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On Nonhomogeneous Reinforcements of Varying Shape
and Different Exponents.

MOHAMED BOUTKRIDA - JACQUELINE MOSSINO - GONOKO MOUSSA

Sunto. – Studiamo un problema ellittico quasilineare concernente un dominio circon-
dato da un rinforzo sottile di spessore variabile, in cui il coefficiente dell’equazione
è (localmente) non costante. Esso concerne due diversi esponenti, uno nel dominio
e l’altro nel rinforzo, una condizione di Dirichlelet sulla frontiera esterna e una
condizione di trasmissione. Prediciamo il comportamento asintotico della soluzio-
ne quando lo spessore, insieme con il coefficiente nel rinforzo, tende a zero perché
essi siano convenientemente riferiti fra di loro.

1. – Introduction.

Let V be a bounded domain of RN and let G be the union of certain con-
nected components of ¯V . We assume that V is surrounded along G by a thin
reinforcement

Se4 ]s1 tn(s), s�G , 0 E tEh e (s)(Ge)(

where n(s) denotes the outer normal to V at the point s�G . Let Ve4VNSe

be the reinforced domain. We study the limit behaviour (when e tends to zero)
of some quasilinear problems with two exponents p , q� (1 , Q) of the
type

.
`
/
`
´

2div (N˜u e Np22 ˜u e )1Nu eNp22 u e4 f e in V ,

2div (me N˜u eNq22 ˜u e ) 4g e in Se ,

u e40 on ¯Ve ,

(1transmission conditions on G).

(1)e

For G4¯V , p4q , me constant in Se and all the Se having the same shape (i.e.
h e (s) 4eh(s)), such problems have been studied by E. Acerbi and G. Buttaz-
zo [1], who generalized the results obtained by H. Brezis, L. A. Caffarelli and
A. Friedman [7] for the linear case (see also the inspiring works of E. Sanchez-
Palencia [13], [14]). In [1] it is proved that the limit problem depends on the li-
mit of the sequence of numbers me Oe q21 .
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The present paper is inspired by [1]; however the shape of the reinforce-
ment may depend on e , that is we consider «general» functions h e and the
reinforcement material may be inhomogeneous along G , but me is constant
along each normal to G : in other words me (x) 4me (s(x) ) where s(x) denotes
the projection of x�Se on G . We define a e : GKR by a e4me (h e )12q . We as-
sume essentially that a e�L Q (G) with 1Oa e bounded in L Q (G) and that G is
divided into two parts:

– G 1 such that 1Oa e tends to zero in L q 821 (G 1 ), (1Oq11Oq 841),

– G 2 such that a e tends to a in weak * -L Q (G 2 ) and such that h e does not
oscillate too much on G 2 (if N=2 and G 2 is a closed curve, we can allow as in [8],
h e (s) 4n 2r H(ny(s) ) for s�G 2 , e4n 2r , y(s) 4arc length (s), H periodic of
period Y where Y is the length of G 2 , 0 EHG1, H� C1 (R1 ) and rFq 8 ) .

We prove that the limit problem has the form

.
/
´

2div (N˜uNp22 ˜u)1NuNp22 u4 f in V ,

u40 on ¯V0G 2 ,

N˜uNp22 ¯u

¯n
1aNuNq22 u40 on G 2 .

(1)

As E. Acerbi and G. Buttazzo did in [1], we use the G-convergence theory in-
troduced by E. De Giorgi [11] (see also H. Attouch [2] and G. Dal Maso [10])
and we actually are able to predict the explicit limit in more general minimiza-
tion problems than those associated to (1)e : in the energy functional, the
term

1

p
s

V

NvNp dx1
1

p
s

V

N˜vNp dx1
1

q
s

Se

m e
isN˜vNq dx

can be generalized to

F(vNV )1s
Se

a e
is

h e
is

G(h e
isN˜vN) dx

where (e.g.) (me
is)(x) 4me (s(x) ) . The present results were announced in [3]

and extensions will be considered in [4], [5] and [12].
This introduction would not be complete without quoting the very general

paper of G. Buttazzo, G. Dal Maso and U. Mosco [9], where the limit problem
involves a measure which is given in terms of suitable asymptotic capacities
associated with Se . Here the aim is to get a simple explicit limit problem but
it seems to us that our hypothesis could be weakened and that connected
problems could be considered. In particular, the torsional rigidity problem is
treated in [4], where the term N˜vN is replaced by an anisotropic one.
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2. – Statement of the problem and of the result.

