41

Ne

dj
e z(¯Ble (xj

e ) ) .

On the other hand inserting f in equation (24) yields

s
V
A

1

NuN2
˜f Q˜z dx4s

V
A

˜f Qh dx

so

Ns
V
A

˜f Qh dxNG2p !
j41

Ne

Ndj
eNVzVL Q ,(25)

G2p !
j41

Ne

Cq (u)Ndj
eNVhVL q .(26)

Now by duality:

V˜fVL p GCq (u) !
j41

Ne

Ndj
eN . r

Thus as expected in (23) the solution c4˜W of (22) satisfies

V˜cVL p G2pCp (u)!
j

Nd e
j N

and by (13) the right hand side is bounded independently of e.
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* * *

Let us digress before finishing the W 1, p estimates for NuN.
Consider a similar problem in higher dimensions: Let V be a smooth, sim-

ply connected, bounded domain of Rn and let u be a map from V into C, such
that

.
`
/
`
´

V˜uVQG
C

e
,

NuNF
1

2
on V

A
e »4V0 0

i41

Ne

Be ( xi ) ,

(27)

where

NeG
C

e n22
.

d * c given by (15) satisfies

dg 1

NuN2
d * ch40

and for any G , regular curve in V
A

e :

.
/
´

s
G

1

NuN2
d * c4s

G

1

NuN2
uRdu42p degGg u

NuN
h ,

dT (˜c)N¯V
A 40 .

(28)

Thus c is an «e-approximation» of a Green function c
A associated to a Dirac

mass along an n22 dimensional manifold G e with multiplicity given by the de-
gree of u around each part of this manifold. Because of (27) the total mass of
this current is uniformly bounded independently of e and we have L p esti-
mates for d *c

A independently of e for pEnO(n21). The question is whether
we also have L p estimates for d * c itself, the solution of (28), under the hy-
pothesis (27) independently of e for pEnO(n21). This is still an open
question.

* * *

Estimates for ˜H.
In the decomposition (14) above the 0-form H is given by

dH4
1

NuN2
uRdu2

1

NuN2
d * c(29)
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Since uV!u we have d *(uRdu) 40 (cf. step 5) and thus

d *(NuN2 dH) 40

Furthermore

s
¯Ble (xj )

NuN2 ¯H

¯n
do40 by (21)

and also

¯H

¯n
4

1

NuN2
uR

¯u

¯n
on ¯Ble (xj )

by (29) and the boundary constraint for c.
Since u�L Q (VA, C) and NuNF1/2, this implies

s
V
A

N˜HN2 dxGC

(for a proof see [4] lemma X.9, p. 120).

Estimates for ˜NuN.

Following [4] one establishes the following bound

s
V
A

N˜cN2 dxGCglogg 1

e
h11h

(cf. [4] lemma X.10, p. 122).
Moreover, multiplying the variational equation for NuN by (NuN21) (cf.

step 5 (9)) one computes

s
V
A

N˜NuNN2 dxGC1 1C2s
V
A

(N˜cN2 1N˜HN2 ) dxGCglogg 1

e
h11h(30)

(for the exact computation see [4], lemma X.12, p. 123).
Now setting S»4Se »4 ]x� V

A
N12NuN(x)N2 Feb( for some b�]0 , 1[ and

using the upper bound 1Oe 2s
V

(12NuN2 )2 dxGC from lemma 6, we obtain for
1 EpE2

s
S

N˜NuNNp dxGu s
V
A

N˜NuNN2 dxvp/2

NSN(12p/2 ) G CAglogg 1

e
h11hp/2

e (222b)(12p/2 )
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by (29), i.e.

s
S4 ]x� V

A /NuN(x)2F12eb(

N˜NuNNp dxGCea

for some a4a(b), b�]0 , 1[, 1 EpE2 and e sufficiently small.
Finally, multiplying equation (8) by 12r, where r 4 max ]NuN2 , 12eb(

we deduce

s
V0S

N˜NuNN2 dxG

C1 ebu s
V
A

NuRduN2 1C2vGC3 ebu s
V
A

N˜cN2 1N˜HN2 1C2vGCebglogg 1

e
h11h

(cf. [4] p.124 (102)-(103)) and this finally yields a uniform bound on V˜NuNVL p (VA)

for 1 EpE2.

Final estimates for u.