Consider a bounded domain V in RN with boundary ¯V . Let us denote by G
the union of certain connected components of ¯V . (Of course G4¯V is allow-
ed.) Let V 8&V be the domain having boundary (¯V0G)NG 8 where G 8 is at
given distance t 8 to G . We assume that t 8 is small enough so that S 84V 8 0V is
C1-diffeomorphic to G3 (0 , t 8 ) by the mapping

x�S 8K (s(x), t(x) )�G3 (0 , t 8) ,

t(x) 4min ]Nx2sN , s�G( ,

s(x) 4arg min ]Nx2sN , s�G(

(t(x) is the distance from x�S 8 to G and s(x) the projection of x on G) . One has
V 84VNS 8 ,

S 84 ]s1 tn(s), s�G , 0 E tE t 8( .

Let eE t 8 be a small parameter (hereafter e will represent a sequence of posi-
tive numbers tending to zero) and let h e : GKR1 0]0( be a positive C1-fun-
ction such that

(s�G , h e (s) Ge ;(2.1)

h e defines the reinforcement Se of V :

Se4 ]s1 tn(s), s�G , 0 E tEh e (s)(

and consequently the reinforced domain Ve4VNSe . We define Ge4¯Se 0G .
Note that V%Ve%V 8 .

With the above geometrical data and given p , q� (1 , Q), we consider the
functional space

V e4 ]v : VeKR , vNV�W 1, p (V), vNSe �W 1, q (Se ), vN¯Ve 40, (vNV )NG4 (vNSe )NG( .

We are given data f e , g e , F , G , a e such that

– f e�L p 8 (V), g e�L q 8 (Se ), 1Op11Op 841Oq11Oq 841,

– F : W 1, p (V) KR1 is a lower semi-continuous strictly convex functional
such that

)lD0 , (v�W 1, p (V) , F(v) FlVvVW 1, p (V)
p ,(2.2)

– G : R1KR1 is a monotone nondecreasing, continuous, strictly convex
function and

)m 1 , m 2 D0 , (j�R1 , m 1 j q GG(j) Gm 2 j q ,(2.3)

– a e�L Q (G), a eD0 a.e. and 1Oa e�L Q (G).
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Now we are able to define J e : V eKR1 by

J e (v) 4F(vNV )1s
Se

a e
is

h e
is

G(h e
isN˜vN) dx2s

V

f e v dx2s
Se

g e v dx

where (e.g.) (a e
is)(x) 4a e (s(x) ) and where the integral over Se is mean-

ingful since by (2.1), (2.3) the nonnegative integrand is bounded by
m 2 N˜vNq

Va e
VL Q (G) e

q21 .
Our aim is to study the limit, as e tends to zero, of the sequence of minimi-

zation problems

Inf ]J e (v), v�V e( .(Pe)

For fixed e , we have

PROPOSITION 1. – (Pe) has a unique solution u e�V e .

PROOF. – In this proof, as well as in the whole paper, c denotes various con-
stants. The functional J e is strictly convex. Moreover vKG(h e

isN˜vN) is con-
tinuous from W 1, q (Se ) into L 1 (Se ) (use the Theorem IV. 9, p. 58 in [6], (2.3)
and the Lebesgue dominated convergence Theorem), so that the integral on
Se is a continuous function on W 1, q (Se ). It is easy to check (using Poincaré
inequality on Se ) that

VvVV e 4VvVW 1, p (V) 1V˜vVL q (Se )

is a norm on V e which is equivalent to the usual one induced by W 1, p (V)3

W 1, q (Se ) and that J e is a lower semi-continuous strictly convex function on
V e . Moreover J e is coercive since by (2.2), (2.3), Hölder inequality and Poinca-
ré inequality on Se , one has with ae such that aeGa e (s)h e (s)q21 a.e.
s�G

J e (v) FlVvVW 1, p (V)
p 1m 1 aes

Se

N˜vNq dx2V f e
VL p 8 (V) VvVW 1, p (V) 2Vg e

VL q 8 (Se ) VvVL q (Se ) F

(lVvVW 1, p (V)
p 2V f e

VL p 8 (V) VvVW 1, p (V) )1 (m 1 ae
V˜vV

q
L q (Se ) 2C e

Vg e
VL q 8 (Se ) V˜vVL q (Se ) )

and since when VvVV e K1Q at least one of VvVW 1, p (V) or V˜vVL q (Se ) tends to
infinity.

We study the limit behaviour of (Pe ) under the following additional assum-
ptions on a e , h e , f e , g e valid when e tends to zero. First ]1Oa e(e is bounded in
L Q (G):

)aD0 , a.e. s�G , (e , a e (s) Fa .(2.4)
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Moreover, up to a set of (N21) dimensional measure zero, there exists a par-
tition of G into two open regular subsets G 1 and G 2 independent of e , (one of
the G i being possibly empty, none of them being necessarily connected) such
that

G 1 40O or
1

a e
NG 1

K0 in L q 821 (G 1 ) ,(2.5)

and

G 2 40O or )a�L Q (G 2 ) , a e
NG 2

� a in weak * -L Q (G 2 ) ,(2.6)

m 1

h e
N˜h e Nqn

e

is bounded in L Q (G 2 ) .(2.7)

Finally we assume that

(2.8) ]Vg e
VL q 8 (Se ) (e is bounded and )f�L p 8 (V) , f e � f in weak-L p 8 (V) .

Let us comment (2.7). It means that h e «does not oscillate too much» on G 2 . Of
course it holds true if (e.g.) h e (s) feh(s) with h� C1 (¯V), hD0, but also if
(e.g.) N42, G 2 is a closed curve, e4n 2r , h e (s) 4n 2r H(ny(s) ) for s�G 2 ,
y(s) 4arc length (s), H periodic of period Y where Y is the length of G 2 ,
0 EHG1, H� C1 (R1 ) and rFq 8 .

Under the above assumptions we have

THEOREM 1. – Let u e be the solution of

(Pe)

.
`
/
`
´

Inf ]J e (v), v�V e( ,

V e4]v : VeKR , vNV�W 1, p (V), vNSe �W 1, q (Se ),

vN¯Ve 40, (vNV )NG4 (vNSe )NG( ,

J e (v) 4F(vNV )1s
Se

a e
is

h e
is

G(h e
isN˜vN) dx2s

V

f e v dx2s
Se

g e v dx .

Let us define (P) by

.
/
´

Inf ]J(v), v�V( ,

V4 ]v�W 1, p (V), vN¯V0G 2
40, vNG 2

�L q (G 2 )( ,
(P)

(the restriction vN¯V0G 2
40 being effective only if G 2 c¯V and vNG 2

�L q (G 2 )
only if G 2 c0O and qDp),

J(v) 4F(v)1s
G 2

a G(NvN) ds2s
V

fv dx .
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Then (P) has a unique solution u�V . Moreover when eK0,

1) u e
NV tends to u in weak-W 1, p (V) and in L p (V);

2) the function uAe : S 8KR given by uAe4u e in Se and 0 in S 8 0Se tends
to zero in L q (S 8 );

3) u e
N¯VKuN¯V in L p (¯V), u e

NG � uNG in weak-L q (G) (the weak conver-
gence is of interest only if qDp);

4) J e (u e ) KJ(u).

Except for an example given in the last section, the rest of the paper is devo-
ted to the proof of this theorem.

3. – Existence and uniqueness of the solution u.

This is very classical if G 2 40O or if qGp : V is a closed subspace of W 1, p (V),
J is strictly convex and lower semi-continuous on V equipped with the topology
induced by W 1, p (V), J is coercive since by (2.2)

J(v) FlVvVW 1, p (V)
p 2V f VL p 8 (V) VvVW 1, p (V) .

If G 2 c0O and if qDp , V is a Banach space for

VvVV 4VvVW 1, p (V) 1VvNG 2
VL q (G 2 ) ,

again J is coercive since by (2.2), (2.3), (2.4), (2.6)

J(v) F [lVvVW 1, p (V)
p 2V f VL p 8 (V) VvVW 1, p (V) ]1am 1 VvNG 2

VL q (G 2 )
q

and since, when VvVV K1Q , either the bracket or the last term tends to
infinity.

4. – A priori estimates and consequences for u e.

The a priori estimates are given in

LEMMA 1.

(1) )cD0, (e , (v�W 1, q(Se), vNGe40¨s
Se

NvNq dxGcs
Se

(h e
is)q N˜vNq dx ,

s
G

NvNq dsGcs
Se

(h e
is)q21 N˜vNq dx (which applies to u e ),
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(2) u e
NV is bounded in W 1, p (V),

(3) F(u e
NV ) and s

Se

a e
is

h e
is

G(h e
isN˜u e N) dx are bounded,

(4) u e
NG is bounded in L q (G),

(5) s
Se

Nu e Nq dxK0.

PROOF OF (1). – Let v� C1 (Se ), vNGe 40. One has

v(s1 tn(s) )42 s
t

h e (s)

˜v(s1un(s) ) Qn(s) du ,

so that by Hölder inequality

Nv(s1 tn(s) )Nq G (h e (s)2 t)q21 s
0

h e (s)

N˜v(s1un(s) )Nq du ,

s
G

s
0

h e (s)

Nv(s1 tn(s) )Nq dt dsG
1

q
s
G

s
0

h e (s)

(h e (s) )q N˜v(s1un(s) )Nq du ds

and using the C1-diffeomorphism of S 8 onto G3 (0 , t 8 ) one gets (since ](s , t),
s�G , 0 E tEh e (s)( is diffeomorphic to Se , the diffeomorphism being inde-
pendent of e)

s
Se

NvNq dxGcs
Se

(h e
is)q N˜vNq dx

for any v� C1 (Se ), vNGe 40. Then the first result in (1) follows by continuity
(with respect to v and for the W 1, q (Se )-topology) of the two members of the
last inequality and by density of ]v�C1 (Se), vNGe40( in ]v�W 1, q(Se), vNGe40(.