Now writing u4NuNe iW locally and noting that uR˜u4NuN2 ˜W, we see
that

N˜uNGN˜NuNN1
1

NuN
NuR˜uNGN˜NuNN12 (N˜cN1N˜HN)

since 1 /2 GNuNG1 on V. Thus by combining the estimates on ˜NuN , ˜c and
˜H, we obtain the uniform bound

Vue VW 1, p (VA) GCp for 1 EpE2 .(31)

Finally, by V˜ue VL Q (V) GC/e and VuVL Q G1 from lemma 3 and 4, it follows

Vue VW 1, 2 (Ble (x e
j ) ) G CA for 1 G jGNe

and so (31) actually holds for V instead of V
A. r

Step 9: Stronger convergence of ]ue n
( in K%%V0]aj (

N
j41 .

«Standard» elliptic estimates, derived from the equations for NuN, c and H,
imply strong W 1, 2

loc (V0]a1 , R , aN ()-convergence of a subsequence ue n
to some

u *�W 1, 2
g (V0]a1 , R , aN (, S 1 ) and using ideas from [3] one obtains conver-

gence in

C k
loc (V0]a1 , R , aN () (k�N



TRISTAN RIVIÈRE556

and

C 1, a
loc (V0]a1 , R , aN () for 0 EaE1 .

(cf. [4] Thm. X.2 p. 127 and Thm. X.3 p. 130).

Step 10: The limit u * is a harmonic map from V0]a1 , R , aN ( into S 1.

Indeed !ue n
Rue n

40 implies div (ue n
R˜ue n

) 40 and we may pass to the
limit in W 1, p (V)(1 EpE2) in order to obtain

div (u *R˜u *) 40 a.e. in V .(32)

Moreover, by the estimate of lemma 6 we see that

Nu * N41 a.e. in V .(33)

By results of L. Almeida (cf. [Alm]), equation (32), (33) are not sufficient to
conclude that u * is a strong harmonic map but the additional regularity from
step 9 actually implies

2!u *4u * N˜u * N2 a.e. in V
A

»4V0]a1,R,an(

i.e. u * is a smooth harmonic map from V
A to S 1.

Step 11: The vortices ]ai(
N
i41 are critical points of some renormalized energy W.

1) Definition of W .

Consider the solution F4F b , d of

!F4 !
j41

N

2p Qdj d bj
in V ,(34)

¯F

¯n
4gR

¯g

¯t
on ¯V ,(35)

for mutually distinct points bj �V, dj �Z (1 G jGN) with !
j41

N

dj 4d fixed.

F is unique up to a constant and we may normalize by s
¯V

Fdo40.

Note that the functions

Sj (x) 4F(x)2dj Q logNx2bj N(36)
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are harmonic on Br (bj ) for r sufficiently small and further that

(37) s
¯Br (bj )

F
¯F

¯n
do4 s

¯Br (bj )

g ¯Sj

¯n
1

dj

r
h(Sj 1dj logr)do4

2pd 2
j log r1 s

¯Br (bj )

¯Sj

¯n
Sj do1dj

1

r
s

¯Br (bj )

Sj do1dj log r s
¯Br (bj )

¯Sj

¯n
do4

2pd 2
j log r1 s

Br (br )

N˜SjN
2 dx12pdj Sj (bj )1dj log r s

Br (bj )

!Sj
���

40

dx .

We then compute for V
A

»4 V
A

b , r4V0 !
j41

N

Br (bj )

s
V
A

N˜FN2 dx4 s
¯V

F
¯F

¯n
do2!

j41

N

s
¯Br (bj )

¯F

¯n
do4!

j41

N

2pd 2
j logg 1

r
h1C1O(r)

where C4C(b , d) is a constant independent of r and O(r) a function such that
NO(r)NGconst . Qr, for r close to 0.

REMARK. – There is a unique harmonic map u4u b , d : V0]b1 , R , bN ( »4

V
A

b KS 1 associated to F b , d defined by (34), u4u b , d being determined by

.
`
/
`
´

uR
¯u

¯x1

42
¯F b , d

¯x2

,

uR
¯u

¯x2

4
¯F b , d

¯x1

,

in V
A

b

(cf. [4] p. 10) and we have

div (uR˜u) 4!F b , d , deg (u , bi ) 4di ,

N˜uN4N˜FN

and thus

s
V

N˜uN2 dx4s
V

N˜FN2 dx .

This motivates the following

DEFINITION:

W(b1 , R , bN , d1 , R , dN ) »4W(b , d) »4 lim
rK0

u s
V
A

b , r

N˜FN2 dx22p!
j41

N

d 2
j log

1

r
v
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which is welldefined for b1 , R , bN �V mutually distinct and d1 , R , dN �Z.

2) The vortex configuration ]ai (
N
i41 is a critical point of W for fixed

d4 deg g.

For fixed b�V N , d�ZN set

ub , d (z) »4»
j41

N u z2bj

Nz2bjN
vdj

Qe iF(z) ,(38)

where !F40 in V and such that

ub , d 4g on ¯V .