As for the second inequality in (1), the same proof gives

s
G

Nv(s)Nq dsGs
G

s
0

h e (s)

(h e (s) )q21 N˜v(s1un(s) )Nq du dsGcs
Se

(h e
is)q21 N˜vNq dx ,

first for v� C1 (Se ), vNGe 40 and then for v�W 1, q (Se ), vNGe 40, since vKvNG is
continuous from W 1, q (Se ) into L q (G).
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PROOF OF (2). – Let a be as in (2.4). For small e(eG1) one has by (2.1)

(4.1) as
Se

(h e
is)q N˜u e Nq dxGas

Se

(h e
is)q21 N˜u e Nq dxG

s
Se

(a e
is)(h e

is)q21 N˜u e Nq dxG
1

m 1

s
Se

a e
is

h e
is

G(h e
isN˜u e N) dx (by (2.3)) ,

so that by (2.2)

(4.2) lVu e
VW 1, p (V)

p 1m 1 as
Se

(h e
is)q N˜u e Nq dxG

F(u e
NV )1s

Se

a e
is

h e
is

G(h e
isN˜u e N) dxGF(0)1s

V

f e u e dx1s
Se

g e u e dx

(as u e solves (Pe ) and as G(0) 40)

GF(0)1cVu e
VW 1, p (V) 1cVu e

VL q (Se ) (by (2.8)) .

Using (1) it follows that

[lVu e
VW 1, p (V)

p 2cVu e
VW 1, p (V) ]1 k m 1 a

c
Vu e

VL q (Se )
q 2cVu e

VL q (Se )lGF(0) .

As the first (resp. second) bracket tends to infinity when Vu e
VW 1, p (V) (resp.

Vu e
VL q (Se ) ) tends to infinity, it follows that u e

NV is bounded in W 1, p (V) and that
Vu e

VL q (Se ) is bounded.

PROOF OF (3). – From the lines following (4.2)

F(u e
NV )1s

Se

a e
is

h e
is

G(h e
isN˜u e N) dx (GF(0)1cVu e

VW 1, p (V) 1cVu e
VL q (Se ) )

is bounded since, as just proved, Vu e
VW 1, p (V) and Vu e

VL q (Se ) are bounded.

PROOF OF (4). – From (1), (3) and the lines following (4.1)

s
G

Nu e Nq dsGcs
Se

(h e
is)q21 N˜u e Nq dxG

c

m 1 a
s

Se

a e
is

h e
is

G(h e
isN˜u e N) dxGc .

PROOF OF (5). – From (1) and (2.3)

s
Se

Nu e Nq dsGcs
Se

(h e
is)q N˜u e Nq dxG

c

l 1

s
Se

G(h e
isN˜u e N) dx4

c

l 1

s
Se

a e
is

h e
is

h e
is

a e
is

G(h e
isN˜u e N) dxG

ce

l 1 a
s

Se

a e
is

h e
is

G(h e
isN˜u e N) dx
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(using (2.1) and (2.4))

Gce by (3) .

From the a-priori estimates we are going to deduce.

LEMMA 2. – There exists a subsequence e 8 of e and an element u of V such
that

u e 8
NV � u in weak-W 1, p (V) ,

u e 8
NVKu in L p (V) ,

u e 8
N¯VKuN¯V in L p (¯V) (hence in L q (¯V) if qGp) ,

u e 8
NG � uNG in weak-L q (G)

(and uAe4 (u e in Se , 0 in S 8 0Se ) K0 in L q (S 8 ) ) . Moreover

lim inf s
Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e 8 N) dxFs

G 2

a G(NuN) ds .(4.3)

PROOF. – We remember that the injection mapping: W 1, p (V) %KL p (V) is
compact and that the trace mapping v�W 1, p (V) KvN¯V�L p (¯V) also is com-
pact. Hence all the convergences follow from Lemma 1 and from compactness
and we know that u�W 1, p (V), u40 on ¯V0G and uNG�L q (G). It just remains
to prove (4.3) and to prove that uNG 1

40 if G 1 c0O .