LEMMA 13. – For fixed d�ZN, the point b�V N is a critical point of
Wd (b) »4W(b , d) if and only if for each j� ]1, R , N(, ub , d may be written
as

ub , d (z) 4u z2bj

Nz2bj N
vdj

e iHj (z) ,(39)

with

˜Hj (bj ) 40 and !Hj 40(40)

in a sufficiently small neighbourhood of bj in V.

For the proof see [4] corollary VIII.1, p. 85, and for the definition of W see
Theorem I.7, p. 20.

Actually one proves the following

DWd (b) 42 2p ydjg ¯Sj

¯x1

(bj ),
¯Sj

¯x2

(bj )hz
j41, R , N

4

2p ydjg2
¯Hj

¯x2

(bj ),
¯Hj

¯x1

(bj )hz
j41, R , N

for Sj as in (36) and Hj as in (39) (cf. [4] Theorem VIII.3, p. 84).
In the sequel we will sketch the proof of the following result:

THEOREM 14. – The limit map u *4 lim
nKQ

ue n
from the previous steps with

singularities a4 (a1 , R , aN ) satisfies

i) u *4ua , d , where di 4 deg (u *, ai ) 4 deg (u *, ¯Br (ai ) ) (ua , d defined
as in (38)).

ii) u * admits local expressions around the ai’s as in Lemma 13, (39).
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COROLLARY 15. – The vortex configuration of the limit map u * is a critical
point of the renormalized energy W.

Sketch of the proof of Theorem (14):

i) Both the limit map u * and ua , d defined by (38) are smooth harmonic maps
from

V
A

4V0]a1 , R , aN ( into S 1

equal to g on ¯V and deg (u *, ai ) 4 deg (ua , d , ai ) by definition.

Now we

CLAIM. – There is a function c such that

.
/
´

!c40

c40

in V
A

4V0]a1 , R , aN (

on ¯V
(41)

and

u *4e ic ua , d .(42)

Indeed both u * and ua , d satisfy the equation

!u42 uN˜uN2 in V
A .

Writing locally u *4e iW
* , ua , d 4e iW, this is (locally) equivalent to the linear

equation

!W4!W*40 in V
A

and in particular since W*4W1c , c (locally defined) as in (42) must also be
harmonic in V

A. Now since deg (u *, aj ) 4 deg (ua , d , aj ), u 21
a , d Qu *4e ic has de-

gree 0 around the aj’s and a continuous c satisfying (41) and (42) defined on all
of V

A may be found.
(For a more rigid and computational proof of the claim see [4] Theorem I.5,

p. 11).
From step 8 we know that u *�W 1, 1 (V) and since ua , d �W 1, 1 (V), using

NuN*4NuNa , d f1 on V
A, we deduce ˜c�L 1 (V), by applying ˜ to (41).

Now !c4div ˜c40 on V0]a1 , R , aN (, so spt (!c) % ]a1 , RaN ( as a
distribution and therefore

!c4 !
i41

N

ci d ai
1 !

1 G iGN , j41, 2
cij ¯j d ai

,(43)

!c being a distribution of order 1.
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First note that the constants cij must be zero, since ˜c�L 1 (V) implies
div ˜c� (W1, Q (V) )*, whereas ¯j d ai

� (W 1, Q (V) )*. Thus

c4 !
j41

N

cj log Nx2aj N1x(44)

and

u *4ua , d e i!
j

cj logNx2aj N e ix ,

where x is a smooth harmonic function on V.
Actually we have ci 40 too, which implies Theorem 14 i). The proof is quite

lenghty and in the sequel we will merely sketch the basic ideas, the main ref-
erence being [4] Theorem VII.1 and VII.4.

For a sequence ue n
Ku * as in step 9 define the Hopf differentials

v n »4N ¯ue n

¯x N
2

2N ¯ue n

¯y N
2

22 i
¯ue n

¯x
Q

¯ue n

¯y
,(45)

the dot denoting the real scalar product of vectors.
From the variational equations (7) one deduces

¯v n

¯z
4

¯

¯z
g 1

2e 2
n

(12Nuen N2 )2h .

Further (cf. [4] Lemma VII.1)

1

2e 2
n

(12NuNen
2 )2 � !

j41

N

mj d aj

weakly as a Radon measure.
It follows (cf. [4] p. 67-69)

v n Kv*4b12a in C k
loc (V0]a1 , R , aN ()(46)

where a*42!
j

mj O(p(z2aj )2 ) and b is some holomorphic function on V.
On the other hand, from the definition (45) we obtain

(47) v nKv*4N
¯u *
¯x N

2

2N
¯u *
¯y N

2

22 i
¯u *
¯x

Q
¯u *
¯y

in C k
loc (V0]a1 , R , aN () .