– For any v� C1 (Se), vNGe 40 we have, using the diffeomorphism of S 8 on
¯V3 (0 , t 8 ), and refining an argument already used above

s
Se

a e
is

h e
is

G(h e
isN˜vN) dx4s

G

s
0

h e (s)

a e (s)

h e (s)
G(h e (s)N˜v(s1 tn(s) )N) c(s , t) dt ds

where c(s , t) 4c(s , 0 )1
¯c

¯t
(s , u(s , t) ) t411F(s , t) t with F bounded

(NFNGM). Hence

(4.4) s
Se

a e
is

h e
is

G(h e
isN˜vN) dx4

s
G

s
0

h e (s)

a e (s)

h e (s)
G(h e (s)N˜v(s1 tn(s) )N) dt ds1A e
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with

NA e NGs
G

s
0

h e (s)

a e (s)

h e (s)
G(h e (s)N˜v(s1 tn(s) )N)NF(s , t)N t dt dsG

eMs
G

s
0

h e (s)

a e (s)

h e (s)
G(h e (s)N˜v(s1 tn(s) )N) ds dt

(as NFNGM and 0 G tGh e (s) Ge)

GceMs
Se

a e
is

h e
is

G(h e
isN˜vN) dx :

we get from (4.4)

(4.5) s
G

s
0

h e (s)

a e (s)

h e (s)
G(h e (s)N˜v(s1 tn(s) )N) ds dtG

(11ceM)s
Se

a e
is

h e
is

G(h e
isN˜vN) dx .

As already used

v(s) 42 s
0

h e (s)

˜v(s1 tn(s) ) Qn(s) dt

and as G is nondecreasing

G(Nv(s)N)GGu s
0

h e (s)

N˜v(s1 tn(s) )N dtv4

Gu 1

h e (s)
s
0

h e (s)

h e (s)N˜v(s1 tn(s) )N dtvG
1

h e (s)
s
0

h e (s)

G(h e (s)N˜v(s1 tn(s) )N) dt

(by Jensen inequality). It follows

s
G

a e (s) G(Nv(s)N) ds4s
G

a e (s)

h e (s)
h e (s) G(Nv(s)N) dsG

s
G

a e (s)

h e (s)
s
0

h e (s)

G(h e (s)N˜v(s1 tn(s) )N) dt dsG

(11ceM)s
Se

a e
is

h e
is

G(h e
isN˜vN) dx (by (4.5)) .
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This is also true by density for any v�W 1, q (Se ) such that vNGe 40 and in parti-
cular for u e :

(4.6) s
G

a e(s) G(Nu eN) dsG(11ceM)s
Se

a e
is

h e
is

G(h e
isN˜u eN) dxGc(11ceM)Gc

( by Lemma 1)

which gives from (2.3), (2.5)

s
G 1

Nu e (s)N ds4s
G 1

(a e (s) )21Oq (a e (s) ))1Oq Nu e (s)N dsG

gs
G 1

(a e (s) )2q 8 Oq dsh1Oq 8gs
G 1

a e (s)Nu e (s)Nq dsh1Oq

G

gs
G 1

[(a e (s) )21 ]q 821 dsh1Oq 8

(m 1 )21Oqgs
G 1

a e (s) G(Nu e (s)N) dsh1Oq

G

cgs
G 1

[(a e (s) )21 ]q 821 dsh1Oq 8

K0 .

As u e 8
NG 1

KuNG 1
in (strong) L p (G 1 ), we get uNG 1

40.

– Now we prove (4.3). This is trivial if G 2 is empty and is easy to prove from
(4.6) if qGp since then u e 8

NGKuNG in (strong-) L q (G), which implies that
G(Nu e 8

NG N) KG(NuNG N) in (strong-) L 1 (G), so that as a e � a in weak*-
L Q (G 2 )

s
G 2

a G(NuN) ds4 lims
G 2

a e 8 G(Nu e 8 N) dsG

lim inf s
Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e 8 N) dx by (4.6) .

If G 2 is not empty and qDp , the proof (also valid otherwise) goes as follows.
By convexity and monotonicity

G(Nu e N) FG(NuN)1D(Nu e N2NuN) FG(NuN)2DNu e2uN

for any D in ¯G(NuN) (the subdifferential of G at the point NuN). We notice that
(2.3) implies

)mD0 , (j�R1 , (d�¯G(j) , 0 GdGmj q21
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and hence D�L q 8 (G),

s
G

a e 8 G(Nu e 8 N) dsFs
G 2

a e 8 G(Nu e 8 N) dsFs
G 2

a e 8 G(NuN) ds2s
G 2

a e 8 DNu e 82uN ds .

Now

s
G 2

a e 8 G(NuN) dsKs
G 2

a G(NuN) ds .

Moreover

s
G 2

a e 8 DNu e 82uN dsK0

since D belongs to L q 8 (G 2 ) and a e 8 Nu e 82uN� 0 in weak-L q (G 2 ) (because
a e 8 Nu e 82uN is bounded in L q (G 2 ) and a e 8 Nu e 82uNK0 in (strong)
L p (G 2 ) ) .