Since we have for u4e iW there holds

N ¯u

¯x N
2

2N ¯u

¯y N
2

22 i
¯u

¯x
Q

¯u

¯y
4g ¯W

¯x
2 i

¯W

¯y
h2

,

(46), (47) combined with (44) yield an equation that both implies cj 40 (cf. [4]
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p. 70) and produces an expression of u * as stated in Theorem (14) ii) (cf. [4]
p. 70).

3. – The gauge invariant Dirichlet problem for the Ginzburg Landau
functional with magnetic field.

The goal of this lecture is to develop the same kind of analysis as in the
previous chapter for the functional

Ge (u , A) »4
1

2
s

V

gNdAN2 1N˜u2 iAuN2 1
1

2e 2
(12NuN2 )2h dx(48)

where V is a 2-dimensional, smooth, bounded, simply connected domain of R2,
u is a complex-valued function u�W 1, 2 (V , C) and the «magnetic field» A is a
real-valued one-form over V, also considered as a vector-valued function A�
W 1, 2 (V , R2 ). Throughout the main reference is [5]. Observe that the above
functional differs from the original one by a scaling factor e 2 after substituting
A by 1 /eA.

Ge is invariant under the action of gauge transforms

s : VKS 1 %C

x O s(x) 4e if(x)

given by

s * u(x) »4s(x) u(x) (complex multiplication)

and

s * A»4A2 is 21 ds4A1df .

Therefore we should not impose u4g on ¯V for some given g : ¯VKS 1

as boundary constraint, since this breaks gauge invariance. On the other
hand u4g implies ˜u Qt4˜g Qt, for the unit tangent vectorfield t on ¯V
and if we choose

˜4˜A »4˜2 iA

this new constraint actually is gauge invariant. In our problem we prescribe
NuN41 as well as the vorticity deg (u , ¯V) on the boundary, which are
gauge invariant quantities. Moreover we impose

aiu , (t Q˜u2 itAu)b 4 aiu , t Q˜A ub 4J on ¯V ,

where J is some given real-valued function on ¯V and au , vb »4Re (uv)
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is the real scalar product. The one form j»4 aiu , ˜A ub has some physical
significance and is called the current of the field.

Note that locally on the boundary we have u4e if and

aiu , ˜A ub 4Re (iu˜A u) 4 iu 21 ˜A u42 (˜f2A)

since W and A are real-valued.
We will look for minimizers of Ge in the following class:

(49) V»4](u , A) �W 1, 2 (V , C)3W 1, 2 (V , R2 )NNuN41 on ¯V ,

deg (u , ¯V) 4d , aiu , t Q˜A ub 4J on ¯V(

THEOREM 16. – There is a minimizer (ue , Ae ) �V of Ge. It may be chosen in
such a way that

d ˜ Ae40 in V , Ae Qn40 on ¯V .

PROOF. – By gauge invariance, if ](un , An )(n �V is a minimizing sequence
for Ge , then so is ](un 1e if n , An 1df n )(n �V for any f n �W 2, 2

loc (V , R), with
˜f n �W 1, 2 (V , R). In order to obtain adequate bounds, we will choose partic-
ular representatives in the gauge classes

[ (un , An ) ] »4 ](e if un , An 1df)NW�2(

with

2»4 ]W�W 2, 2
loc (V , R)N˜f�W 1, 2 (V , R)(

of a minimizing sequence ](un , An )(n.

LEMMA 17. Coulomb gauge. – For each (u , A) �W 1, 2 (V , C)3

W 1, 2 (V , R2 ), there is (u, A) � [ (u , A) ] such that

.
/
´

d ˜ A 40

A Qn40

in V ,

on ¯V ,
(50)

where n denotes the exterior unit normal vectorfield on ¯V.

PROOF OF THE LEMMA. – Consider j�W 2, 2 (V , R) such that

!j4˜ dA in V , j40 on ¯V .(51)

Set A »4˜ dj, then d ˜ A 4d 2 j40 in V, A Qn4¯j/¯t40 on ¯V and finally
d(A2A) 4dA2˜ !j40 in V, thus since V is simply connected there is a
function c such that A2A 4dc. Note that !c4d * A�L 2 and so c�
W 2, 2

loc (V , R). Now for u 4e 2ic u, we have (u , A) C (u, A) with (50).
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QED lemma.
In order to prove the existence result of theorem 16, we consider a mini-

miz-
ing sequence ](un , An)(n in V for inf

V
Ge . For each An , choose j n as in (51)

!j n 4˜ dAn in V , j n 40 on ¯V .

Since

s
V

N˜ dAnN2 dx4s
V

NdAnN2 dxGGe (un , An ) EC

by the Calderon-Zygmund inequality, a subsequence also denoted ]j n ( con-
verges weakly in W 2, 2 and thus An 4˜ dj n converges weakly in W 1, 2. The
uniform bound on VAn VW 1, 2 together with

s
V

N˜un 2 iAn un N2 dxGCe

and

s
V

NunN4 dxGCe8

implies V˜un VL 2 GCe9, so ]un ( also converges weakly in W 1, 2. By weak lower
semi-continuity of Ge with respect to these norms, the weak limit actually is a
minimizer.

This minimizer lies in V and satisfies (50), because all these constraints are
preserved under weak W 1, 2 (V) and W 1/2 , 2 (¯V) limits, respectively strong
L p (V) and L p (¯V) limits for 1 EpEQ. r

THEOREM 18. – Consider a sequence e nKnKQ
0 and corresponding minimiz-

ers (ue n
, Ae n

) of Ge n
in V.

Then there is a subsequence still denoted by ]e n ( and d points
]a1 , R , ad ( %V such that

he n
»4˜ dAe n

K
nKQ

h * in
.
/
´

W 1, p (V)

C k
loc (V0]a1 , R , ad ()

for 1 GpE2 ,

for all k�N ,

where h * satisfies the London equation

.
`
/
`
´

2!h *1h *42p !
j41

d

d aj

¯h *
¯n

42 J

in V ,

on ¯V .

(52)
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Moreover the configuration (a1 , R , ad ) minimizes a function W : V d KR,
which is regular on V0! for !»4 ](a1 , R , ad ) �V d Naj �V( and has the fol-
lowing form

W(a1 , R , ad ) 42p!
jck

logg 1

Naj 2akN
h1R(a1 , R , ad )(53)

where R is regular (C Q ) on V d.
Further each class [ (ue n

, Ae n
) ] admits a representative (un , An ) such

that

un Ku *, An KA * in C k
loc (V0]a1 , R , ad (), (k�N

and the limiting sections satisfy

(˜A *
)* ˜A *

u *4u * N˜A *
u * N2 ,

i.e. u * is A *2harmonic.

REMARK. – We would like to point out the link between this result and the
problems presented in the introduction. The Dirichlet boundary conditions
and in particular the boundary constraint NuNf1 are not meaningfull for the
underlying physics. Nonetheless the preceding result yields a rigorous de-
scription of the mechanism

vorticity ¨
.
/
´

formation of vortices and induction of a magnetic field

1

the induced magnetic field verifies the London equation ,

which actually is the first question addressed in the introduction. The second
question, which is still left to be understood, may be formulated in the follow-
ing way:

mexterior field Hext Fcritical value Hc1
Ak21g 1

2
log (k)1c1hn ¨ vorticity .

A rigorous mathematical theory for the spontanious apparition of vorticity, for
the minimizers of Fk , Hext

(u , A), when applying an external field Hext AHc1
, is

still to be found and this seems to be quite difficult. Still the preceding result
gives some light on the phenomenon. Actually the creation of vortices is cou-
pled to an effect in the vicinity of the boundary, called Meissner effect, which
implies that (u , A) is not superconducting close to the boundary. We now as-
sume that ¯V is not the real boundary of the superconductor, but simply the
delimitation of some interior sample-domain, far away from the real boundary
of the superconductor, such that we can ignore the Meissner effect. It then be-
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comes physically relevant to prescribe NuNf1 on ¯V. Moreover we may as-
sume there is a tangent current (iu , ˜A u) QtfJ on ¯V which is independent
of e, but has free vorticity d. We then mimimize

Fk , Hext
(u , A) 4s

V

gN˜A uN2 1
k 2

2
(12NuN2 )2 1NdAN2h dx22 s

V

dA QHext

for the preceding constraints. Choosing Jf0, in order to simplify the presen-
tation, we obtain

s
V

dA QHext 4Hext Qs
V

dA4 s
¯V

A Qt42pdHext .

Setting as before k41Oe, we thus minimize

Fe , Hext
(u , A) 4Ge (u , A)24pdHext .

The asymptotic developpement of Theorem 18 then yields

Fe , Hext
(u , A) 42p log

1

e
1W(a)1cd1d(e)24pdHext 4

2pglog
1

e
22dHexth1W(a)1cd1d(e) .

We easily see that there is a value c1 , such that for cGc1 and Hext 4

(1 /2) log (1 /e)1c, it is better to have d40 (and in the same time W(a) 40),
whereas for cDc1 this is not the case anymore. We can also determine the op-
timal vorticity as a function of c.