Therefore by (4.6)

lim inf s
Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e 8 N) dxF lim infs

G

a e 8 G(Nu e 8 N) dsFs
G 2

aG(NuN) ds .

5. – Proof of the convergence of (P e ) to (P).

We first prove it from Lemma 3, whose proof is postponed.

LEMMA 3. – For any v� C1 (V) such that vNG 1
40, there exists a sequence of

elements v e�V e such that

v e
NVKv in L p (V) , Vv e

VL q (Se ) K0 ,

lim sup{F(v e
NV )1s

Se

a e
is

h e
is

G(h e
isN˜v e N) dx}GF(v)1s

G 2

a G(NvN) ds .

PROOF OF THEOREM 1 ASSUMING LEMMA 3. – Let u e be the solution of (Pe ).
From Lemma 1,

s
S 8

NuAe Nq dx4s
Se

Nu e Nq dxK0 ,

so that 2) is proved. Let u�V and e 8 be as in Lemma 2. As the solution of (P) is
unique it just remains to prove that u solves (P) and that J e 8 (u e 8 ) KJ(u).
(Then a classical argument gives e 8fe : one has the convergences for the who-
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le sequence e . ) Let v�C1 (V) such that vNG 1
40 and let v e be as in Lemma 3.

A) lim inf J e 8 (u e 8 ) G lim sup J e 8 (u e 8 ) G lim sup J e 8 (v e 8 ) 4

lim sup{F(v e 8
NV )1 s

Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜v e 8 N) dx2s

V

f e 8 v e 8 dx2 s
Se 8

g e 8 v e 8 dx} .

But s
V

f e 8 v e 8 dxKs
V

fv dx since f e 8 � f in weak-L p 8 (V) and v e 8
NVKv in L p (V).

Moreover

Ns
Se 8

g e 8 v e 8 dxNGVg e 8
VL q 8 (Se 8 ) Vv e 8

VL q (Se 8 ) GcVv e 8
VL q (Se 8 ) (by (2.8))K0 ,

so that

lim inf J e 8 (u e 8 ) G lim sup J e 8 (u e 8 ) G

lim sup{F(v e 8
NV )1 s

Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜v e 8 N) dx}2s

V

fv dxG

F(v)1s
G 2

a G(NvN) ds2s
V

fv dx ( by Lemma 3) 4J(v) .

J e 8(u e 8)4F(u e 8
NV)1s

Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e 8N) dx2s

V

f e 8u e 8dx2s
Se 8

g e 8u e 8dx .B)

From Lemma 2 and (2.8) we get

lim inf J e 8 (u e 8 ) F lim inf{F(u e 8
NV )1 s

Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e% N) dx}2s

V

fu dxF

lim inf F(u e 8
NV )1 lim inf s

Se 8

a e 8
is

h e 8
is

G(h e 8
isN˜u e 8 N) dx2s

V

fu dxF

F(u)1s
G 2

a G(NuN) ds2s
V

fu dx4J(u)

(by using the lower semi-continuity of F and the convergence u e 8
NV � u in

weak-W 1, p (V) and by using (4.3)).

C) From A) and B): For any v� C1 (V) such that vNG 1
40

J(u) G lim inf J e 8 (u e 8 ) G lim sup J e 8 (u e 8 ) GJ(v) .
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By density and by continuity this is also true for any v�V , that is u solves (P)
and J e 8 (u e 8 ) tends to J(u). This completes the proof of Theorem 1 , except that
we have to prove Lemma 3.

PROOF OF LEMMA 3. – Let v� C1 (V) such that vNG 1
40. We are going to de-

fine v e on Ve having the desired properties.
Let us introduce

S i84 ]s1 tn(s), s�G i , 0 E tE t 8( , i41, 2

and let w�W 1, q (S 28 ) be such that wNG 2
4vNG 2

and wN¯S 28 0G 2
40. Now we define

vA: V 8KR by

vA4
.
/
´

v

0

w

in V ,

in S 18 ,

in S 28 .

It is easy to check that vA�V 8 where

V 84 ]v : V 8KR , vNV�W 1, p (V), vNS 8�W 1, q (S 8 ), vN¯V 840, (vNV )NG4 (vNS 8 )NG( .

Finaly let v e4 (vAWe )NVe where We is the continuous function defined on V 8

by

We (x) 4

.
`
/
`
´

1

0

12
t(x)

(h e
is)(x)

if x�V ,

if x� V 80Ve ,

if x�Se .