The above argument and the use of theorem 18 is rigorous, if we assume
that d is a free parameter, which is merely bounded by a given constant for
eK0. It would be interesting to prove this result without the assumption that
d is bounded.

SKETCH OF THE PROOF OF THEOREM (18). – We will follow the same approach
as in the case without magnetic field, but the proof is not quite the same and
also works for non starshaped domains. Actually this method could also be
used to treat the problem without magnetic field and implies F. Bethuel, H.
Brezis and F. Hélein result for arbitrary domains which was the result estab-
lished by M. Struwe in [18]. The idea consists in combining the Pohozaev iden-
tity on balls of radius ea with the h-compactness lemma, offered below and the
global bound on the energy.
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Step 1: The Euler-Lagrange equations.

The Euler-Lagrange equations for the critical points (u , A) of Ge are

˜*A ˜A u4
1

e 2
u(12NuN2 ) in V ,(54)

2d * dA4 aiu , ˜A ub 4» j in V ,(55)

¯h

¯n
42 j Qt42 J on ¯V .(56)

Actually in Coulomb gauge (56) follows from (54), (55) since the latter equa-
tions then become elliptic and solutions are smooth up to the boundary. Now
since (56) is gauge invariant, by transforming back, we see that it holds in ar-
bitrary gauge.

Here ˜A* ˜A 42!
k

(¯/¯xk 2 iA)(¯/¯xk 2 iA) and as before h»4˜ dA. Note

that (56) may be written as 2d * h4 j, if we set d * h»4 (¯h/¯x2 ) dx1 2

(¯h/¯x1 ) dx2 .

Step 2: L Q bound on u.

LEMMA 19. – Solutions of the Euler-Lagrange equations satisfy Vue VL QG1.

This follows as in the previous chapter from the maximum principle applied to

1

2
!NuN2

e 42
1

e 2
NuNe

2 (12NueN
2 )1N˜Ae

ueN
2 .

Step 3: Global bound on the Energy.

LEMMA 20. – For minimizers (ue , Ae ) of Ge in V we have

G(ue , Ae ) G2p logg 1

e
h1C ,(57)

which is obtained by evaluating Ge (ve , 0 ) for ve a minimizer of the functional
Ee considered in chapter 1, for some boundary value g solving aig , t Q˜gb 4J
and NgN41 on ¯V.
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Step 4: A remark.

From the previous step we obtain the bounds

s
V

NheN
2 dxGC logg 1

e
h ,(58)

s
V

N˜Ae
ueN

2 dxGC logg 1

e
h .(59)

We may nonetheless obtain better local bounds on A. In a way A does not
have local effects, but rather global ones: it resorbs the degree of u prescribed
at the boundary.

Indeed, set r4ea and choose Coulomb gauge on a ball Br :

.
/
´

d ˜ Ae40

Ae Qn40

in Br ,

on ¯Br ,
(60)

i.e. as in the proof of Lemma 17 set Ae »4˜ dj for j given by

!j4he in Br , j40 on ¯Br .

Now

s
Br

NAeN
2 dxGC1s

Br

N˜jN2 dxGC2s
Br

NheN
2 dxGC3 r 2 logg 1

e
h ,(61)

so

s
Bea

NAeN
2 dxGCe 2a logg 1

e
hK

eK0
0 .(62)

Suppose we have a vortex of degree 1 in x0 �V, i.e. ue (x0 ) 40 and NueND0 on
¯Br , with s

¯Br

(1ONuN2 )(uRdu) 42p.

Then one may show that s
Bea (x0 )

N˜uN2 dxFCa log (1 /e), whereas

s
Bea (x0 )

NAN2 dxAe 2a log (1 /e) (cf. [5] proposition IV.3).

Step 5: Global estimates.

LEMMA 21. – For minimizers (ue , Ae ) of Ge in V we have

V˜Ae
ue VL Q G

C

e
.(63)
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In particular, this implies

V˜NueNVL Q G
C

e
and V˜heVL Q G

C

e
,

from equation (55).

PROOF. – (63) essentially follows from a scaling argument, the bounds of
step 3 and 4 and the fact that in Coulomb gauge on the unit ball, i.e. for

d * A40 in B1 and A Qn40 on ¯B1 .

we have

s
B1

N˜AN2 dx1 s
¯B1

NAN2 dx4s
B1

NdAN2 dx4s
B1

NhN2 dx .(64)

Indeed let (u , A) be a minimizer of Ge in V in Coulomb gauge (cf. Theorem 17),
where for simplicity we drop the indices e. Fix x0 4»0 �V and define the
rescaled solutions

uA(x) »4u(ex), AA »4eA(ex) 4 !
i41, 2

eAi (ex) dxi

for x�B2 »4B2 (0).
Then N˜AA uA N(x) 4eN˜A uN(ex), NhA(x)N4e 2 Nh(ex)N. Now (58), (61) and (64)

yield

s
B2

(NAA N2 1N˜AA N2) dxGCs
B2

NhA N2 dxGCe 2 logg 1

e
h

and moreover, keeping in mind that we chose Coulomb gauge, the Euler-La-
grange equations for the scaled solutions on B2 read

2!uA 4 uA(12NuA N2 )2 iAA2 uA 12 iAA ˜uA ,

2!AA 4e 2 aiuA, ˜AA uAb .

From the estimate VuA VL Q G1, elliptic regularity and the usual boot-strap argu-
ments, one concludes

V˜uA VL Q (B3/2 ) GC ,

for a constant C independent of e. Now scaling back and covering V with a fi-
nite number of balls of radius 3/2, combined with boundary-regularity yields
V˜uVL Q GC/e and also V˜A uVL Q GC/e (cf. [5] proposition II.6). r
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Step 6: Pohozaev identity.

In the non gauge invariant case of the previous chapter, we obtained the
Pohozaev identity by multiplying the Euler-Lagrange equations by
!

i41, 2
xi (¯u/¯xi ) 47r(¯/¯r) u, where 7 is the Lie-derivative. This is equivalent to

saying that u is a critical point with respect to variations induced by transla-
tions in the domain, i.e. perturbations of the form:

ut (x) »4u(x1 (x2x0 ) t) .

Now we also set: At (x) »4A(x1 (x2x0 ) t) and if (u , A) is a critical point of
Ge (u , A) 4s

V

ge (u , A) dx, then we have

d

dt N
t40

s
G

ge (u , A) dx40 (G%%V .

After a translation, we may assume 0 4x0 �V and find

LEMMA 22. – Let (u , A) be a critical point of Ge (u , A) we have

(65) s
G
g 1

e 2
(12NuN2 )2 22h 2h dx4 s

¯G

(x Qn)g 1

2e 2
(12NuN2 )2 2h 2h do1

s
¯G

(N˜A u QtN2 2N˜A u QnN2 ) do22 s
¯G

(x Qt)(t Q˜A u , n Q˜A u) do .

Step 7: Local estimates.

LEMMA 23. – Let 0 EaE1, x0 �V , (ue , Ae ) a minimizer of Ge in V and
he4˜ dAe . Then

s
Bea (x0 )OV

NheN
2 dxGCea logg 1

e
h , (0 EaE1(66)

and

s
Bea (x0 )OV

1

e 2
(12NueN

2 )2 dxGCa ,(67)

where Ca depends on a as well as d , J and V.

REMARK. – We choose ea because it is the largest scale for which the Po-
hozaev identity yields a bound of the form s

Bea

1/e 2 (12NueN
2 )2 dxGCa . In par-

ticular this implies, as in the previous chapter, that the number of bad discs Bea

is finite, which will be discussed in step 8.
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PROOF. – In the sequel we will drop the index e. Noting that h is a function,
we deduce from (55) and (56)

NdhN4N˜hNGN˜A uN(68)

Indeed since in Coulomb gauge the variational equations (54), (55) are elliptic,
weak solutions are actually smooth and the equations hold pointwise. Now
since the above quantities are gauge invariant, (68) holds for weak solutions in
any gauge.

Combining with (59) we obtain

s
Bea

N˜hN2 dxGC logg 1

e
h

and from (58) we have

s
Bea

NhN2 dxGC logg 1

e
h .

Using the Sobolev injections W 1, 2 (V) %KL p (V), 1 GpGQ and Hölder’s
inequality, we deduce

s
Bea

NhN2 dxG (2pe 2a )2/qg s
Bea

NhNp dxh2/p

GCp (ea )4/q s
Bea

(N˜hN2 1NhN2 ) dx

with 1 /p11/q41, which gives the first result by setting p44.
For the second estimate, let 0 EaE1 and write

ge (x) »4ge (u(x), A(x) )»4
1

2
gNdAN2 (x)1N˜A uN2 (x)1

1

2e 2
(12NuN2 (x) )2h

for the energy density. Then

s
Be2a 0Bea

ge (x) dx4 s
ea

ea/2

1

r
gr s

¯Br

ge (rv) dvh drG logg 1

e
h .

Thus there is some r e� [ea , ea/2 ], such that

r e s
¯Br e

ge (r e v) dvGCa ,
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where the constant Ca depends on a , J , d but not on e. Combining the Pohoza-
ev inequality (65) on Br e

with the previous estimate (66), we obtain

s
Bea

1

e 2
(12NuN2 )2 dxG s

Br e

1

e 2
(12NuN2 )2 dxGCuea logg 1

e
h1r s

¯Br e

ge dovGCa .