We notice that We
NS
– e � C1 (Se ), We

NG41, We
NGe 40 and 0 GWeG1. One has

v e
NV4v�W 1, p (V) , v e

NSe 4vANSe We
NSe �W 1, q (Se )

since vANSe �W 1, q (Se ) (as vA�V 8 ) and We
NS
– e � C1 (Se ). Clearly v e

N¯Ve 40 and
(v e

NV )NG4 (vANV )NG4 (vANS 8 )NG (since vA�V 8 ) 4 (vANSe )NG (We
NSe )NG4 ((vAWe )NSe )NG4

(v e
NSe )NG . Hence v e�V e . The convergence of v e

NV to v in L p (V) is trivial since
v e

NVfv . Moreover

Vv e
VL q (Se )

q 4s
S 2

e

NwNq (We )q dxGs
S 2

e

NwNq dxK0
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since NwNq �L 1 (S 28 ) and since

NS 2
e N4s

S 2
e

dxGcs
G 2

s
0

h e (s)

dt dsGces
G 2

dsK0 .

It just remains to prove the last inequality in Lemma 3. One has

F(v e
NV ) 4F(v)(5.1)

and one writes for simplicity

H e (x , j) 4
a e

is

h e
is

(x) G((h e
is)(x) j) ,

so that

s
Se

a e
is

h e
is

G(h e
isN˜v e N) dx4s

S 2
e

H e (x , N˜v e N) dx ,(5.2)

where H e is a nondecreasing convex function of j , which implies that H e (x , N Q
N) is convex. Using a classical convexity argument valid for any u�
(0 , 1 ),

s
S 2

e

H e (x , N˜v e N) dx4s
S 2

e

H eux , NuWe ˜w

u
1 (12u) w

˜We

12u Nv dxG

us
S 2

e

H eux , NWe ˜w

u Nv dx1 (12u)s
S 2

e

H eux , Nw
˜We

12u Nv dx .

By definition of H e and by (2.1), (2.3), (2.6)

us
S 2

e

H eux , NWe ˜w

u Nv dx4us
S 2

e

a e
is

h e
is

Ggh e
is

We N˜wN

u
h dxG

m 2

u q21
s

S 2
e

(a e
is)(h e

is)q21 (We )q N˜wNq dxG
cm 2

u q21
e q21s

S 2
e

N˜wNq dxK0 ,

so that

lim sups
S 2

e

H e (x , N˜v e N) dxG (12u) lim sups
S 2

e

H egx ,
Nw˜We N

12u
h dx
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for any u� (0 , 1 ), and letting u tend to zero

lim sups
S 2

e

H e (x , N˜v e N) dxG lim sups
S 2

e

H e (x , NwNN˜We N) dx .(5.3)

Now on S 2
e ,

N˜We N4N2
˜t

h e
is

1
t˜(h e

is)

(h e
is)2 NG

N˜tN

h e
is

1
t

h e
is

N˜(h e
is)N

h e
is

G

1

h e
is

1
N˜(h e

is)N

h e
is

which implies, by the same convexity argument, that

s
S 2

e

H e (x , NwNN˜We N) dxGs
S 2

e

a e
is

h e
is

G(NwN1NwNN˜(h e
is)N) dxG

us
S 2

e

a e
is

h e
is

Gg NwN

u
h dx1 (12u)s

S 2
e

a e
is

h e
is

Gg NwNN˜(h e
is)N

12u
h dx .

Using (2.3), (2.6), (2.7), the last integral is bounded by

m 2

(12u)q
s

S 2
e

a e
is

N˜(h e
is)Nq

h e
is

NwNq dxG
c

(12u)q
s

S 2
e

NwNq dx

and therefore it tends to zero with e : one obtains by letting u tend to
one

lim sups
S 2

e

H e (x , NwNN˜We N) dxG lim sups
S 2

e

a e
is

h e
is

G(NwN) dx .(5.4)

Finally thanks to the usual diffeomorphism argument

s
S 2

e

a e
is

h e
is

G(NwN) dx4

s
G 2

s
0

h e (s)

a e (s)

h e (s)
G(Nw(s1 tn(s) )N)(11F(s , t) t) dt ds4s

G 2

a e (s) b e (s) ds

where

b e (s) 4
1

h e (s)
s
0

h e (s)

G(Nw(s1 tn(s) )N)(11F(s , t) t)dt .



ON NONHOMOGENEOUS REINFORCEMENTS OF VARYING SHAPE ETC. 533

Assume for a moment (this will be shortly proved) that

b eKG(NwN) in L 1 (G 2 ) .(5.5)

Then, as a e � a in weak*-L Q (G 2 ) (see (2.6)), one obtains

s
S 2

e

a e
is

h e
is

G(NwN) dxKs
G 2

a G(NwN) ds4s
G 2

a G(NvN) ds

and by means of (5.2) to (5.4) this implies

lim sups
S 2

e

a e
is

h e
is

G(h e
isN˜v e N) dxGs

G 2

a G(NvN) ds ,(5.6)

so that using (5.1)

lim sup{F(v e
NV )1s

Se

a e
is

h e
is

G(h e
isN˜v e N) dx}GF(v)1s

G 2

a G(NvN) ds

and the proof is complete, except for (5.5). But (5.5) follows from Lebesgue
theorem. Actually b e (s) KG(Nw(s)N) for a.e. s of G 2 and we are going to
bound above b e by an L 1 (G 2 ) function independent of e . This goes as follows.
Since w vanishes on ¯S 28O¯V 8