Note that in the case Br e
O¯Vc¯, one should integrate over Br e

OV and
make use of the boundary data. r

Step 8: The h-compactness lemma.

This lemma roughly says, that if we don’t have enough energy on a ball,
then NuN is larger than 1/2 on the ball of half of the radius. Now this implies
some compacteness properties for ]ue(eD0 on this ball. The h-compactness
property is also one of the key ingredients for studying similar asymptotic
phenomena for minimizers of the Ginzburg-Landau Functional in dimension
larger than 2, but in higher dimensions the h-compactness lemma is much
more delicate to establish (see [15] and [12] on this subject).

LEMMA 24. – There is a constant hD0, such that, for all minimizers
(ue , Ae ) of Ge in V, all x0 �V and all rFe

s
Br (x0 )OV

ge (ue , Ae ) dxGh logg r

e
h

�

Nue NF
1

2
in Br/2(x0 ) OV .

Consequences of the h-compactness lemma.

Let 0 EaE1. We call Br (x), for x�V a bad ball , if there is some y�
Br/2 (x), such that NuN(y) E1/2. Here and in the following Br or Br (x) actually
stands for Br (x)OV, for some x�V. If Br (x)O¯Vc¯ some care is required
and the boundary data should be used.
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Choose a covering by balls ]Bea/2 (x i )(i�Ie
of V and set Je »4 ]i�

Ie NBea (x i ) is bad(. By the h-compactness lemma we have

C logg 1

e
hF !

j�Je

s
Bea (x j )

ge (ue , Ae ) dxDh logg ea

e
hQ (ll--Je ) 4

(ll--Je ) h(12a) logg 1

e
h .

So ll--JeGCa , i.e. the number of bad balls of radius ea for 0 EaE1 is uniformly
bounded with respect to e.

On the other hand, from Lemma 21 and Lemma 23, we know that

V˜NueNVL Q G
C

e
,(69)

and

s
Bea

1

e 2
(12NuN2 )2 dxGCa .(70)

This yields a uniform bound on the number of bad balls of radius le, for a con-
stant 0 ElE1 independent of e. Indeed, by (69), there is a l�]0 , 1[, such that
NuNG3/4 on Ble (y) if NuN(y) E1/2, thus

s
Ble (y)

1

e 2
(12NuN2 )2 dxF

p 2 l 2

16
D0 ,

and so the number of bad balls of radius le contained in some bad ball of
radius ea is bounded independly of e by (70).

Proof of the h-compactness lemma in dimension 2.

First note that it suffices to prove NuN(x0 ) F1/2.
Now by Lemma 23, rGea implies

s
Br

NhN2 dxGea log
1

e
K
eK0

0 .

By assumption we have

s
e

r

1

r
ur s

¯Br

ge (ue , Ae ) dsv drGh log
r

e
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and so there is some r0 � [e , r] such that

r0 s
¯Br0

gN˜A uN2 1
1

2e 2
(12NuN2 )2 1NdAN2h dxGh .(71)

Combining (65) and (71), we obtain

s
Br0

1

e 2
(12NuN2 )2 dxGCh .

Using V˜NuNVL Q GC/e , this yields NuN(x0 ) D1/2 for h sufficiently small.

Step 9: W 1, p estimates for h4dA.

h»4dA satisfies

dg 1

NuN2
d * hh1h40 on V

A
»4V0 0

j�J
Be (xj ) ,(72)

where ]Be (xj )(j�J is a finite cover of the bad set. (cf. step 8)
Indeed on V

A we have NuNF1/2 and locally we may write u4NuNe if.
Then

aiu , ˜A ub 4Re (iu Q˜A u) 4NuN2 (df2A)

and

d oi
u

NuN2
, dA up42 dA42 h .

Applying now d to (55), we obtain

2dd * h4gNuN2oi
u

NuN2
, ˜A uph4

1

NuN2
d(NuN2 )(2d * h)2NuN2 h ,

so

1

NuN2
dd * h2

2dNuN

NuN3
d * h1h40 ,

which is equivalent to (72). Now this equation for h is very similar to that ob-
tained for c and H in the case without magnetic field, considered in the previ-
ous chapter. But here we did not have to make use of a Hodge decomposition,
since h turns out to be the right variable to work with. Note that the Dirichlet
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boundary condition for c is now replaced by a Neuman boundary condi-
tion

¯h

¯n
42 J on ¯V .

W 1, p estimates are obtained by similar methods and the other steps too can be
developped mutatis mutandi as in the case without magnetic field.
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