Nw(s1 tn(s) )Nq 4N2s
t

t 8

˜w(s1un(s) ) Qn(s) duN
q

G

(t 82 t)q21s
t

t 8

N˜w(s1un(s) )Nq duG (t 8 )q21s
0

t 8

W du

where we denote for simplicity

W4W(u , s) 4N˜w(s1un(s) )Nq .

Hence

1

h e (s)
Nw(s1 tn(s) )Nq G

(t 8 )q21

h e (s)
s
0

t 8

W du ,

1

h e (s)
s
0

h e (s)

Nw(s1 tn(s) )Nq dtG (t 8 )q21s
0

t 8

W du
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and then, by definition of b e and by (2.1), (2.3)

Nb e (s)NG
c

h e (s)
s
0

h e (s)

G(Nw(s1 tn(s) )N) dtG

cm 2

h e (s)
s
0

h e (s)

Nw(s1 tn(s) )Nq dtGc(t 8 )q21s
0

t 8

W du

and s
0

t 8

W du is independent of e and belongs to L 1 (G 2 ) since

s
G 2

dss
0

t 8

W du4s
G 2

dss
0

t 8

N˜w(s1un(s) )Nq duGcs
S 28

N˜wNq dxE1Q .

This completes the proof of (5.5) and the proof of Lemma 3.

6. – Example.

We apply the general result stated above to

F(v) 4
1

p
s

V

N˜vNp dx1
1

p
s

V

NvNp dx , G(j) 4
1

q
j q .

Using more current notations, we set a e (h e )q21 4me and we assume that h e

and me are given functions defined on G such that

– (e , h e� C1 (G) and (s�G , 0 Eh e (s) Ge ;

– (e , me�L Q (G);

– )aD0, a.e. s�G , (e , me (s) Fa(h e (s) )q21 ;

– there exists a partition G 1 , G 2 of G such that

s
G 1

h e (me )12q 8 dsK0 ,

)a�L Q (G 2 ) , me (h e )12q � a in weak* -L Q (G 2 ) ,

)HD0 , (s�G 2 , (e , N˜h e (s)Nq GHh e (s) .

(The data f e , g e satisfy as in general f e � f in weak-L p (V) and ]Vg e
VL q 8 (Se ) (e

bounded.) Then with F , G chosen as above, the functionals J e reduce to

J e(v)4
1

p
s

V

N˜vNp dx1
1

p
s

V

NvNpdx1
1

q
s

Se

m e
isN˜vNqdx2s

V

f ev dx2s
Se

g ev dx
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and the solution u e of (Pe) is characterized by the variational formulation:

(6.1)

.
`
/
`
´

u e�V e and for every v e�V e ,

s
V

N˜u e Np22 ˜u e Q˜v dx1s
V

Nu e Np22 u e v dx1

s
Se

m e
isN˜u e Nq22 ˜u e Q˜v dx2s

V

f e v dx2s
Se

g e v dx40

that is u e is a weak solution of

.
`
/
`
´

2div (N˜u e Np22 ˜u e )1Nu e Np22 u e4 f e in V ,

2div (me
isN˜u e Nq22 ˜u e ) 4g e in Se ,

u e40 on ¯Ve ,

N˜u e Np22 ¯

¯n
(u e

NV ) 4me
isN˜u e Nq22 ¯

¯n
(u e

NSe ) on G

(6.2)

(having no «discontinuity» on G).
The application of Theorem 1 gives as limit problem

Inf ]J(v), v�V( ,(P)

where as before

V4 ]v�W 1, p (V), vN¯V0G 2
40, vNG 2

�L q (G 2 )( ,

and where

J(v) 4
1

p
s

V

N˜vNp dx1
1

p
s

V

NvNp dx1
1

q
s

G 2

aNvNq ds2s
V

fv dx .

Its solution u is characterized by the variationnal formulation:

(6.3)
.
/
´

u�V and for every v�V ,

s
V

N˜uNp22 ˜u Q˜v dx1s
V

NuNp22 uv dx1s
G 2

aNuNq22 uv ds2s
V

fv dx40

that is u is a weak solution of

.
/
´

2div (N˜uNp22 ˜u)1NuNp22 u4 f in V ,

u40 on ¯V0G 2 ,

N˜uNp22 ¯u

¯n
1aNuNq22 u40 on G 2 .

(6.4)
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